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Abstract

Patchiness is ubiquitous across a wide range of scales, and spatial pattern and ecological processes are interdepen-
dent and interactive. However, traditional approaches have not been able to incorporate spatial patchiness and
pattern-process interactions into modeling frameworks because of their assumptions of homogeneity, equilibrium and
determinism. Recently, different modeling approaches have been developed to take into account of spatial heterogene-
ity and its effects on ecological processes. In this paper, we present a conceptual framework and simulation scheme
for a spatially explicit patch dynamic modelling approach. The model structure consists primarily of two submodels:
a spatially-explicit, age-/size-structured patch demographic model and a multi-specific population dynamic model. We
demonstrate the modeling approach through an example, and also present alternative formulations and algorithms
for implementing different parts of the model. While most existing spatial models are grid-based, the patch-based
spatial modeling approach provides a unique, alternative way of studying pattern and process in ecological systems.
© 1997 Elsevier Science B.V.
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1. Introduction lasa and Pickett, 1991; Wu and Loucks, 1995).
Coupling spatial pattern with ecological processes

Ecological systems exhibit patchiness in struc- has recently become a major theme in both theo-
ture, function, and dynamics across a range of retical and empirical ecology (Levin, 1992; Wiens
spatial, temporal, and organizational scales (Ko- et al., 1993; Wu and Levin, 1994). Patch dynamics

emphasizes spatial and temporal heterogeneity,
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jingle between pattern and process (Levin and Paine,
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1974; Pickett and White, 1985; Levin et al., 1993;
Wu and Loucks, 1995).

In linking spatial pattern with ecological pro-
cesses, spatial models are indispensable. Levin
and Paine (1974) argued that the patch is the
natural unit for modeling many marine and ter-
restrial systems, exhibiting dynamics on character-
istic spatial and temporal scales that control
system behavior. Still, most spatial models are
grid or raster based, in which patches are consid-
ered as single cells or aggregates of multiple cells
within a regularly divided grid (e.g. Smith and
Urban, 1988; Turner and Gardner, 1991). Such a
raster approach is difficult or unrealistic in deal-
ing with overlapping among patches that are dy-
namic. On the other end of the spectrum,
individual-based spatial models keep track of the
location and dynamics of all individual organisms
(e.g. Pacala and Silander, 1985). The application
of this approach can be seriously limited by in-
creased model complexity and computational de-
mand as the study area expands, and a central
challenge is to aggregate to simplify. Here we,
therefore, present a patch-based spatial modeling
approach that deals with patch overlap explicitly.

2. Model conceptualization: ecological systems as
hierarchical dynamic mosaics of patches

Ecological systems have typically been per-
ceived and studied in terms of populations, com-
munities, and ecosystems. While these
organizational units can facilitate both theoretical
and empirical studies in several ways, their inter-
nal homogeneity is frequently assumed implicitly.
In general, the validity of this assumption is de-
pendent on the questions being addressed; but for
a wide variety of questions, spatial heterogeneity
has been shown to be essential to understanding
system dynamics. In recent years, there has been a
shift in attention in ecology, from equilibrium to
non-equilibrium, from homogeneous to heteroge-
neous, from deterministic to stochastic, and from
consideration of single scales to the relations
among scales (see discussions in Wu and Loucks,
1995). With this transition, there has been increas-
ing recognition that ecological systems are hierar-

chical mosaic systems of patches that differ in
size, shape, and successional stage (Levin and
Paine, 1974; Loucks et al., 1985; Kotliar and
Wiens, 1990; Wu and Loucks, 1995). In this ap-
proach, the patch becomes a fundamental struc-
tural and functional unit. This conceptualization
is not contradictory but complementary to the
traditional organizational hierarchy.

The patch dynamics concept dates back to the
‘pattern-process hypothesis’ by Watt (1947). Since
the 1970s, patch dynamics has become a central
theme in ecology through a number of theoretical
and empirical studies at different organizational
levels (See Levin and Paine, 1974; Paine and
Levin, 1981; Pickett and White, 1985; Levin et al.,
1993; Wu and Loucks, 1995 for reviews). Such a
perspective is particularly ostensible in the ‘wave-
form dynamics’ hypothesis (Loucks, 1970), the
intertidal landscape patch model (Levin and
Paine, 1974, 1975), the patch mosaic concept for
plant communities (Whittaker and Levin, 1977;
Steele, 1978), the ‘minimum dynamic area’ con-
cept for terrestrial ecosystems (Pickett and
Thompson, 1978), the ‘shifting mosaic steady
state’ hypothesis (Bormann and Likens, 1979),
and the mosaic-cycle concept of ecosystems
(Remmert, 1991). The patch dynamics perspective
has had pervasive influences on a wide range of
studies in community ecology (e.g. Pickett and
White, 1985; Collins, 1989), metapopulation dy-
namics (Levins, 1970; Gilpin and Hanski, 1991;
Levin et al., 1993; Wu et al., 1993; Wu and Levin,
1994), and landscape ecology (e.g. Forman and
Godron, 1986; Wu and Levin, 1994).

Based on the patch dynamics perspective, many
ecological systems may be considered as hierarchi-
cal, dynamic patch mosaics, generated and main-
tained by processes of patch formation, patch
development, and disappearance (Fig. 1). Both
natural and anthropogenic disturbances (e.g. fire,
grazing, fragmentation) are frequently responsible
for these processes (Wu and Loucks, 1995). Usu-
ally, disturbances create patchiness in ecological
systems through physical destruction, in which the
type, intensity, and frequency of disturbances may
all play an important role. Within-patch succes-
sion or patch development, which is affected by
numerous biological and physical factors, takes
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Fig. 1. A patch dynamics conceptualization of ecological systems (e.g. populations, communities, ecosystems, or landscapes).
Natural and anthropogenic disturbances and environmental heterogeneity on different scales frequently induce patchiress in time
and space. The structure, function, and dynamics of an ecological system are determined by individual patches and their interactions

at different hierarchical levels.

place following disturbances. Feedbacks exist be-
tween the patch dynamic processes and the exist-
ing ecological mosaic system, although their
importance may vary in different ecosystems. All
these aspects may be complicated further by het-
erogeneity in underlying physical environment
(e.g. topography, soil, and climatic factors). The
structure, function, and dynamics of an ecological
system are determined by individual patches and
their interactions at different hierarchical levels.
A general bottom-up approach to modelling
such patchy ecological systems involves account-
ing for the dynamics of pattern and processes on
a range of distinct levels (Wu, 1993): the local
individual patch, the patch aggregate, and the
landscape (Fig. 2). The local patch dynamics
model (or the patch dynamics model unit,

PDMU) is composed of a mechanistic or phe-
nomenological model of processes (e.g. popula-
tion dynamics or nutrient cycling) and a model of
disturbance patch demography. Environmental
factors that affect the processes of study at the
local scale are also considered in the PDMU. By
incorporating pattern and processes that operate
on larger scales, these local patch models can be
scaled up to give rise to a landscape-level patch
dynamics model (Fig. 2). Although this concep-
tual framework holds for many systerns and is
useful to model-building, the biological connota-
tion of patch dynamics and mathematical details
may vary greatly depending on questions to be
addressed. In the following section, we illustrate
how to implement this modeling approach based
on a grassland ecosystem. Because the basic struc-
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Fig. 2. A hierarchical patch dynamics modeling framework, illustrating how patch-level processes scale up to the landscape level.

ture and simulation results of the spatial patch
dynamic grassland model were presented else-
where (Wu, 1993; Wu and Levin, 1994), here we
will focus on several modeling aspects with alter-
native mathematical formulations that have not
been discussed in detail previously.

3. Model structure and implementation: an
example from the Jasper Ridge serpentine
grassland

In this section, we will demonstrate how the
spatial patch-based modelling approach can be
implemented through an example based on the
serpentine annual grassland in the Jasper Ridge
Biological Preserve of Stanford University in San
Mateo County, California. Because a general de-

scription of the model has been given elsewhere
(Wu and Levin, 1994), here we will focus primar-
ily on several key modelling processes that were
not covered or only briefly discussed previously.
Alternative algorithms will be presented whenever
appropriate.

The serpentine grassland is dominated by a
relatively high diversity of annual native forbs
(e.g. Lasthenia californica, Plantago erecta, and
Calycadenia multiglandulosa) and perennial bunch
grasses (e.g. Stipa pulchra, Sitanion jubatum; see
McNaughton, 1968 and Hobbs and Mooney,
1985 for descriptions of the soil, plant communi-
ties, and landscape characteristics). As in many
other ecosystems, localized disturbances play an
important role in shaping the structure and func-
tion of this annual grassland. In particular, the
burrowing activities of western pocket gophers
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(Thomomys bottae) account for a major compo-
nent of the disturbance regime. By bringing exca-
vated soil material from underneath to the
surface, gophers create approximately round
mounds of bare soil of up to 50 cm in diameter.
When new mounds are formed, the plants buried
up to 10 cm beneath are essentially killed, and
plant succession on these ‘microhabitat islands’
takes place subsequently. This apparently resem-
bles the situation of treefalls in many forests
where a similar sequence of ecological processes
operate, which is often called ‘gap dynamics’
(Runkle, 1981, 1982; Shugart, 1984) or ‘mosaic
cycle’ (Remmert, 1991; Wissel, 1991). These dis-
turbance-induced patches exhibit a series of differ-
ent phases: nudation or patch formation, dispersal
and colonization, plant establishment, intraspe-
cific and interspecific competition, and achieve-
ment of the pre-disturbance state. Gopher
disturbances continue throughout the year, with
higher intensities in April and July. Each year as
much as more than 20% of the total area is turned
over by gopher activity, resulting in changes in
vegetation composition and spatio-temporal dis-
tribution of plant species (Hobbs and Mooney,
1985, 1991).

We chose the Jasper Ridge serpentine annual
grassland as the model system for several reasons.
First of all, the dynamics of gopher mounds, like
tree gaps in forests, can be easily conceptualized
following the patch dynamics perspective. Sec-
ondly, gopher mounds are easy to observe and
quantify in terms of number, size, and distribu-
tion. In addition, the rapid dynamics of annual
plant populations and availability of field data
make possible the parameterization of the simula-
tion model. Thus, the annual grassland landscape
is conceptualized as a patch mosaic of gopher
mounds of different size, age, and species compo-
sition.

In general, the spatial patch dynamic model is
composed of two submodels: a spatially-explicit,
age-/size-structured patch demographic model,
which is a spatial extension of the Levin-Paine
model (1974, 1975), and a multi-specific plant
population dynamic model of a non-equilibrium
island biogeographic type. The spatial patch de-
mographic submodel simulates the dynamics of

disturbance regime (rate and spatial and temporal
distribution of disturbance) and the change of the
age- and size-structured gopher mound popula-
tion in both time and space. The plant population
dynamic submodel keeps track of spatial and
temporal changes in plant density within each
individual patch. Parameterization of the model is
based mostly on available field data, while, for
some whose values are not obtainable from the
existing field information, biologically sensible es-
timation is applied as indicated herein. In the
following, we present a more detailed description
of the spatial patch dynamic model, with alterna-
tive formulations for several model components.

3.1. Modelling disturbance patch demography

Disturbance patches (gopher mounds in this
case) are classified into two groups: obsolete
patches and effective patches. Obsolete patches
refer to patches that are older than a maximum
patch age and essentially represent the non-patch
(undisturbed) areas. The maximum patch age is
an indicator of change in soil conditions of the
gopher mounds. We realize that it may be affected
by within-patch vegetation dynamics through bio-
logical feedback, but the current version of the
model does not take this into account for simplic-
ity. Effective patches are those whose age is
smaller than the maximum patch age. Patch age is
related to soil conditions, which significantly af-
fect plant growth processes. While the obsolete
patches are treated as the same, effective patches
of different age essentially represent different mi-
crohabitats for plant populations. To simulate the
spatial and temporal dynamics of the disturbance
patch population, we develop a spatially explicit,
age- and size-structured model.

3.1.1. Patch shape, size distribution, and
disturbance rate

Based on field observation, we assume that all
individual patches at birth are circular in shape. A
lognormal size distribution for new patches is
used in the model (see Paine and Levin, 1981),
with the minimum and maximum sizes being 10
and 50 c¢m in diameter, respectively. That is,
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In A~ N(m, ¢?), (1)

where A is the patch area at birth, and m and o
are the mean and standard deviation of the nor-
mal distribution. m is obtained using the mean
patch diameter, and ¢ is determined in such a way
that the resulting lognormal distribution of patch
size fit the range reasonably well. For example,
when the mean patch diameter is 30 cm, m =
6.5608, and ¢ = 0.35. Truncation at the tails is
necessary and can be done easily by considering
the minimum and maximum size of new patches.
The assumption of patch size distribution is con-
sistent with field data showing that intercepted
patch length along a one-dimensional transect in
the serpentine grassland appears to follow a log-
normal distribution (Moloney, 1993). This as-
sumption also was found plausible for tree gaps in
some old-growth mesic forests of eastern North
America (Runkle, 1982) and wave-generated
patches in an intertidal landscape (Levin and
Paine, 1975; Paine and Levin, 1981). However,
note that, after birth, patches may change greatly
in both shape and size because they may be
overlapped by younger patches.

Field observations show considerable interan-
nual variability in disturbance rate (Hobbs and
Mooney, 1991). Here disturbance rate is defined
as the percentage of the total area of study dis-
turbed by gopher activities per year. Disturbance
rate may be modelled as temporally uncorrelated
or correlated events. For this particular system, a
lognormal model (Fig. 3) seems plausible in that
smaller gopher mounds are more frequently found
than larger ones in the field (Hobbs and Mooney,
1991; Moloney et al., 1992).

3.1.2. Spatial pattern of disturbance patches

Field observations show that new gopher
mounds are usually positively correlated to those
formed in the previous years in their spatial loca-
tions (Hobbs and Mooney, 1991). This correlation
in space and time may be related to the behavioral
characteristics of gophers (see Cox, 1990; Reich-
man et al., 1982). Positive spatial autocorrelation
may be introduced by assigning conditional prob-
ability to new patches according to the distance to
patches formed in the previous year. To do this,

we have developed what is called ‘the patch prob-
ability method.” This method assumes that the
probability for an existing patch to have a new
patch in its neighborhood in the next year de-
creases exponentially with distance. Because of
food shortage and other factors, the patch forma-
tion probability may be negligibly small within a
certain distance to the parental patch. In addition,
the probability is assumed equal in all directions
around the patch. Therefore, we have

{go o(Ly) =0 ‘ L,<Lop, @)
Pp(Ly) = 45" L,>L

where ¢, is the patch-formation probability at a
point, L, is the distance of the point from the
center of the parental patch, L, is the distance
within which the probability is zero, and 4, is the
exponential decay coefficient that determines how
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Fig. 3. Probability density function with respect to disturbance
rate and a time series of disturbance rate obtained from a
simulation. Disturbance rate is modelled using a lognormal
distribution (i.e. In R ~ N(m, 62), where R is disturbance rate,
m= —1.897 (i.e. a mean disturbance rate of 0.15), and o =
0.4. Truncation is applied at disturbance rate of 0.05 and 0.35,
respectively.
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fast this probability drops with distance. This
method creates a positive spatial autocorrelation
among patches generated.

As the initial condition, patches are generated
with their centers randomly distributed and the
total number of patches is recorded. During the
next simulation time step, the following steps are
implemented sequentially when a new patch is
generated: (1) choose a previous year patch ran-
domly; (2) calculate a distance value for a ran-
domly chosen ¢, according to the
distance-dependent probability density function of
patch formation; (3) determine an angle between 0
and 27 randomly; (4) determine the x, y coordi-
nates for the point based on the angle and the
distance to the center of the parental patch; (5)
dismiss the seed if x and/or y is out of the bounds
set for the model (absorbing boundary); and (6)
return to step (1) if the new patch would overlap
too much with any existing patch. The above
steps are repeated until all patches have been
generated for the time step. By changing the value
of /,, we can produce patch maps with different
degrees of aggregation; therefore, spatial patterns
of disturbance patches revealed from aerial pho-
tos or other remotely sensed images can be simu-
lated. Alternatively, a patch influence index
method may be used (see Appendix A).

The overlap of a new gopher mound with an
existing mound is likely to increase with the age of
the existing mound (Wu and Levin, 1994), per-
haps due to the scarcity in food supply. As a first
approximation, a hyperbolic relationship equation
may be used to describe such an effect. We define
the maximum overlap ratio (OLR, (7)) as the
fraction of area of the new patch that overlaps an
existing patch (i.e. the overlap divided by the area
of the new patch). Then the relation between the
maximum overlap ratio between a new patch and
another patch of any age may be expressed as

1

1 s
1 —1 —Hr—1)
o)

t=1,2,..., Qpaxs (3)

OLR axl(7) =

where OLR (1) is the overlap ratio, OLR, is the
overlap ratio when the age of the existing patch is

one (which is the minimum overlap), 7 is the age
(in years) of the existing patch encountered by the
new patch, and y is a coefficient adjusting the rate
of increase in the overlap ratio with patch age.
Therefore, each time a new patch is generated
during the simulation, its overlap with any exist-
ing patch of age 7 in the landscape is checked, so
that the actual overlap ratio is equal to or smaller
than OLR_,,,(7). Conceivably, this overlapping
constraint exerts some degree of negative spatial
autocorrelation in the patch formation.

3.1.3. Definition and estimation of the effective
patch area

The spatial patch dynamics modelling approach
entails the calculation of the effective size of each
patch in the landscape at each simulation time
step. The effective size of a patch in a mosaic of
overlapping patches of different age and size is
defined as its remaining area that is not covered
by any younger patches. To compute the effective
size of a patch, it is necessary to know the number
of other patches that overlap, and are overlapped
by, the patch of concern and the spatial and age
relationships among all of them. The portions of
the patch in consideration overlapped by other
patches should be appropriately subtracted at
each simulation time step from its original patch
size. To do that, we must calculate the overlap-
ping areas of a varying number of patches of
different size and age (see Appendix B). In gen-
eral, the effective area of a patch that is sub-
merged in a mosaic of patches of different age
and size can be written as

A;*zA,ﬂ( U Aj> 4
j=1.j%1

where A¥ and A, are the effective size and the
birth-time size of patch i, respectively, 45 is the
complement of set A4, and m is the number of
patches younger than patch i.

Eq. (4) provides an understanding of the rela-
tionship among an existing patch and all other
patches that overlap it with regard to its effective
size. But, it does not directly render a computer-
implementable algorithm. When the number of
patches involved is larger than two, an analytical
solution for overlapping areas among them be-



332 J. Wu, S.A. Levin / Ecological Modelling 101 (1997) 325-346

Table 1
List of parameters used in the model simulations

Microhabitat Species name Max fecundity Germination rate Survivorship Above-ground biomass
(seeds/plt) (%) (%) (mg)
Undisturbed Bromus 11.00 0.30 0.50 39.60
Lasthenia 22.00 0.15 0.60 10.20
Gopher Mounds Bromus 16.00 0.40 0.80 —
Lasthenia 27.00 0.20 0.75 —

Values are obtained from Hobbs and Mooney (1985, 1991) and Hobbs and Hobbs (1987).

comes extremely difficult, if ever possible (see
Appendix B). We have developed a ‘second-order
overlapping moving window’ algorithm using a
Monte Carlo integration method to estimate the
overlaps among any number of patches. The basic
idea is as follows. After each new patch is gener-
ated, all patches directly touched by this new
patch are identified with information on their
spatial locations, original sizes, ages, and sequen-
tial patch ID numbers. Afterwards, a rectangular
window is selected in such a way that it contains
all the patches that directly overlap the patch
under adjustment and all others that overlap them
(the second-order overlapping patches). Then, ef-
fective sizes for the patches affected by the new
disturbance are calculated through a Monte Carlo
integration within the restricted region. We found
that the accuracy in calculating patch areas was
very satisfactory. For example, a sample output
showed that when the actual patch area was
63.62% of the entire model landscape, the esti-
mated value using the Monte Carlo integration
method was 63.08%.

3.2. Modelling plant population dynamics at the
patch level

The patch-based, multiple-specific plant popu-
lation dynamic model simulates demographic pro-
cesses, including germination, survival, and seed
reproduction, which are affected by microhabitat
conditions (represented by different patch age
classes). Within patches, both intraspecific and
interspecific competition are considered as they
influence the seed production through density-de-
pendent mechanisms. Among patches, local plant

populations interact with each other through seed
dispersal, resulting in the dynamics of species
metapopulations at the landscape level. For the
sake of demonstrating the modeling approach,
only two species, Bromus mollis and Lasthenia
californica, will be included in the simulations
discussed in this paper. Table 1 lists the values of
demographic parameters for the two species in
undisturbed and disturbed areas.

3.2.1. Plant population demography
The plant population dynamics at the patch
scale is modelled as:

Ni. t+1 = (N, lf(. T+ Ii. 1 Di. NA, + /ANE: S (3)

where N,,,, and N,, are the population size
(number of plant adults) for species i at time ¢ + 1
and ¢, respectively, f; is the fecundity function, 7, ,
is the number of seeds received by the patch, D, ,
is the number of seeds dispersed out of the patch,
g, 1s the germination rate, s; is the seedling sur-
vivorship of species i, and A4,,, and A, are the
patch sizes at times ¢+ 1 and ¢, respectively (4, ,
1 < 4,). The ratio of patch size, 4, ,/A4,, adjusts
the population size in a patch if the size of the
patch changes, assuming as a first approximation
that the reduction in patch size proportionally
decreases the plant population size in that patch.

Plant fecundity is modeled as a density-depen-
dent variable on the individual patch level as
follows:

f_-— RMP, IKMI (f*l(lj )(1 ’(Z / ’))
=1 6
( )



J. Wu, S.A. Levin / Ecological Modelling 101 (1997) 325-346 333

where f¥ is the fecundity of species i without
neighbors, RMP,; is the rainfall multiplier,
which reflects the effect of annual precipitation
variation on the fecundity of species i (set to
1 for simulations discussed in this paper),
AMP; is the gopher mound recovery multi-
plier, H denotes the different microhabitat
types, «, and g¢; are species-specific constants,
f; is the interspecific interference coefficient, m
is the number of species modeled, and n; is
the population density of plant species j in the
patch.

The maximum fecundity for each species dif-
fers between effective patches (gopher mounds)
and obsolete patches (non-mound areas), and
also changes with patch age. The constant «;
has the dimension of (area per plant) and,
thus, 1/n.;, may be conceived as a measure of
the critical population density, n.,, at which
fecundity becomes appreciably reduced by
crowding effects. In particular, we assume «;
to be directly proportional to 1/n.;,. The val-
ues of n.; for different species are based on
Hobbs and Hobbs (1987). All the aforemen-
tioned density-dependence relationships can be
evaluated by regression against field data, and
the best fit parameters can be, therefore, deter-
mined (e.g. Pacala and Silander, 1985, 1990).

The competition coefficients g, essentially
define the equivalence among the species in
the same community. In the Jasper Ridge ser-
pentine grassland community, dominated by
relatively short annuals forbs, soil resources
are most likely to be the main limiting factors
for plant growth and reproduction. A first ap-
proximation is to estimate the interspecific
competition coefficients based on the above-
ground biomass of the adult plants of the spe-
cies. For simplicity and also limited by data
availability, we calculate f,; as the ratios of
above-ground biomass between two competing
species, i.e.:

W,
By=a, Wj (M
where «,, is a scaling constant, and W, and W,
are the above-ground biomass for the adult
plants of species i and j.

3.2.2. Effect of environmental resources on
demographic parameters

Germination rate, survivorship and fecundity of
plants are different on gopher mounds of different
age; and survivorship and fecundity for species
modeled are, in general, considerably higher on
gopher mounds than undisturbed areas due to
increased resource availability and/or reduced
competition on the former. The recovery of soil
conditions may take place rather rapidly at first
after disturbance and then slow down when the
predisturbance state is approached. A negative
exponential decay model is used to account for
the change in plant demographic parameters due
to soil properties of gopher mounds:

v,

T y(¥en) - ¥, ®
T

or

Vo(®)= Yy + (Y5~ ) e me, ©

where 7 is the patch age, Yy(r) is the value of a
plant demographic parameter (i.e. germination
rate, survivorship or fecundity) in a gopher
mound of age of 7z, Y¥% is the value of a plant
demographic parameter in a newly formed gopher
mound, Y, is the value in an undisturbed area,
and # is a constant that determines the pace of the
exponential decay. All the above parameters are
species-specific.

Let AMP = Y4(7)/Y¥ and call this ratio the
patch age multiplier; then we have

= E _ L‘_ —n{t—1)
AMP = ¥z + <1 Y"c‘) e . (10)

AMP is equal to 1 when patch age is 1 and
asymptotically approaches Y,/Y§ when patch age
gets larger (Fig. 4A). Of course, AMP is also
species specific. For computational convenience,
we set AMP to Y,/Y¥ when patch age is larger
than 1., which is the empirically estimated,
maximum time for the difference in soil character-
istics between the different microhabitats to disap-
pear (see Fig. 4a).

To estimate #, we assume that it takes r; years
for Yg(r) to decrease to a fraction ¢ of the
predisturbance level. That is, when =1 +1
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parameters change gradually at a constant rate,
then we have:

(12)

*
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Yo(Tom —1)
Y, 1
Ys
B
B) t » 7
Tmax
Patch age

Fig. 4. Relationship between plant demographic parameters
and patch age. (A) An exponential model, and (B) A linear
model. AMP is the patch age multiplier, 7 is the patch age, Y&
is the value of a plant demographic parameter (i.e. germina-
tion rate, survivorship or fecundity) in a newly formed gopher
mound, Y, is the value in an undisturbed area (obsolete
patch).

Yo(r) =Y, for 7> T,- (14)

Then,

AMP=1——F"F"—"—"(t—1 1
Y?}(Tmnx - 1) (T )’ ( 5)

ie.

AMP=1-[1-= Y, _(E;D_

2‘3 (rmax - 1)
fort=1,2,..., Toux (16)
and
AMP=Y, /Y% for 7> 17, 17

AMP assumes values between Y,/Y¥ (when 7>
Tmax) @nd 1 (when 7 = 1; see Fig. 4B).

3.3. Seed dispersal in mosaics of patches

Disturbance patches of different age are essen-
tially different microhabitats in which plant de-
mographic  parameters (e.g.  germination,
survivorship, and fecundity) vary. To take into
account this heterogeneity, seed dispersal has to
be modelled on the individual patch basis in terms
of both source and target patches. Modelling of
dispersion of organisms and their propagules is
necessary for many studies ranging from popula-
tion dynamics to landscape ecology, and different
types of models have been proposed (e.g. Framp-
ton et al., 1942; Werner, 1975; DeAngelis et al.,
1986; Okubo and Levin, 1989). Nevertheless,
modelling dispersal in mosaics of heterogeneous
patches of different size and shape poses both
conceptual and computational challenges. In the
following, we will discuss how dispersal is mod-
elled in such patch mosaics.

The relationship between the number of dis-
persed seeds and travel distance from the source is
an important part of the dispersal model. Al-
though this relationship may be affected by nu-
merous physical and biological factors (e.g. the
terminal settling velocity, wind speed and turbu-
lence, seed release height, and specific morpholog-
ical adaptations for dispersal; see Augspurger and
Franson, 1987; Okubo and Levin, 1989), two
simple phenomenological models (the negative ex-
ponential and the inverse power equation) have
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long been used with reasonable success for mod-
elling dispersal. The negative exponential model is
preferable in a mathematical sense because the
solution to the equation is bounded when distance
is approaching zero. We will use the exponential
model to develop the simulation algorithm for
seed dispersal, although different dispersal-dis-
tance relationships may be more suitable for cer-
tain situations.

The exponential dispersal model can be written
as:

p(L)y=/ie (18)

where (L) is the dispersal probability density
function, L is the distance between the centers of
a donor patch and the recipient patch, ¢(L) is the
probability of a seed falling at the distance L, and
A 1s the exponential decay constant, which is a
measure of the dispersability of the seeds in a
specific set of field conditions (see Okubo and
Levin, 1989). Both ¢(L) and 1 have the dimen-
sion [1/L]. The reciprocal of 4 is the characteristic
length of the negative exponential function which
is, in the case of dispersal, the mean dispersal
distance for the species under consideration. The
probability density function can be easily inte-
grated to obtain the cumulative probability func-
tion,

®(L)=f¢(L)dL=1—e_*L, (19)

which approaches unity when L approaches the
positive infinity.

Obviously, 4 must be estimated before this
model can be used to determine how far a partic-
ular seed will fall. 2 can be readily obtained from
field data as follows. Suppose that the probability
for a seed to fall within a distance of L is : then

w=1—e (20)
and, thus,

1
A= —fln(l—a)). 2D

X

The probability « may be estimated from the
proportion of seeds dispersed within the distance
L. Therefore, the value of 4 can be calculated for
any given pair of w and L,. Table 2 gives the

0.12
4
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008 i nica
1
006 4 }

0.04

Dispersal probability density
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Fig. 5. The probability density functions of seed dispersal with
respect to distance for Bromus mollis and Lasthenia californica.

values of 4 for two species in the serpentine

grassland, and the probability density functions

with respect to distance are illustrated in Fig. 5.

We have developed a general procedure for
seed dispersal in this patchy system that is based
on the following assumptions. First, seeds dis-
perse away from the center of the source patch
with equal probability in all directions. Second,
dispersal probability decreases exponentially with
distance away from the source patch. Third, seeds
are randomly distributed within a patch. Fourth,
each patch in the landscape may be both a source
and recipient patch during dispersal. We have
developed a procedure for each seed to be dis-

persed. The procedure includes seven steps in a

loop (see Fig. 6 for a schematic representation of

the variables and their relations):

1. select a source patch in which there is at least
one seed present at the dispersal time;

2. locate a random position within the effective
area of the source patch;

3. randomly determine a dispersal angle (&) be-
tween 0 and 2x;

4. determine dispersal distance (e.g. from L(¢) =
1/A1n A/@p, where 0 < ¢ < A);

5. determine the spatial position of the landing
point for a given pair of # and L (from
equations: x=x,+ L cos 8,y =y,+ L sin 6,
where 0 < 8 <2n);
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6. identify the recipient patch according the spa-
tial location determined in the previous step
and update its seed bank; and

7. repeat the above steps until seeds in all patches
have been dispersed.

Dispersing all seeds one by one following the
above procedure may become formidably de-
manding in computation if the number of seeds is
considerably large. Therefore, we have tried to
develop an algorithm that reduces the computing
time by ‘dispersing’ seedlings or adults instead of
seeds. If all patches in a landscape have the same
demographic parameters (i.e. belonging to the
same type of microhabitat), this can be easily
done. In such a case, dispersing seeds among
patches is essentially the same as dispersing
seedlings (or adults) by multiplying a universal
germination rate (or the product of germination
rate and survivorship) to the total number of
seeds produced in a source patch. However, in
reality germination rate and survivorship may
vary in different patches; thus the abovemen-
tioned method becomes unrealistic.

To account for microhabitat heterogeneity, the
algorithm involves two separate sets of Bernoulli
trials with each seed to be dispersed (Fig. 7). We

x=xp+Lcos®,y=yy+Lsin® (0< © <2m)

Fig. 6. A schematic representation of the relation among a
source pathc, a recipient patch, dispersal angle ©, and seed
travel distance L. It also illustrate how dispersal parameters
are determined in a Cartesian system.

-f— oo0

Pick a seed

Will it survive
withrp,, ?

Will it survive
with Ip/Tmax 7

+ Yes
Increment the: number
of adults by one

Any seeds left
to be dispersed?

+N0

Move on to the next
step of the program

Fig. 7. The flow chart for the dispersal algorithm involving
two sets of Bernoulli trials. The first reduces the total number
of seeds to be dispersed eventually to the number of adult
plants out of these seeds; second adjusts the number of adults
to the particular microhabitat. The algoroithm minimizes the
computational time for dispersal while retaining dispersal
stochasticity at the individual level.

define plant recruitment rate for species i as the
product of its germination rate and survivorship
(i.e. r,=gs,). The first uses the maximum recruit-
ment rate (F.x = Zmaxdmax) a8 the probability for
dispersal, which reduces the number of dispersal
events from the total number of seeds to the
number of adult plants that will come from these
seeds. The second takes the ratio of the actual
rate of recruitment (r,) in patch type p to the
maximum rate as the dispersal probability, and
this makes an adjustment on the number of adults
according to the particular microhabitat. As a
result, the number of seeds actually dispersed is
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Fig. 8. The flow chart of the spatially explicit patch dynamic model for the Jasper Ridge serpentine grassland (PatchMod).
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reduced to the product of r,,, and the total
number of seeds to be dispersed.

3.4. Model simulation

Fig. 8 is a flowchart depicting the scheme to
link the disturbance patch population model with
the plant population model, and to scale local
patch dynamics to the landscape level. The model
may be run without invoking the plant population
dynamic module, which would only simulate the
spatiotemporal dynamics of the age- and size-
structured gopher mound population. When both
disturbance patch and plant population modules
are in operation, the model assumes the following
simulation scheme. First of all, the model land-
scape is initialized and input data are read in. A
simulation may either start with generating the
first patch in an ‘empty’ landscape, or begin with
a landscape that is already entirely covered by
various patches. The second approach requires
landscape initialization.

If the initialization option is chosen, the current
version of the model uses the ‘patchy blanket
method” which covers the entire landscape with
four layers of patches in the first four time steps
before staring the plant population dynamics
model (see Fig. 9). The patches in the first three
layers are identical, whose diameters are equal to
the length of the reference window (a square cell
of the reference grid overlaid on the model land-
scape for programming convenience). The first
layer includes (R x C) identical patches, where R
and C are the numbers of rows and columns of
the reference grid. The centers of these patches are
the same as the geometric centers of the reference
window. The second layer is composed of (R —
1)(C — 1) patches whose centers are the intersec-
tion points in the reference grid. The third layer
consists of 2(R — 1) 4+ 2(C — 1) patches, which are
arranged along the four edges of the reference
grid. Only four smaller identical patches at the
corners make up the fourth layer, whose diame-
ters are one fourth of the reference window
length. Fig. 9 gives an example in which the
model landscape consists of 5 x 5 reference win-
dows.

The plant population module begins with ini-
tializing all patches, except those formed at this
time step, in the landscape with randomly deter-
mined population densities (Fig. 8). The initial
number of plant adults in each patch is randomly
chosen between 0 and the maximum observed in
the field for each species. The same sequence of
germination, growth, reproduction and dispersal
is then repeated once again at each time step. If
an existing patch is overlapped by newly formed
ones, its plant population abundance is adjusted
based on the remaining area (see Eq. (5)).

Spatial models of this type can produce a wide
range of information that is pertinent to under-
standing pattern and process dynamics in ecologi-
cal systems. In particular, the outputs of the
model PatchMod include the number and size of
different types of patches, current size and spatial
location of individual patches, plant population
density in each patch, metapopulation density of
modelled species at the landscape level, and spa-
tial distribution of disturbance patches and plant
populations. All the patch-based outputs may
come out in both numerical and graphical forms.
Some examples of the simulation results from

Fig. 9. An example of landscape initialization using the
‘patchy blanket method,” where the model landscape contains
25 (5 x 5) reference windows.
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Fig. 10. Simulated temporal dynamics of the area and number of differnet types of patches, where all patches include obsolete and
effective patches, new patches are those formed in the year, and recycled patches are those that are completely buried by younger

ones in the past 5 years.

PatchMod are given in Figs. 10-13. Fig. 10 illus-
trates the temporal dynamics of the area and
number of different types of patches. Fig. 11 and
Fig. 12 show the dynamics of plant populations at
the patch and landscape levels in different simula-
tion scenarios. The simulator generates ‘bull’s eye’
maps to display spatial data (see Wu and Levin,
1994) and, in addition, the patch-based informa-
tion can be rasterized for further data visualiza-
tion and analysis (Fig. 13). These simulated
spatial patterns of plant populations are in good
agreement with field observations (see Wu and
Levin, 1994).

A series of questions concerning pattern-pro-
cess dynamics can be readily addressed by simu-
lating this model. For example, how do the mean
size, total number, and total area of patches
change in time with different disturbance rate
functions? Given a spatial patch pattern generated
by a known process (e.g. random, clustering, or
regular), how does the disturbance scale up? How
is vegetation pattern at the landscape level related
to local patch dynamics? How is a particular

functional relationship (e.g. plant weight-seed
production or population density-biomass rela-
tion) at the local scale manifested at the landscape
scale? Based on preliminary simulation results,
these questions have briefly been addressed in Wu
and Levin (1994) in relation to the Jasper Ridge
serpentine grassland. More systematic and de-
tailed investigations are to be conducted of the
above research questions using this spatial patch
dynamic modeling approach.

4. Discussion and conclusions

Patch dynamics as a conceptual framework has
increasingly been used in ecological studies across
a range of scales, and provided much insight into
evolutionary biology, population ecology, com-
munity ecology, and landscape dynamics (Levin et
al., 1993; Wu and Loucks, 1995). Numerous em-
pirical and theoretical studies have demonstrated
that many ecological systems may more appropri-
ately be viewed as mosaics of various patches. The
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(A) Local population dynamics at the patch level for five arbitrarily chosen individual patches; and (B) metapopulation dynamics

at the landscape level.

spatial patch dynamic modelling framework pre-
sented here provides a sensible and effective way
of transforming the patch dynamics conceptual-
ization into a mathematical model for studying
pattern-process dynamics in ecological systems.
Based on the Jasper Ridge serpentine grassland,
we also have discussed in detail the structure and
implementation of this modeling approach. In
general, the modeling approach is capable of sim-
ulating the spatiotemporal dynamics of both an
age- and size-structured disturbance patch popu-
lation and patch-based plant populations, taking
into account the spatial complexity of patch mo-
saics. Although the model is developed for an

annual grassland, the modeling framework should
be suitable for other ecological systems in which
patch dynamics are fundamental. Such an ap-
proach may be used for modelling species compe-
tition, predator-prey interactions, insect-plant
interactions, vegetation dynamics, and landscape-
level phenomena.

The complexity of models usually increases
with model resolution in the spatial dimension,
although non-spatial models can be rather intri-
cate when they are overwhelmed with detailed
processes (e.g. Jorgensen, 1992). Validation of
complex spatial models may be facilitated by
comparing alternative modelling approaches. The
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problem and modelling objectives, to large extent.
define the degree of spatial aggregation. Neverthe-
less, because patchiness is ubiquitous in nature,
realistic ecological theories are more likely to
emerge from models that adequately address the
problem of spatial heterogeneity. Linking spatial
pattern with process is still a challenge in ecologi-
cal modeling, but it also represents an opportu-
nity for greatly enhancing our understanding of
the structure, function, and dynamics of ecologi-
cal systems across scales.
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Appendix A. The patch influence index method
An alternative method to the patch probability

method is the patch influence index method. This
method is similar to the modelling scheme for
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Fig. 13.

generating clumped point patterns used by Nuern-
berger (1991). Based on the field observation that
new gopher mounds seem positively correlated to
those formed in the past year in their spatial
locations, the influence for a patch of this year on
having a new patch next year in its vicinity is
assumed to decrease exponentially with the dis-
tance away from it. This is formally expressed as:

y(D)=e""7, (A1)

where M is the influence function, D is the dis-
tance away from the center of the existing patch,
and y is the exponential decay coefficient, which
determines the rate of decrease in the tendency.
For a given point in the landscape, the mean
cumulative influence index is calculated from the
foillowing equation:
M

Y(P)= 1

e PR A2
R (A2)

where M is the total number of last year’s
patches, and Dy, is the distance between the point
P(x, y) and the center of an existing patch k. So,
Y(P) is an indicator of the average crowdedness
relative to point P in the landscape, and takes
values between 0 and 1. To generate a clumped
pattern of patch centers, W(P) is used as the
probability for a randomly chosen point P(x, y)
to be a candidate for the center of a new patch.
However, in order for this new patch to be actu-
ally formed all other requirements for patch for-
mation (e.g. age-related overlapping constraints)
must be also satisfied. The initial condition for
starting the pattern generation is set by determin-
ing the centers of patches through drawing uni-
form pseudo-random numbers for x—y pairs.

Fig. 13. Spatial distributions of disturbance patches and plant
populations at the end of a simulation run. (A) spatial pattern
of the age- and size-structured disturbance patch population,
in which the height of peaks represents the age of patches; (B)
spatial pattern of Lasthenia californica; and (C) spatial pattern
of Bromus mollis. In (B) and (C) the height of peaks is
proportional to plant density. These surface plots were gener-
ated using Spyglass™ based on rasterized output from Patch-
Mod.



344 J. Wu, S.A. Levin / Ecological Modelling 101 (1997) 325-346

GV

LPOQ=a, s LPOQ=a,<m LPOQ=a,>n ZPO,Q=a,<m

©

‘l 1l 11 a)) 1! 1' 1
e ST —~ BTN
¥ Ead \f I\ L4
~
L s Lg
LS kg

At AN Vit m o Y o i AR
AR R Sttt an it St U R
s PR A L 10 L i P NI .
‘I:',‘I:':I‘ 1:','1 ARy S D " R P SN AN
J ‘lY'i A " “,.‘:,“ PR "l ’1\'.'1' h) ,.",,::,.‘:4‘
c
m
*
4 =4 Ua
j=1j=

Fig. 14. Tllustration of mosaics of overlapping patches of differnet size and age and calculation of effective areas of individual
patches. Patches are circular in shape and differ in size at birth. The effective sizes of patches can be calculated analytically when
only two of them are involved (A and B), but a Monte Carlo simulation method becomes necessary when more patches interact (C).
AY is the effective size of patch i, 4, is the birth-time size of patch ;, A7 is the complement of set A, and m is the number of patches
that are younger than patch i.
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Appendix B. Computation of the effective area of
individual patches

We have developed the following general for-
mula for calculating the effective area of a patch
that is submerged in a mosaic of patches of
different age and size:

A=an( U Aj> =4anl N A;) (B1)
j=1,j#1 f=1,j#1

where AF and A, are the effective size and the
birth-time size of patch i, respectively, Af is the
complement of set 4, and m is the number of
patches younger that patch i (Fig. 14).

When A& A and AnA#¢ (i,j=
1,2 and i #), the overlapping area can be analyt-
ically computed from the formulas:

(a) when £ PO, Q=a,<mand L PO,Q=a,<m,
onerlap = %(r%dl + r%“Z - Cd) (B2)

(b) when L PO,Q=0o,=>mand L PO,Q=ua, <m,

1
— 2 2 2
oner]ap =nn '——z_(rlal + 130

- -y 6))

(B3)
with

c=./2r3(1 — cos a,),

L

oy =2 arccos(zdr1

@ +riry)

1
=2 arccos(Wr2 d>+ri—r3 >,

where A,.., is the overlap area, r; and r, are the
radii of the two patches, d is the distance between
the two centers, «, and a, are the central angles of
the two patches, and ¢ is the chord for the over-
lapped area (see Fig. 14).

References

Augspurger, C.K., Franson, S.E., 1987. Wind dispersal of
artificial fruit varying in mass, area, and morphology.
Ecology 68, 27-42.

Bormann, F.H., Likens, G.E., 1979. Pattern and process in a
forested ecosystem. Springer-Verlag, New York, 253 pp.

Collins, S.L., 1989. Experimental analysis of patch dynamics
and community heterogeneity in tallgrass prairie. Vegetatio
85, 57-66.

Cox, G.W., 1990. Soil mining by pocket gophers along topo-
graphic gradients in a Mima moundfield. Ecology 71,
837-843.

DeAngelis, D.L., Post, W.M., Travis, C.C., 1986. Positive
Feedback in Natural Systems. Springer-Verlag, Berlin, 290
pp.

Forman, R.T.T., Godron, M., 1986. Landscape Ecology. Wi-
ley, New York, 619 pp.

Frampton, V.L., Linn, M.B., Hansing, E.D., 1942. The spread
of virus diseases of the yellow type under field conditions.
Phytopathology 32, 799-808.

Gilpin, M.E., Hanski, I. (Eds.), 1991. Metapopulation Dy-
namics. Academic Press, London, 336 pp.

Hobbs, R.J., Hobbs, V.J., 1987. Gophers and grassland: a
model of vegetation response to patchy soil disturbance.
Vegetatio 69, 141-146.

Hobbs, R.J., Mooney, H.A., 1985. Community and popula-
tion dynamics of serpentine grassland annuals in relation
to gopher disturbance. Oecologia 67, 342-35].

Hobbs, R.J., Mooney, H.A., 1991. Effects of rainfall variabil-
ity and gopher disturbance on serpentine annual grassland
dynamics. Ecology 72, 59-68.

Jorgensen, S.E., 1992. Development of models able to account
for changes in species composition. Ecol. Model. 62, 195—
208.

Kolasa, J., Pickett, S.T.A. (Eds.), 1991. Ecological Hetero-
geneity. Springer-Verlag, New York, 332 pp.

Kotliar, N.B., Wiens, J.A., 1990. Multiple scales of patchiness
and patch structure: a hierarchical framework for the study
of heterogeneity. Oikos 59, 253-260.

Levin, S.A., 1992. The problem of pattern and scale in ecol-
ogy. Ecology 73, 1943-1967.

Levin, S.A., Paine, R.T., 1974, Disturbance, patch formation,
and community structure. Proc. Nat. Acad. Sci. (USA) 71,
2744-2747.

Levin, S.A., Paine, R.T., 1975. The role of disturbance in
models of community structure. In: Levin, S.A. (Ed.),
Ecosystem Analysis and Prediction. Society for Industrial
and Applied Mathematics, Philadelphia, pp. 56-67.

Levin, S.A., Powell, T., Steele, J.H. (Eds.), 1993. Patch Dy-
namics. Springer-Verlag, New York, 307 pp.

Levins, R., 1970. Extinction. In: Gerstenhaber M. (Ed.), Some
mathematical problems in biology. American Mathemati-
cal Society, pp. 77-107.

Loucks, O.L., 1970. Evolution of diversity, efficiency, and
community stability. Am. Zool. 10, 17-25.



346 J. Wu, S.A. Levin / Ecological Modelling 101 (1997) 325-346

Loucks, O.L., Plumb-Mentjes, M.L., Rogers, D., 1985. Gap
processes and large-scale disturbances in sand prairies. In:
Pickett S.T.A., White P.S. (Eds.), The Ecology of Natural
Disturbance and Patch Dynamics. Academic Press, Or-
lando, pp. 71-83.

McNaughton, S.J., 1968. Structure and function in California
grasslands. Ecology 49, 962-972.

Moloney, K., 1993. Determining process through pattern:
Reality or fantasy? In: Levin, S.A., Powell, T., Steele, J.H.
(Eds.), Patch Dynamics. Springer-Verlag, New York, pp.
61-69.

Moloney, K., Levin, S.A., Chiariello, N.R., Buttel, L., 1992.
Pattern and scale in a serpentine grassland. Theor. Pop.
Biol. 41, 257-276.

Nuernberger, B.D., 1991. Population Structure of Dineutus
Assimilis in a Patchy Environment: Dispersal, Gene Flow,
and Persistence. Dissertation. Cornell Univ., Ithaca, 159
pp.

Okubo, A., Levin, S.A., 1989. A theoretical framework for
data analysis of wind dispersal of seeds and pollen. Ecol-
ogy 70, 329-338.

Pacala, S.W., Silander, J.A., 1985. Neighborhood models of
plant population dynamics: I. single-species models of an-
nuals. Am. Nat. 125, 385-411.

Pacala, S.W., Silander, J.A., 1990. Field tests of neighborhood
population dynamic models of two annual weed species.
Ecol. Monogr. 60, 113-134.

Paine, R.T., Levin, S.A., 1981. Intertidal landscapes: distur-
bances and the dynamics of pattern. Ecol. Monogr. 51,
145-178.

Pickett, S.T.A., Thompson, J.N., 1978. Patch dynamics and
the design of nature reserves. Biol. Conserv. 13, 27-37.
Pickett, S.T.A., White, P.S. (Eds.), 1985. The Ecology of
Natural Disturbance and Patch Dynamics. Academic

Press, San Diego, 472 pp.

Reichman, O.J., Whitham, T.G., Ruffner, G.A., 1982. Adap-
tive geometry of burrow spacing in two pocket gopher
populations. Ecology 63, 687-695.

Remmert, H. (Ed.), 1991. The Mosaic-Cycle Concept of
Ecosystems. Springer-Verlag, Berlin, 168 pp.

Runkle, J.R., 1981. Gap regeneration in some old-growth
forests of the eastern United States. Ecology 62, 1041-
1051.

Runkle, J.R., 1982. Patterns of disturbance in some old-
growth mesic forests of eastern North America. Ecology
63, 1533-1546.

Shugart, H.H., 1984. A Theory of Forest Dynamics: the
Ecological Implications of Forest Succession Models.
Springer-Verlag, New York, 278 pp.

Smith, T.M., Urban, D.L., 1988. Scale and resolution of forest
structural pattern. Vegetatio 74, 143-150.

Steele, J.H., 1978. Some comments on plankton patchiness. In:
J.H. Steele (Ed.), Spatial Patterns in Plankton Communi-
ties. Plenum Press, New York, pp. 1-20.

Turner, M.G., Gardner, R. (Eds.), 1991. Quantitative Meth-
ods in Landscape Ecology. Springer-Verlag, New York,
536 pp.

Watt, A.S., 1947, Pattern and process in the plant community.
J. Ecol. 35, 1-22.

Werner, P.A., 1975. A seed trap for determining patterns of
seed deposition in terrestrial plants. Can. J. Bor. 53, 810—
313,

Whittaker, R.H., Levin, S.A., 1977. The role of mosaic phe-
nomena in natural communities. Theor. Pop. Biol. 12,
117-139.

Wiens, J.A., Stenseth, N.C., Horne, B., Van, Ims, R.A., 1993.
Ecological mechanisms and landscape ecology. Oikos 66,
369-380.

Wissel, Ch., 1991. A model for the mosaic-cycle concept. In:
Remmert H. (Ed.), The Mosaic-Cycle Concept of Ecosys-
tems. Springer-Verlag, Berlin, pp. 21-45.

Wu, J., 1993. Modeling the landscape as a dynamic mosaic of
patches: some computational aspects. Cornell Theory Cen-
ter Technical Report Series, CTC93TR 140, Cornell Univ.,
Ithaca, 20 pp.

Wu, J., Levin, S.A., 1994. A spatial patch dynamic modeling
approach to pattern and process in an annual grassland.
Ecol. Monogr. 64, 447-464.

Wau, J., Loucks, O.L., 1995. From balance of nature to hierar-
chical patch dynamics: a paradigm shift in ecology. Quart.
Rev. Biol. 70, 439-466.

Wu, J., Vankat, J.L., Barlas, Y., 1993. Effects of patch con-
nectivity and arrangement on animal metapopulation dy-
namics: a simulation study. Ecol. Model. 65, 221-254.



