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Abstract

Landscape pattern is spatially correlated and scale-dependent. Thus, understanding landscape structure and func-
tioning requires multiscale information, and scaling functions are the most precise and concise way of quantify-
ing multiscale characteristics explicitly. The major objective of this study was to explore if there are any scaling
relations for landscape pattern when it is measured over a range of scales �grain size and extent�. The results
showed that the responses of landscape metrics to changing scale fell into two categories when computed at the
class level �i.e., for individual land cover types�: simple scaling functions and unpredictable behavior. Similarly,
three categories were found at the landscape level, with the third being staircase pattern, in a previous study
when all land cover types were combined together. In general, scaling relations were more variable at the class
level than at the landscape level, and more consistent and predictable with changing grain size than with chang-
ing extent at both levels. Considering that the landscapes under study were quite diverse in terms of both com-
position and configuration, these results seem robust. This study highlights the need for multiscale analysis in
order to adequately characterize and monitor landscape heterogeneity, and provides insights into the scaling of
landscape patterns.

Introduction

Spatial heterogeneity is ubiquitous across all scales
and forms the fundamental basis of the structure and
functioning of landscapes, be they natural or cultural.
To understand how landscapes affect, and are affected
by, biophysical and socioeconomic activities, we
must be able to quantify spatial heterogeneity and its
scale dependence �i.e., how patterns change with
scale�. Indeed, much of what has been done in geog-
raphy, remote sensing and ecology has to do with de-
scribing, manipulating, and understanding spatial
heterogeneity. With the increasing recognition of the
importance of spatial heterogeneity by ecologists in
the past two decades, landscape ecology has come of
age with a distinctive emphasis on the spatial dimen-
sion of ecological pattern and process �Turner et al.

2001; Wu and Hobbs 2002�. An important unifying
concept in dealing with heterogeneity and integrating
ecological and geographical sciences is scale. While
the term “scale” may refer to any one or combinations
of several concepts, including grain �or resolution,
support�, extent, lag �or spacing�, and cartographic
ratio �Wiens 1989; Lam and Quatrochi 1992;
Schneider 2001; Dungan et al. 2002�, in this paper it
refers only to “grain” �the spatial resolution of a map�
and “extent” �the map size, or “geographic scale” as
defined by Lam and Quatrochi 1992�.

The scale dependence of spatial heterogeneity has
been recognized in both geography and ecology for
decades. Two different but related connotations of
scale dependence of spatial heterogeneity may be
distinguished. The first implies that spatial heteroge-
neity exhibits various patterns at different scales, or
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patterns have distinctive “operational” scales �sensu
Lam and Quattrochi 1992� at which they can be best
characterized. Apparently, this perspective is consis-
tent with the concepts of characteristic scale and hi-
erarchy that have been prevalent in ecological
literature since the 1980s �Allen and Starr 1982; Allen
et al. 1984; O’Neill et al. 1986; Urban et al. 1987;
Wu and Loucks 1995; Wu 1999�. The second conno-
tation refers to the dependence of observed spatial
heterogeneity on the scale of observation and analy-
sis – often discussed in terms of scale effects on im-
age classification and spatial pattern analysis. Scale
effects have long been studied in human geography
as part of the modifiable areal unit problem or MAUP
– the problem in spatial analysis that occurs when
area-based data are aggregated �Openshaw 1984; Ar-
bia et al. 1996; Jelinski and Wu 1996; Wrigley et al.
1996; Marceau 1999�. MAUP includes two distinct
but related aspects: the result of statistical analysis is
affected by both the level of data aggregation or grain
size �so-called “scale problem”� and by alternative
ways of aggregating pixels at a given grain size �of-
ten called the “zoning problem” or “aggregation
problem”�. MAUP has frequently been discussed to-
gether with the so-called “ecological fallacy” �sensu
Robinson 1950� which refers to inappropriate extrap-
olation of statistical relationships from one scale to
another. Unfortunately, the term “ecological fallacy”
is misleading and can be irritating because the prob-
lem it refers to occurs across all natural and social
sciences whenever heterogeneity and nonlinearity ex-
ist and because the use of the term “ecological” here
is not at all scientifically rigorous. A more appropri-
ate term for this kind of scale-related problems may
be “spatial transmutation” �sensu O’Neill 1979; also
see King et al. 1991; Wu and Levin 1994�.

Scale effects on spatial pattern analysis may occur
in each of the following three situations: �1� chang-
ing grain size �or resolution� only, �2� changing ex-
tent only, and �3� changing both grain and extent. As
noted earlier, the modifiable areal unit problem
involves both the effect of altered grain size and the
way of this alteration. Similarly, there are also differ-
ent ways of changing extent: e.g., boxing out from the
center of a map or starting from one corner along a
diagonal direction. In general, much more research
has been done into the effects of changing grain size
�particularly in the context of MAUP� than those of
changing extent, and a quantitative understanding of
these two kinds of scale effects across different sys-
tems and methods is still lacking. Scale effects do not

necessarily have to be considered as problems
because they can be used for understanding the mul-
tiple-scale characteristics of landscapes �Jelinski and
Wu 1996; Wu et al. 2000; Wu et al. 2003�. In prin-
ciple, the relevant pattern is revealed only when the
scale of analysis approaches the operational scale of
the phenomenon under study �Allen et al. 1984; Wu
and Loucks 1995; Wu 1999�. In practice, however,
not all scale breaks revealed in multiscale analysis by
resampling data correspond to actual operational
scales or hierarchical levels due to inaccuracies
caused by the methods of data aggregation and
analysis �Wu et al. 2000; Hay et al. 2001�.

While most of the MAUP studies prior to the
1990’s focused on traditional statistical measures
�e.g., mean, variance, regression and correlation co-
efficients� and spatial interaction models, scale effects
have been increasingly studied using landscape met-
rics �or indices� in ecology, remote sensing, and ge-
ography in the past two decades �Meentemeyer and
Box 1987; Turner et al. 1989; Turner et al. 2001; Bian
and Walsh 1993; Moody and Woodcock 1994; Ben-
son and Mackenzie 1995; Wickham and Riitters
1995; Jelinski and Wu 1996; O’Neill et al. 1996; Qi
and Wu 1996; Wu et al. 2003�. These studies have
shed new light on the problems of scale effects in
pattern analysis as well as the multiscaled nature of
spatial heterogeneity. Yet, most of the existing stud-
ies that used landscape metrics considered only a few
indices with a narrow range of scales, and few have
gone beyond merely reporting the existence of scale
effects to explore their generalities across different
landscapes. Thus, although ecologists are well aware
that changing scale often affects landscape metrics,
scaling relations are yet to be developed.

To systematically explore the effects of changing
scale on pattern analysis, using simulated landscapes
with known structural characteristics is both neces-
sary and effective �Gardner et al. 1987; Amrhein
1995; Arbia et al. 1996; Hargis et al. 1998; Wu et al.
2000; Saura and Martinez-Millan 2001�. However,
comprehensive empirical studies using real landscape
data are needed because only such studies can tell us
what kinds of scaling relations may exist and how
variable or consistent they are in actual �not just
simulated� landscapes. Such information is indispens-
able for more in-depth and systematic investigations
using simulated or artificially constructed landscapes.
Therefore, this study was focused on data sets from
real landscapes, while our results from simulated
landscapes, which generally support findings here,
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will be reported elsewhere. We also note that,
although two general types of methods have been
used in landscape pattern analysis – spatial statistics
�including geostatistics� and pattern metrics, this pa-
per deals only with the second. Excellent reviews on
spatial statistical methods and their applications can
be found in Rossi et al. �1992�, Goovaerts �1997�, and
Fortin �1999�. This study was designed to address the
following specific questions: �1� How do changing
grain size and changing extent affect different land-
scape metrics for a given landscape? �2� How does
the behavior of various landscape metrics differ
among distinctive landscapes? �3� Are there general
scaling relations for certain landscape metrics that are
consistent across landscapes?

These questions need to be addressed using land-
scape metrics computed both at the entire landscape
level �taking account of all patch types altogether�
and at the class level �each patch type being consid-
ered separately�. Although many of the landscape-
and class-level metrics are mathematically similar,
their physical meanings are usually quite distinct �see
McGarigal and Marks 1995�. While the landscape-
level metrics are synoptic measures of the landscape
as a whole, the class-level metrics provide informa-
tion on each patch �or land cover� type in the land-
scape, which is necessary for most ecological or
planning considerations. Wu et al. �2003� examined
19 landscape-level metrics based on five landscape
data sets �4 of them used here in this study�. This pa-
pers focuses on 17 class-level metrics and compares
the scaling relations at the levels of the individual
patch type and the whole landscape.

Data and methods

Seventeen class-level landscape metrics were exam-
ined in this study: Class Area �CA�, Percent of Land-
scape �CA%�, Number of Patches �NP�, Patch
Density �PD�, Total Edge �TE�, Edge Density �ED�,
Largest Patch Index �LPI�, Mean Patch Size �MPS�,
Patch Size Standard Deviation �PSSD�, Patch Size
Coefficient of Variation �PSCV�, Landscape Shape
Index �LSI�, Mean Patch Shape Index �MPSI�, Area-
Weighted Mean Shape Index �AWMSI�, Double-Log
Fractal Dimension �DLFD�, Mean Patch Fractal Di-
mension �MPFD�, Area Weighted Mean Patch Fractal
Dimension �AWMFD�, and Square Pixel �SqP�. The
software package, FRAGSTATS 2.0 �McGarigal and
Marks 1995�, was used to compute the selected land-

scape metrics, with Square Pixel Index �Frohn 1998�
being added to the package by modifying the source
code.

Four land use and land cover maps with contrast-
ing spatial patterns were used for this study: �A� a
boreal forest landscape with 11 land use and land
cover types including various forest stands, disturbed
areas and water, �B� Minden landscape in the Great
Basin, USA with 15 land use and land cover types in-
cluding native arid plant communities, burned areas,
and urban and agricultural land uses, �C� Washoe
landscape in the Great Basin, USA with 11 land use
and land cover types most of which were shrublands,
and �D� Phoenix urban landscape with 24 land use
and land cover types, dominated by various urban and
agricultural land uses. The boreal forest landscape in
Canada showed little human disturbance, the two
Great Basin landscapes in Nevada exhibited moder-
ate urbanization and cultivation, and the metropolitan
Phoenix landscape was a highly urbanized environ-
ment. Land use and land cover types varied consid-
erably across these landscapes in terms of both the
number and the content of patch types. The spatial
resolution of all data sets was 30 by 30 meters, and
the spatial extent varied from 357 km2 �630�630
pixels� for the boreal landscape to 2025 km2

�1500�1500 pixels� for the Phoenix landscape. De-
tails of these study areas have been given elsewhere
�Wu et al. 2003; Luck and Wu 2002�.

To investigate the effects of changing grain size,
the spatial resolution of three landscape maps �Boreal,
Minden, and Phoenix� was systematically changed
from 1 by 1 to 100 by 100 pixels with the extent kept
constant, which was consistent with Wu et al. �2003�.
As the grain size increased, data were aggregated fol-
lowing the majority rule, which is one of the most
commonly used methods for aggregating categorical
data in ecology and remote sensing. Each new map,
with progressively larger grain size �e.g., 1�1, 2�2,
..., 100�100�, was created by directly aggregating the
original data set, instead of using a cumulative pro-
cedure that would introduce more errors. When the
grain size could not wholly divide the number of rows
or columns of the data set, the remainder of rows or
columns at the edge were excluded from the new
map. This omission of edge rows and columns did not
seem to be a problem as long as the extent/grain ratio
was sufficiently large. To investigate the effects of
changing extent, we systematically increased the ex-
tent of the maps diagonally starting from the north-
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west corner while keeping the grain size constant �Wu
et al. 2003�.

Results

Scaling relations with respect to changing grain size

With changing grain size through spatial aggregation,
the responses of the 17 class-level metrics fell into
two general groups: metrics showing consistent scal-
ing relations �Type I� and metrics showing unpredict-
able scaling behavior �Type II�. The first group was
further divided into those showing both consistent
and robust scaling relations �Type IA� and those
showing consistent but less robust scaling relations
�Type IB�. Note that the word “consistent” here refers
to the consistence of scaling relations between differ-
ent landscapes, whereas the word “robust” indicates
the similarity of scaling relations between different
patch types within the same landscape.

Figure 1 shows examples of how different metrics
responded to changing grain size for three study
landscapes in the form of scalograms, i.e., plots of
landscape metrics against scale �grain size or extent�.
Table 1 is a summary of the scaling relations and their
characteristics with respect to changing grain size. Of
the 17 metrics, 5 belonged to Type IA: Number of
Patches �NP�, Patch Density �PD�, Total Edge �TE�,
Edge Density �ED�, and Landscape Shape Index
�LSI�; and 7 to Type IB: Largest Patch Index �LPI�,
Square Pixel Index �SqP�, Mean Patch Size �MPS�,
Patch Size Standard Deviation �PSSD�, Patch Size
Coefficient of Variation �PSCV�, Area-Weighted
Mean Shape Index �AWMSI�, and Area-Weighted
Mean Fractal Dimension �AWMFD�. Type IA metrics
exhibited a power-law scaling relation which was
highly consistent and robust over a range of scales,
i.e.,

y � axb, a � 0, b � 0 �1�

where y is the value of a landscape metric, a and b
are constants, and�is the grain size expressed as the
number of pixels along a side.

Type IB metrics showed several different scaling
relations with a consistent “global pattern” between
different landscapes, but rather high “short-range
variations” between different patch types which may,
in part, have been caused by the low abundance of

some patch types. Specifically, AWMSI, AWMFD,
MPS, and PSCV followed a power-law scaling rela-
tion �Equation 1�, PSSD a linear function, and LPI a
logarithmic function of the form,

y � a ln x � b �2�

where y is the value of a landscape metric, a and b
are constants, and x is the grain size expressed as the
number of pixels along a side. SqP seemed to exhibit
two forms of scaling relations: a linear decreasing
function for dominant patch types and an exponential
decay function for less abundant patch types. The
simple parimeter/area ratio increased linearly for
most land cover types �not shown in Figure 1�.

Type II metrics included: Class Area �CA�, Percent
of Landscape �CA%�, Mean Patch Shape Index
�MSI�, Mean Patch Fractal Dimension �MPFD�, and
Double-Log Fractal Dimension �DLFD�. The values
of these indices varied unpredictably with changing
grain size, resulting in response curves of various
forms – relatively constant, monotonic changes, or
fluctuations. This suggested that these metrics were
highly sensitive to the specific patterns of the land-
scapes under study, and thus general scaling relations
were not possible to derive.

Not all 17 metrics are shown in Figure 1 due to
space limitation. Some metrics showed similar scalo-
grams because of mathematical similarity. For exam-
ple, CA and CA�%� showed exactly the same pattern
because CA�%� � CA/A, where A is the landscape
area which is a constant in the case of changing grain
size. For the same reason, NP and PD exhibited an
identical scaling relation, and so did TE and ED. As
discussed later, however, this apparently was not the
case with changing extent. On the other hand, MSI
and MPFD exhibited similar patterns in response to
both changing grain size and extent because of their
mathematical similarity:

MSI

MPFD
� �

i�1

N �0.25Pi

�ai
� ⁄ �

i�1

N �ln�0.25Pi�
ln�ai

� �3�

That is, while MSI is simply a perimeter-area ratio
normalized based on the square shape and averaged
over all patches, MPDF requires that both the
numerator and denominator be log-transformed be-
fore the summation for the entire class across the
landscape. However, the range of change for MPDF
was rather small �usually � 0.05 and not exceeding
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Figure 1. Examples of landscape metric scalograms with changing grain size: �A� a boreal forest landscape, �B� the Minden landscape, and
�C� the central Phoenix urban landscape. The lines in each scalogram represent different patch types �i.e., land use and land cover types�.
Landscape-level metrics �the thick black lines� are also plotted for comparison.
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0.1� in both cases of changing grain size and extent,
which made it less desirable for comparison. Simi-
larly, the scale response curves of AWMSI and AW-
MFD resembled each other because:

AWMSI ⁄ AWMFD � �
i�1

N ��0.25Pi

�ai
�

�ai

A�� ⁄ �
i�1

N �ln�0.25Pi�
ln�ai

�ai

A��
�4�

In this case, AWMFD seemed more preferable be-
cause it was bale to suppress somewhat the abrupt
large fluctuations that occurred with AWMSI, so that
a comparison between patch types became more fea-
sible.

Scaling relations with respect to changing extent

The responses of class-level metrics to changing ex-
tent could also be classified into two groups: Type I
metrics showing consistent and relatively robust scal-
ing relations and Type II metrics with unpredictable
scaling behavior �Table 2 and Figure 2�. Type I met-
rics included NP, TE, LSI, SqP, and CA, whereas the
other 12 belonged to Type II. NP, TE, and CA exhib-
ited a power law scaling relation that was consistent
between different landscapes but varied noticeably
between patch types within the same landscape. With
increasing extent, SqP increased rapidly initially and
then began to approach a maximum value, whereas
LSI tended to increase continuously. For relatively
abundant patch types, a logarithmic function for SqP
and a linear scaling function for LSI could be
obtained by regression. These trends seemed consis-

Table 1. Scaling relations of class-level metrics with respect to grainsize.

IA. Metrics showing consistent and robust scaling relations
Number of Patches �NP� Edge Density �ED�
Patch Density �PD� Landscape Shape Index �LSI�
Total Edge �TE�

Characteristics of the scaling relations:
Power law:
y�axb, a�0, b�0
where y is the value of a metric, a and b are constants, and�is the grain size expressed as the number of pixels along a side.
The scaling relation is consistent between patch types within the same landscape as well as among different landscapes.

IB. Metrics showing consistent, but less robust scaling relations
Largest Patch Index �LPI� Patch Size Standard Deviation �PSSD�
Square Pixel Index �SqP� Patch Size Coefficient of Variation �PSCV�
Mean Patch Size �MPS� Area-Weighted Mean Shape Index �AWMSI�

Area-Weighted Mean Fractal Dimension �AWMFD�

Characteristics of the scaling relations:
Power law �y�axb�: AWMSI, AWMFD, MPS, PSCV
Linear function �y�ax�b �: PSSD
Logarithmic function �y�alnx�b �: LPI
Linear or exponential decay: SqP
The scaling relations tend to be consistent among different landscapes, but the variability between patch types within the same landscape
is much greater than Type IA metrics. This between-patch type variability tends to decrease with the dominance of patch types.

II. Metrics exhibiting no consistent scaling relations
Class Area �CA� Mean Patch Fractal Dimension �MPFD�
Percent of Landscape �CA%� Double-Log Fractal Dimension �DLFD�
Mean Patch Shape Index �MSI�

Characteristics of the scaling relations:
No consistent scaling relations among different landscapes.
Response curves may take various forms: relatively constant, monotonic changes, or fluctuations.Response curves are sensitive to the spe-
cific pattern of the landscape, and thus do not show consistent patterns across different landscapes.
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tent among different landscapes, and the variability
between patch types tended to decrease with the in-
creasing abundance of patch types. The response
curves of Type II metrics showed no consistent scal-
ing patterns, and were highly dependent upon the
specifics of the landscapes.

Overall, the effects of changing extent on land-
scape metrics were much less predictable than those
of changing grain size. This was evident from two
facts: �1� the number of Type I metrics was much
smaller for changing extent than for changing grain
size �5 vs. 12�; and �2� Type I metrics for grain size
were less variable than those for extent between patch
types and among landscapes. Several differences be-
tween changing grain size and extent are noteworthy.
Unlike in the case of changing grain size, PD and ED
did not show any consistent scaling functions
although their behavioral patterns seemed to resemble
each other. As grain size increased, PSSD tended to
increase linearly, while PSCV declined and MPS in-
creased both in a power-law fashion. In contrast, as
extent increased, MPS changed unpredictably, but
with a much smaller magnitude than in the case of
changing grain size. Thus, PSSD and PSCV both
tended to increase in a similar way for most land
cover types �PSCV = PSSD/MPS�. This was most ob-
vious for the boreal landscape, in which the behav-

ioral patterns of PSSD and PSCV resembled each
other closely because MPS changed little over the
entire range of extent.

BecauseLSI�0.25TE⁄�TA �where TA is the total
area of the landscape�, LSI and TE behaved the same
way in response to changing grain size. However, in
the case of changing extent, if TE increases as a
power function �y�axb� with extent �measured as the
number of pixels on a side�, LSI should follow a scal-
ing function of the form,y�xb�1. Then, if b is close to
2, then LSI should behave nearly linearly. Our results
indeed showed that for most patch types LSI tended
to increase linearly, but with considerable variations.
The deviations of the observed patterns for LSI from
a linear function were attributable to the considerably
variable scale responses of TE. Also, LSI and SqP are
numerically related to each other, i.e.,LSI��1�
SqP��1. Thus, the response curves of LSI and SqP re-
flected this relationship. Both of them showed much
greater variations, and thus less predictability, be-
tween patch types and among landscapes in the case
of changing extent. Another interesting finding was
that DLFD, for most patch types, was unpredictable
and varied increasingly with increasing grain size, but
appeared to be relatively constant with continuing in-
crease in extent after initial fluctuations at smaller
scales. The latter was reminiscent of the notion that

Table 2. Scaling relations of class-level metrics with respect to extent.

I. Metrics showing consistent and relatively robust scaling relations
Number of Patches �NP� Square Pixel Index �SqP�
Total Edge �TE� Class Area �CA�
Landscape Shape Index �LSI�

Characteristics of the scaling relations:
Power law �y�axb, a�0, b�0�: NP, TE, CA
Logarithmic function �y�alnx�b �: SqP
Linear function �y�ax�b �: LSI
The general scaling relations are consistent among disparate landscapes, but vary considerably between patch types within the same land-
scape. This between-patch type variability tends to decrease with the dominance of patch types.

II. Metrics showing no consistent scaling relations
Percent of Landscape �CA%� Patch Size Coefficient of Variation �PSCV�
Patch Density �PD� Mean Patch Shape Index �MSI�
Edge Density �ED� Area-Weighted Mean Shape Index �AWMSI�
Mean Patch Size �MPS� Mean Patch Fractal Dimension �MPFD�
Largest Patch Index �LPI� Double-Log Fractal Dimension �DLFD�
Patch Size Standard Deviation �PSSD� Area-Weighted Mean Fractal Dimension �AWMFD�

Characteristics of scaling relations:
No consistent scaling relations among different landscapes.
Response curves may take various forms: relatively constant, monotonic changes, or fluctuations.
Response curves are sensitive to the specific pattern of the landscape, and do not show consistent patterns across different landscapes.
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Figure 2. Examples of landscape metric scalograms with changing extent: �A� a boreal forest landscape, �B� the Minden landscape, �C� the
central Phoenix urban landscape �Washoe landscape exhibited similar patterns, but was not shown here due to space limitation�. The lines in
each scalogram represent different patch types �i.e., land use and land cover types�. Landscape-level metrics �the thick black lines� are also
plotted for comparison. Note that for the ease of visualization, the second y-axis is used for landscape-level metrics and individual patch
types �lines with open circles� whose values are too large or too small as compared to the rest of the patch types �the bottom row�.
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landscapes may exhibit self-similarity over a finite
range of spatial extent �Milne 1991; Milne 1992; Lam
and Quatrochi 1992�.

Discussion

Comparing scaling relations of class- and
landscape-level metrics

In a related study, Wu et al. �2003� showed that the
responses of 19 landscape-level metrics to changing
grain size and extent could be categorized as three
general types: �1� Type I metrics exhibiting consistent
and robust scaling relations in the forms of linear,
power, or logarithmic functions over a range of
scales; �2� Type II metrics showing staircase-like re-
sponses with changing scale; and �3� Type III metrics
behaving erratically in response to changing scale and
with no consistent scaling relations among different
landscapes. In the case of changing grain size, 12
metrics belonged to Type I: NP, PD, TE, ED, LSI,
AWMSI, AWMFD, PSCV, MPS, SqP, PSSD, and

LPI; 3 to Type II: PR �Patch Richness�, PRD �Patch
Richness Density�, and SHDI �Shannon’s Diversity
Index�; and 4 to Type III: DLFD, CONT �Contagion�,
MPFD, and MSI. In the case of changing extent, the
number of Type I metrics reduced to 6: NP, TE, SqP,
PRD, SHDI, and LSI; the number of Type II metrics
was 5: PR, PSSD, PSCV, AWMSI, and AWMFD; and
the number of Type III metrics increased to 8: PD,
ED, DLFD, MPS, LPI, CONT, MSI, and MPFD. In
addition, Wu et al. �2003� showed that the starting
position and the direction of changing extent could
also significantly influence the scaling patterns for
certain landscape metrics.

In this study, four landscape-level metrics �PR,
PRD, SHDI, and CONT�, not applicable at the level
of individual patch types, were not used, and the ab-
solute and relative areas of each patch type �i.e., class
area, CA and percent of landscape, CA%� were
added. By comparing the class-level curves �thin
lines� with the landscape-level curve �thick line� in
each landscape metric scalogram in Figure 1, Figure
2, the similarities and differences between them be-
come apparent. Table 3 is a summary of the compari-

Table 3. Comparison of scaling relations of class- and landscape-level metrics.

Types of Scaling Relations

Grain Size Extent

Landscape Metrics Class-Level Landscape-Level Class-Level Landscape-Level

Number of Patches power law power law power law power law
Patch Density power law power law unpredictable unpredictable
Total Edge power law power law power law power law
Edge Density power law power law unpredictable unpredictable
Landscape Shape Index power law power law linear linear
Area-Weighted Mean Shape Index power law power law unpredictable staircase
Area-Weighted Mean Fractal Dimension power law power law unpredictable staircase
Mean Patch Size power law power law unpredictable unpredictable
Patch Size Coefficient of Variation power law power law unpredictable staircase
Patch Size Standard Deviation linear linear unpredictable staircase
Square Pixel linear or exponential linear logarithmic logarithmic or power

law
Largest Patch Index logarithmic logarithmic or power

law
unpredictable unpredictable

Mean Patch Shape Index no scaling relation no scaling relation unpredictable unpredictable
Double-Log Fractal Dimension unpredictable unpredictable unpredictable unpredictable
Mean Patch Fractal Dimension unpredictable unpredictable unpredictable unpredictable
Patch Richness n/a staircase n/a staircase
Patch Richness Density n/a staircase n/a power law
Shannon’s Diversity Index n/a staircase n/a logarithmic
Contagion n/a unpredictable n/a unpredictable
Class Area unpredictable n/a power law n/a
Percent of Landscape unpredictable n/a linear or power

law
n/a
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son of scaling relations between the class and
landscape levels. The same 15 metrics used at both
the class and landscape levels showed rather similar
scaling patterns in terms of both the specific metrics
and the scaling relations. In general, effects of chang-
ing grain size were more predictable than changing
extent in that more metrics showed consistent scaling
relations across different landscapes in the former
case. However, it must be emphasized here that arti-
facts due to data aggregation and consequent analysis
may become overwhelming for classes with ex-
tremely low abundance. Because of the high between-
patch type variability at the class level, the staircase-
like responses of such metrics as AWMSI, AWMFD,
PSCV, and PSSD with respect to changing extent ap-
peared consistent only at the landscape level.

It is important to note that this study only used one
of the several methods of aggregating spatial data –
the majority rule method. Although this may be the
most commonly used one in ecological and remote
sensing applications, it would be interesting to com-
pare how different aggregation methods affect the
characteristics of landscape metric scalograms. A
number of studies have shown that different aggrega-
tion methods may have significant effects on spatial
model evaluation, land cover classification, and land-
scape pattern analysis �Costanza 1989; Justice et al.
1989; Bian and Butler 1999; Turner et al. 2001�.
Thus, aggregation methods may also affect scaling
relations of landscape metrics.

Scale multiplicity of landscapes and multiscale
pattern analysis

The relationship between pattern and scale has been
a central issue in ecology and geography �MacArthur
1972; Meentemeyer 1989; Levin 1992; Wu and
Loucks 1995�. Pattern is rooted in spatial heterogene-
ity which in turn stems from variations of spatial de-
pendence. The first law in geography – “Everything
is related to everything else, but near things are more
related than distant things” �sensu Tobler 1970� – is
essentially a law of spatial autocorrelation. However,
heterogeneity manifests itself as patchiness and gra-
dients intertwined over a wide range of spatial scales.
Thus, scale dependence is as essential a property of
heterogeneity as is spatial dependence. This has led
to the claim of “the second law in geography” �sensu
Arbia et al. 1996�: “Everything is related to every-
thing else, but things observed at a coarse spatial
resolution are more related than things observed at a

finer resolution.” This is simply a law of scale depen-
dence of correlation, which was developed based on
both empirical and analytical results that the correla-
tion between variables increases while variance
decreases as the resolution �grain size� of spatial data
is increased �Amrhein 1995; Arbia et al. 1996; Wu et
al. 2000�. Of course, not only are correlation coeffi-
cients and variance scale dependent, so are a variety
of landscape indices, statistical methods, and mathe-
matical models as well.

Many, if not most, landscapes are hierarchically
structured �Urban et al. 1987; Woodcock and Har-
ward 1992; Wu and Loucks 1995; Reynolds and Wu
1999; Wu 1999�. Even before hierarchy theory
became an influential perspective in ecology and be-
fore multi-scale pattern analyses became commonly
practiced in earth sciences, the eminent ecologist
Robert MacArthur �1972� already unambiguously re-
cognized the scale multiplicity and hierarchical nature
of landscapes, as he said: “A real environment has a
hierarchical structure. That is to say, it is like a
checkerboard of habitats, each square of which has,
on closer examination, its own checkerboard structure
of component subhabitats. And even the tiny squares
of these component checkerboards are revealed as
themselves checkerboards, and so on. All environ-
ments have this kind of complexity, but not all have
equal amounts of it.”

To understand the structure and functioning of
landscapes, therefore, the scale dependence of spatial
heterogeneity must be quantified. Recent develop-
ments in landscape ecology have provided a new im-
petus as well as a suite of innovative theories and
methods for achieving this goal �Turner et al. 2001;
Wu and Hobbs 2002�. To identify the characteristic
scales or hierarchical levels of landscape structure,
two general approaches are available. The first is to
use statistical methods that are inherently multi-
scaled, such as semivariance analysis �Burrough
1995�, wavelet analysis �Bradshaw and Spies 1992�,
spectral analysis �Platt and Denman 1975�, fractal
analysis �Milne 1997�, lacunarity analysis �Plotnick et
al. 1993�, and scale variance �Moellering and Tobler
1972; Wu et al. 2000�. The second is, as illustrated in
this study, to construct scalograms using simple mea-
sures such as landscape metrics computed progres-
sively over a series of scales and then to explore
scaling functions. Spatial statistical methods have
been known for their ability to detect characteristic
scales, and, in particular, semivariance analysis has
been frequently used for this purpose. However, re-
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cent studies have indicated that in semivariograms of
real landscapes fine-scale variability can be
“squeezed” by broad-scale variability, so that multi-
scale structure may be obscured �Meisel and Turner
1998; Wu et al. 2000�. In addition, the results of
semivariance analysis and their interpretations can
also be significantly affected by changing the grain
size, lag, and extent of the data sets �Dungan et al.
2002�.

Can landscape metrics detect hierarchical struc-
tures of landscapes when repeatedly computed at
multiple scales? Apparently, not all of them can. Our
earlier study showed that progressively increasing
extent allowed certain landscape metrics �e.g., PSCV,
PSSD, MPS, AWMSI, AWMFD� to reflect some dra-
matic shifts in the average properties of the landscape
concerning the size and shape of patches �Table 3; Wu
et al. 2003�. Other studies also demonstrated that
simple variance and correlation measures were able
to detect scale breaks in real and artificial landscapes
when calculated at different grain sizes �e.g., O’Neill
et al. 1991; Wu et al. 2000�. Nevertheless, there are
at least three reasons for the lack of scale breaks in
the landscape metric scalograms in this and other
similar studies. First, when grain size is increased al-
ways in a square shape following the majority rule,
the hierarchical structure in real landscapes may be
distorted or masked because of the high variability in
patch size, shape and orientation �Wu et al. 2000�.
This problem may be ameliorated by a “patch-based”
or “object-specific” aggregation scheme �Hay et al.
2001�. Second, different landscape metrics represent
different aspects of landscape structure, and for a
given landscape not all of them exhibit hierarchical
structure although they may all be scale-dependent.
Third, even for landscape attributes that do posses hi-
erarchical structure, be it structural or functional, they
may form multiple hierarchies in the same landscape
which may not correspond to each other precisely in
terms of spatial and temporal scales �Wu 1999�.
While the first reason is primarily methodological, the
last two involve both the theory of hierarchical sys-
tems and the understanding of the systems under
study.

Spatial allometry and landscape pattern

It is intriguing that several metrics were found to ex-
hibit power scaling relationships which were ostensi-
bly consistent between different classes within the
same landscape and among different landscapes.

Other measures of landscape pattern that were not
considered in this study may also scale spatially in a
power law fashion. For example, Costanza and Max-
well �1994� found that with increasing spatial resolu-
tion �i.e., decreasing grain size�, the spatial auto-
predictability �the reduction in uncertainty about the
state of a pixel in a scene given knowledge of the sate
of adjacent pixels in that scene� increases and spatial
cross-predictability �the reduction in uncertainty
about the state of a pixel in a scene given knowledge
of the state of corresponding pixels in other scenes�
decreases both linearly on a log-log scale. From this
study, it is evident that power-law scaling is more of-
ten and more consistent in the case of changing grain
size than changing extent. It is attempting to relate
these landscape metric scaling relations to other
power laws in biological and ecological systems –
particularly, body-size allometry �biological attributes
scale with body size following a power law; e.g.,
Brown et al. 2000� and spatial allometry �ecological
attributes scale with ecosystem size or spatial extent
following a power function; e.g., Schneider 2000�.
The power, elegance, and mystery of allometric scal-
ing all lie in the simple equation, y�axb, where the
dependent variable y is a biological or an ecological
variable of interest,�is mostly body size in traditional
biological allometry or a spatial scale measure �e.g.,
grain, extent, or their ratio�, a is the normalization
constant, and b is the scaling exponent. Thus, the
power laws of landscape metrics may be considered
as an extension of spatial allometry.

Do the power scaling relations in this study neces-
sarily imply that a single underlying process is
responsible for the landscape attributes these metrics
represent? Our knowledge of these rather different
landscapes suggests that a number of natural and an-
thropogenic processes, operating on distinctive spatial
and temporal scales, have generated these landscape
patterns. Does this, then, suggest that multiplicative
processes can give rise to seemingly scale-invariant
landscape patterns with simple allometric scaling re-
lations and no characteristic scales? These are
certainly intriguing questions that still await future
research. Although power laws have frequently been
related directly to, or cast in the light of, self-similar-
ity, scale-invariance, and universality, such interpre-
tations need to be made with caution. Power laws
may arise from different processes, either internal or
external to the system under consideration �Jensen
1998; Plotnick and Sepkoski 2001�, and they usually
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hold only over a finite ranges of spatiotemporal scales
�Wiens 1989; Milne 1991; Milne 1992; Lam and
Quatrochi 1992; Wu 1999�. More in-depth discus-
sions on these issues as well as other scaling theories
and methods are given in Wu et al. �2004�.

Conclusions

Landscape metrics have been widely used in ecologi-
cal and geographical studies and provided valuable
insight into the structural characteristics of complex
landscapes. However, the lack of a comprehensive
understanding of the scale sensitivity of these metrics
seriously undermines their interpretation and useful-
ness. This study has systematically investigated how
landscape metrics respond to changing grain size and
extent, allowing for exploration of general scaling re-
lations and idiosyncratic behaviors.

The results of this study showed that changing
grain size and extent had significant effects on both
the class- and landscape-level metrics. Although the
landscapes under study were quite different in both
the composition and configuration of patches, the ef-
fects of changing scale fell into two categories
�simple scaling functions and unpredictable� for the
class-level metrics, and three categories for the land-
scape-level metrics �simple scaling functions, stair-
case-like scaling behavior, and unpredictable�. Over-
all, more metrics showed consistent scaling relations
with changing grain size than with changing extent at
both the class and landscape levels – indicating that
effects of changing spatial resolution are generally
more predictable than those of changing map sizes.
While the same metrics tended to behave similarly at
the class level and the landscape level, the scale re-
sponses at the class level were much more variable.
These results appear robust not only across different
landscapes, but also independent of specific map
classification schemes.

This study corroborates the increasingly recog-
nized notions: there is no single “correct” or “opti-
mal” scale for characterizing spatial heterogeneity,
and comparison between landscapes using pattern in-
dices must be based on the same spatial resolution
and extent. In addition, these results may provide
practical guidelines for scaling of spatial pattern. For
example, landscape metrics with simple scaling rela-
tions reflect those landscape features that can be ex-
trapolated or interpolated across spatial scales readily
and accurately using only a few data points. In con-

trast, unpredictable metrics represent landscape fea-
tures whose extrapolation is difficult, which requires
information on the specifics of the landscape of con-
cern at many different scales. Finally, to quantify
spatial heterogeneity using landscape metrics, it is
both necessary and desirable to use landscape metric
scalograms, in stead of single-scale values. Indeed, a
comprehensive empirical database containing pattern
metric scalograms and other forms of multiple-scale
information of diverse landscapes is crucial for
achieving a general understanding of landscape pat-
terns and developing spatial scaling rules.
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