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Abstract

The effect of spatial scale on spatial analysis has long, but sporadically, been recognized in

human geography and more recently and acutely in landscape ecology.  As the number of

studies directly and systematically addressing scale effects is still limited, it remains unclear

how results of different statistical analyses are affected by changing scale for different

landscapes, or whether or not such effects can be predicted and, if so, in what situations.

However, it is certain that erroneous conclusions may result if scale effects are not considered

explicitly in spatial analysis with area-based data.  With widespread use of remote sensing data

and GIS, a better understanding of the issue of scale effects is much needed.  The main purpose

of this study, therefore, was to examine how results of statistical analysis respond to a

systematic change in the scale of analysis.  Specifically, we investigated how the relationship

between landscape metrics (local landcover diversity and richness indices) and independent

variables (TM bands and vegetation indices) would change with different sample  sizes and

mathematical representations of variables.  The landscape under study is the Minden area of

Nevada in the western Great Basin.  Four different sample sizes (19x19, 15x15, 11x11, and 5x5

pixels) and four different representation forms (variance, mean, variance-mean ratio, and

coefficient of variation) of the variables were used in all statistical analyses.  We systematically

examined the effects of changing sample size and representations of variables on the results of

regression, analysis of variance, and correlation analysis.  The results indicated that the

relationship between landscape metrics and TM bands and vegetation indices was affected

considerably by the change of sample size.  Both the R2 value and the level of statistical

significance of the relationship tended to increase as sample size increased.  In addition, the
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results of ANOVA showed that the relative importance of the TM bands and vegetation indices

in the relationship varied with sample size as well.  Although the spatial pattern of local-scale (or

“neighborhood”) diversity and richness of land-cover types in this Great Basin landscape

could be adequately quantified using spectral information-based variables, the results and

accuracy of such a analysis depended on both landscape composition and sample size.  The

linear response of the statistical relationship to the change in sample size over some range of

scales indicated that scale effects could be readily predicted in certain cases.  However, in

general, because scale effects can further be complicated by the choice of variables and the

idiosyncrasy of particular landscapes, the predictability of scale effects seems to be confined

only to certain domains of scale.  To find these domains multiple-scale or hierarchical analysis

must be performed.  This study further supports that the modifiable areal unit problem is a

common one across the disciplinary boundaries of geography, ecology and other earth sciences.

Unraveling the problem not only will improve our understanding of pattern and process in

nature, but also will have important implications for appropriate use of remote sensing data and

GIS.

I. INTRODUCTION

Spatial pattern has important effects on a variety of physical and ecological processes,

including flows of energy and nutrients and dispersal and movement of plants and animals (Turner,

1989; Risser, 1990; Wiens et al., 1993; Wu et al., 1993; Hunsaker et al., 1994; Wu and Levin, 1994,

1997).  To understand the interactions between pattern and process it is necessary to quantitatively

characterize spatial heterogeneity over a range of scales.  Because today’s spatial pattern results

from yesterday’s dynamic processes, pattern analysis may potentially reveal critical information on

properties of underlying processes.  Landscape ecology, focusing on the study of the reciprocal

relationship between spatial pattern and ecological processes, provides a new conceptual framework

for understanding how nature works  (Pickett and Cadenasso, 1995; Wu and Loucks, 1995).  In

recent years, numerous studies have been carried out to quantify landscape patterns using various

spatial analysis methods (O’Neill et al., 1988; Turner and Gardner, 1991; Cullinan and Thompson,

1992; Plotnic et al., 1993; Wickham and Riitters, 1995; Riitters et al., 1995; Jelinski and Wu, 1996;

Qi and Wu, 1996).  In general, both promises and problems have been found regarding the plethora

of techniques used in landscape pattern analysis (see Riitters et al., 1995, Jelinski and Wu, 1996).

Remotely sensed data and geographic information systems (GIS) have been increasingly

used to facilitate large-scale studies in landscape ecology (Iverson et al., 1989; Roughgarden et al.,

1991; Turner and Gardner, 1991).  Landsat Thematic Mapper (TM) and NOAA satellite AVHRR

data, in particular, have been widely adopted in landscape ecological studies.  Based on the features
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of reflectance and absorption of vegetation to electromagnetic radiation, a number of vegetation

indices have been developed from several TM bands (e.g., Tueller, 1989).  Both the spectral values

of the different TM bands and vegetation indices derived from them can be correlated with various

characteristics of landscapes (e.g., Tueller, 1989, Rey-Benayas and Pope, 1995).

Landscapes are hierarchically structured in space, within which pattern and processes operate

over a range of scales (O’Neill et al., 1991; Wu and Loucks, 1995).  Detected spatial pattern

usually varies with the scales of observation, measurement, and data analysis.  Therefore, any

analysis based on a single scale may provide little (or even misleading) information on the overall

landscape structure under study (Wu and Loucks, 1995; Jelinski and Wu, 1996).  Two concepts,

grain and extent, have been particularly useful for making landscape pattern analysis scale-explicit,

thus facilitating communication and comparison of the results.  Grain is the “smallest unit of

measure” or “the first level of spatial resolution possible with a given data set”, whereas extent is

the “cover” or “the total area of the study” (sensu Turner and Gardner, 1991).  Studies in plant

community ecology, human geography, and landscape ecology have shown that the results of

spatial analysis using area-based data usually are sensitive to three kinds of related, but distinctive

changes in spatial data: changes in grain size, extent (Meentemeyer and Box, 1987; Woodcock and

Strahler, 1987; Turner et al., 1989; Wickham and Ritters, 1995; Qi and Wu, 1996), and aggregation

zones (the zoning problem; see Openshaw, 1984; Fotheringham and Rogerson, 1993; Wu and

Jelinski, 1995; Jelinski and Wu, 1996).  It has been suggested, therefore, that landscape pattern

should best be understood by conducting analysis on multiple scales or hierarchically (Wu and

Loucks, 1995; Wu and Jelinski, 1995; Jelinski and Wu, 1996; Qi and Wu, 1996).

As a part of a research project that attempts to link spatial pattern to ecosystem properties in

the Great Basin, this study examined the effects of systematically changing spatial scale on the

results of particular statistical analyses.  Specifically, the objectives of this study were as follows:

(1) to investigate how landscape metrics such as diversity and richness relate to spectral parameters

readily available from remote sensing (e.g., TM band values) and vegetation indices derived from

them;  and (2) to examine the effects of varying sample sizes on the results of the analysis.

II. DATA AND METHODS

The data set for this study is a land-cover map derived from empirical information on

topography, vegetation distribution, and land use conditions.  The data set contains fourteen land-

cover types, covering the Minden area of Nevada in the western Great Basin.  The geographic

coordinates for the four corners are 39°9′18.3′′ N and 119°51′13.7′′ W, 39°6′14.2′′ N and

119°30′30.0′′ W, 38°54′12.3′′ N and 119°54′55.8′′ W, and 38°51′8.2′′ N and 119°34′12.1′′ W,

respectively.  The data set has 999 rows and 1069 columns with a linear dimension of about 30 m
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for each pixel, which represents a total area of 96,114 hectares (or 961.14 square kilometers).  The

GIS package, IDRISI™, was used for Landsat image processing and a part of the pattern analysis,

while S-Plus™ was used for ANOVA, regression, and correlation analysis.

From the land-cover map, we computed three landscape metrics, diversity (H), dominance

(D) and richness (R), as descriptors of landscape structure.  These metrics have been widely used

in landscape ecological studies (e.g., O’Neill et al., 1988, 1996; Turner, 1989; Wickham and Riitter,

1995), and are defined as follows:

Landscape Diversity

H = − Pk ln Pk
k =1

m

∑

where H is the diversity index, m  is the number of land-cover types, Pk  is the proportion of the

grid cells of land-cover type k  (the number of pixels of the land-cover type k  divided by the total

number of pixels).  Larger values of H  correspond to more diverse landscapes which tend to have

many land-cover types with similar proportions of pixels belonging to each type.

Landscape Dominance

D = Hmax + Pk
k =1

m

∑ ln Pk

where D is the Dominance index, Hmax  is the maximum diversity when all land-cover types are

present in equal proportions (i.e. Hmax = ln m ).  m and Pk are defined exactly the same as in the

diversity index.  This index is a measure of the extent to which one or a few land covers dominate

the landscape.  Small values usually correspond to landscapes with a large number of land use

types of similar proportions.  Apparently, a simple numerical relationship exists between diversity

and dominance indices, both carrying the same non-spatial, compositional information of a

landscape.  While they were used together in our analysis for purposes of checking computational

errors and facilitating interpretation, here we will focus primarily on the results on diversity to avoid

redundancy.

Relative Richness

R =
N

Nmax

100

where  N is the number of different land-cover types present in an area under observation, and the

Nmax is the maximum value of richness.
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Although the same basic formulas are used, in this study these metrics were calculated

differently from the conventional way whereby they are computed for the entire study area or non-

overlapping subregions.  Because we were more interested in the characteristics of local-scale (or

“neighborhood”) diversity and their spatial changes, the landscape metrics were computed using a

3 by 3 pixel moving window as defined by the GIS package, IDRISI.  For diversity and relative

richness, respectively, a value for the metric was computed for the 9 neighboring cells, and then was

assigned to the central cell.  The window moves on one column at a time from the up left corner of

the grid, until all the grid cells received their values.  This is exactly the way these metrics are

calculated using the PATTERN module of IDRISI (Eastman, 1995).  As a result, the values of

diversity and richness formed a 2-dimensional matrix and were represented as maps.

Three vegetation indices, RVI (Ratio Vegetation Index), NDVI (Normalized Difference

Vegetation Index), and TNDVI (Transformed Normalized Difference Vegetation Index) were

calculated from spectral information of the Landsat TM imagery of the study area.  It was one of

our objectives in this analysis to determine which of these vegetation indices would be best suited

for detecting changes in the Great Basin landscapes.  These indices were obtained from the

following formula (Richardson and Wiegand, 1977; Tucker, 1979; Huete and Jackson, 1987):

RVI =
Red

NearInfrared

NDVI =
NearInfrared − Red

NearInfrared + Red

TNDVI = (NearInfrared − Re d)/( NearInfrared + Re d) + 0.5

The Ratio Vegetation Index is simply the ratio of red to infrared brightness values and

capitalizes on the increase in brightness as one moves from the red to the infrared data space.  The

Normalized Difference Vegetation Index is a more complex version of this simple ratio, and has

been used in numerous vegetation assessment studies.  Many studies have shown that NDVI is

responsive to rapidly growing highly reflective plant communities such as alfalfa fields and riparian

vegetation (Tueller, 1989; Rey-Benayas et al., 1995).  The transformed normalized difference

vegetation index, with the addition of 0.5, avoids negative values and usually is easier to interpret

(Deering et al., 1975; Richardson and Wiegand, 1977; Harlan et al., 1979).

III. ANALYSIS AND RESULTS
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In previous studies (Wu et al., 1994; Wu and Jelinski, 1995; Jelinski and Wu, 1996; Qi and

Wu, 1996), we have shown that, for area-based data, varying the scale of analysis (grain size) and

zoning systems (orientation and configuration) of the spatial units at the same scale both may have

significant effects on the results of spatial analysis.  This problem has been termed the modifiable

areal unit problem (MAUP) in the geography literature (Openshaw, 1984; Fotheringham and

Rogerson, 1993; Amrhein, 1995; Wu and Jelinski, 1995; Jelinski and Wu, 1996).  In this study, we

intended to explore how systematic (or progressive) changes of the analysis scale (specifically

sample size) affect the results of regression and correlation analysis based on landscape data.  How

do different representation forms of variables  variance, mean, variance-mean ratio (V/M), and

coefficient of variation  interact with the scale effects?  Do scale effects show any trends that are

predictable?

We used the three landscape metrics (diversity, and richness) as dependent variables and

TM3, TM4, TM7, NDVI, TNDVI, and RVI as independent variables in the statistical analysis.  To

examine scale effects, four sample sizes were used: 25 pixels (5x5), 121 pixels (11x11), 225 pixels

(15x15), and 361 pixels (19x19).  First, we cut forty-nine 5x5 pixel samples from each of the 9

images (diversity, dominance, richness, TM3, TM4, TM7, NDVI, TNDVI, and RVI), and then

symmetrically increased the scale of analysis, from the center cell outward, to 11x11, 15x15, and

19x19 pixels (Figs. 1 and 2).  As a result, there were  49 replicates for each sample size.  Variance,

mean, variance-mean ratio (V/M), and coefficient of variation (CV = 
V

M
) of the nine variables at

each sample size (n = 49) were computed, and then used accordingly for regression analysis,

analysis of variance, and correlation analysis.

Regression analysis was conducted to examine how the landscape metrics relate to TM

band parameters (TM3, TM4 and TM7) and vegetation indices (NDVI. TNDVI and RVI).

Variance, mean, V/M, and CV of each variable are used for each sample size, respectively.  For

example, at the sample size of 5 by 5 pixels, four multiple linear regression models were

constructed for each of the three dependent variables (diversity, dominance, richness) in terms of

their variance, mean, V/M, and CV, respectively.  The analysis of variance was used to determine the

relative importance of the TM band parameters and vegetation indices in the relationship.  We also

performed a correlation analysis to further explore the relationship between landscape metrics and

TM variables.  In both ANOVA and correlation analysis, only the variance of dependent and

independent variables at each sample size was used as the representation form because the

regression analysis had shown that variance was more sensitive to changes in the landscape metrics

than mean, V/M and CV.

The results of regression analysis showed that, for the sample size of 5 by 5 pixels, there

did not appear to be a linear relationship between the landscape metrics (i.e., diversity, dominance,
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richness) and the six independent variables (i.e., TM3, TM4, TM7, NDVI, TNDVI, and RVI).  This

was true for all representation forms of the variables (i.e., mean, variance, V/M, and CV).  For the

sample size of 11 by 11 (121 pixels), a statistically significant linear relationship was apparent

between the landscape metrics and independent variables when mean, variance, and V/M, but not

CV, of these variables were used for the analysis (Table 1).  When the sample size increased to

15x15 and 19x19 pixels, the linear relationship of the landscape metrics with TM bands and

vegetation indices became statistically significant for all four forms of measure for the variables,

with progressively larger R2 values and smaller P values (see Table 1, Figs. 3 and 4).  In general, the

strength of this relationship tended to increase as sample size increased for all four forms of

measure (Fig. 3).  However, a closer look reveals that R2 values actually peaked at the sample size

of 15x15 pixels in the cases of mean and V/M (Fig. 4).

The results of analysis of variance showed that, when variance was used as the

representation form for the variables, the independent variables differed in terms of the level of

significance in the relationship with landscape metrics as sample size increased (Table 2).  For all

the three landscape metrics, all independent variables were found insignificant at the sample size of

5x5 pixels.  TM3 was statistically significant in the relationship for all the three landscape metrics at

sample sizes of 11x11 pixels and larger, NDVI was significant for sample sizes of 15x15 and

19x19 pixels, and TM7 was only significant for the sample size of 19x19 pixels.  The number of

the spectral variables that were significant in the regression relationship increased as the sample size

expanded.  The results of the analysis of variance also were indicative of the relative importance of

the different independent variables in the regression relationship at each sample size.  Although a

certain variable might be important at several sample sizes, its P value tended to decrease with the

sample size (Table 2).

The results of correlation analyses, using variance as the representation form of all variables,

showed that TM7 was significantly correlated with all the three landscape metrics at all four sample

sizes, whereas TM 3 and TM4 were significantly correlated with these metrics when sample size

was bigger than 5x5 pixels (Table 3).  For all the three TM bands, R2 values increased and P

decreased as sample size expanded, indicating that the correlation between the landscape metrics

and the TM bands became more significant with increasing sample size.

IV. DISCUSSION AND CONCLUSIONS

The results of our study have shown that the spatial pattern of local-scale or neighborhood

diversity and richness in the Minden landscape could be characterized using TM spectral data.  But

sample size or the scale of analysis played an important role in relating the landscape metrics to TM

spectral variables.  With explicit specification of this scale effect, it seems feasible to use TM
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spectral information or vegetation indices to quantify and monitor spatial changes in the Great

Basin landscape.  However, several points are worth further discussion.

Scale effects

Several studies have shown that changing scale may significantly affect the pattern

quantification of an entire landscape or its subregions using, for example, richness and information

theory-based metrics (Turner et al., 1989; Wickham  and Ritters, 1995; O’Neill et al., 1996) and

spatial autocorrelation indices (Legendre and Fortin, 1989; Jelinski and Wu, 1996; Qi and Wu,

1996).  Specifically, the scale being changed in our study is sample size, or may be regarded as

extent with 49 replicates (see Fig. 2).  Our study further has suggested that statistical analyses like

regression, ANOVA, and correlation analysis with landscape data are also affected by changing

scale.  The effect of changing sample size on these analyses can be considerably large (Fig. 4).  Of

particular interest was that R2 values increased monotonically in the variance and CV graphs (A and

D in Fig. 4), whereas a peak became apparent at the 15x15 sample size in both mean and V/M

graphs (B and C in Fig. 4).  Further studies are needed to confirm whether this peak was indicative

of a characteristic scale at which a real structural change in the landscape takes place.  Because of

scale effects, ecological conclusions based on such analyses should be made with explicit

specification of scales (grain size and extent).  Our results seem to suggest that this effect may be

predictable within a certain domain of scales in some cases (see Fig. 4 for regions that correspond

to nearly linear change in R2 values).

Effects of different representation forms of variables

Scale effects were further complicated by the effect of different representation forms of

variables used for the landscape analysis.  For example, the four representation forms (variance,

mean, V/M, and CV) for the 9 variables in this study resulted in somewhat distinctive patterns of

change in R2 values with increasing sample size (Fig. 4).  For example, while diversity and richness

seemed to exhibit similar patterns for each representation form at finer scales, variance was most

sensitive to changes in diversity and richness pattern.  The higher sensitivity of variance to change

in the analysis scale is attributable, at least in part, to the fact that its values are larger than those of

V/M or CV in which variance is “scaled down” by mean.

Relationship between TM bands/derived vegetation indices and spatial pattern of land-

cover richness and diversity
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The results of regression analysis indicated that neighborhood diversity and richness were

significantly correlated to TM band parameters and vegetation indices.  The strength of the

correlation seemed to increase with sample size (or calculation scale).  This was evidenced by the

increasing R2 values and decreasing P values for the regression relationship, as well as by ANOVA

and correlation analysis.  In particular, the results suggested that the selected TM bands and

vegetation indices could detect and predict changes in local-scale diversity and richness at sample

sizes from 11x11 to 19x19 pixels with increasing accuracy.  Clearly, use of variance as the

representation form of variables at the 19x19 sample size gave the best result (R2 larger than 0.7 for

all three metrics; see Table 1 and Fig. 4).  The results of both ANOVA and correlation analysis

further suggested that TM3 and NDVI were the most consistent and best predictor variables.

TM3 band has been shown to be a good indicator of green vegetation (e.g., Tucker, 1979;

Baret and Guyot, 1991).  Rey-Benayas and Pope (1995) indicated that TM spectral data have the

potential of measuring landscape diversity.  While our results seem to support this claim, the choice

of appropriate sample size will be critically important to achieve high accuracy.  On the other hand,

vegetation indices derived from several bands using different mathematical formulations may

indicate quantitative and qualitative differences in the properties of vegetation because significant

differences in reflectance and absorption of radiation exist between vegetation and other

geographical characteristics of the landscape (Tueller, 1989).  According to our analysis, normalized

difference vegetation index (NDVI) appeared to be better than RVI and TNDVI for characterizing

local-scale diversity and richness pattern in this particular desert landscape (Table 2).  Numerous

studies have shown that NDVI is a sensitive indicator of green biomass (Tucker, 1979, Tueller,

1989).  Out study suggested that, together with TM3 and TM7, NDVI was a good predictor of

diversity and richness in the landscape of our study.  However, it is worth emphasizing again that

the accuracy of these variables as predictors of land-cover diversity and richness not only depends

on landscape composition, but also on sample size.

In conclusion, we emphasize that scale effects represent an important and challenging issue

that must be considered explicitly in all landscape analysis.  Based on this and previous studies it

seems unlikely to find “universal” rules that can be used to accurately predict scale effects over a

wide range of scales or across different types of analysis and landscapes.  This is in part because

scale effects are further complicated by the choice of variables and the idiosyncrasy of particular

landscapes.  Yet, as this study suggests, responses of the statistical relationship to changes in

analysis scale may exhibit simple (e.g., linear or monotonic) patterns over some ranges of scale,

implying that scale effects could be readily predicted within these domains of scale.  To find scale

domains where predictions or extrapolations can be readily made, multiple-scale or hierarchical

analysis must be performed.  This study further supports that the modifiable areal unit problem is

common across the disciplinary boundaries of geography, ecology and other earth sciences.
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Unraveling the problem will not only improve our understanding of pattern and process in nature,

but also will have important implications for appropriate use of remote sensing data and GIS.

ACKNOWLEDGMENTS

This research was supported by research grants from the United States Department of

Agriculture (USDA-NRICGP 95-37101-2028) and Arizona State University (FGIA HBR H044

and SRCA HB15001).  The assistance with data collection and analysis by Ellen Ellis, Mingxi

Jiang, and Michael Limb is gratefully acknowledged.  We also thank Gong Peng, Ye Qi, and an

annonymous reviewer for their comments on the manuscript.

REFERENCES

[1] Amrhein, C. G., 1995. Searching for the elusive aggregation effect: evidence from statistical
simulations. Environment and Planning A, 27:105-119.

 
[2] Baret, F., and G. Guyot, 1991.  Potential and limits of vegetation indices for LAI and APAR

assessment.  Remote Sensing of Environment, 35:161-173.
 
[3] Cullinan, V. I., and J. M. Thomas, 1992.  A comparison of quantitative methods for

examining landscape pattern and scale.  Landscape Ecology, 7(3):211-227.
 
[4] Deering, D. W., J. W. Rouse, R. H. Haas, and J. A. Schell, 1975.  Measuring "forage

production” on grazing units from LANDSAT MSS data. Proceedings of the 10th
International Symposium on Remote Sensing of Environment, Volume II:1169-1178.

 
[5] Eastman, J. R., 1995.  Idrisi For Windows, User’s Guide Version 1.0.  Idrisi Production

1987-1995, Clark University.
 
[6] Fotheringham, A. S., and P. A. Rogerson, 1993. GIS and spatial analytical problems.

International Journal of Geographical Information Systems, 7:3-19.
 
[7] Harlan, J. C., D. W. Deering, R. H. Haas, and W. E. Boyd, 1979.  Determination of range

biomass using LANDSAT. Proceedings of 13th International Symposium on Remote
Sensing of Environment, Volume I:659-673.

 
[8] Huete, A. R., and R .D. Jackson, 1987.  Suitability of spectral indices for evaluating

vegetation characters on arid rangelands. Remote Sensing of Environment, 23:213-232.
 
[9] Hunsaker, C. T., R. V. O’Neill, B. L. Jackson, S. P. Timmins, and D. A. Levine, 1994.

Sampling to characterize landscape pattern. Landscape Ecology, 9:207-226.
 
[10] Iverson, L. R., R. L. Graham, and E. A. Cook, 1989. Applications of satellite remote sensing

to forest ecosystems.  Landscape Ecology, 3: 131-143.
 
[11] Jelinski, D. E., and J. Wu, 1996.  The modifiable areal unit problem and implications for

landscape ecology. Landscape Ecology, 11:129-140.
 



Wu, Gao & Tueller

11

[12] Legendre, P., and M.-J. F. Fortin, 1989.  Spatial pattern and ecological analysis. Vegetatio,
80:107-138.

 
[13] Meentemeyer, V. and E. O. Box, 1987.  Scale effects in landscape studies.  In Landscape

Heterogeneity and Disturbance, Edited by M. G. Turner, Springer-Verlag, New York, pp.
15-34.

 
[14] O'Neill, R. V., R. H. Gardner, B. T. Milne, M. G. Turner, and B. Jackson, 1991.

Heterogeneity and Spatial Hierarchies. In Ecological Heterogeneity, Edited by J. Kolasa and
S. T. A. Pickett, Springer-Verlag,  New York, pp. 85-96.

 
[15] O’Neill, R. V., B. T. Milne, M. G. Turner, and R. H. Gardner, 1988.  Resource utilization

scales and landscape pattern. Landscape Ecology, 2:63-69.
 
[16] O'Neill, R. V., C. T. Hunsaker, S. P. Timmins, B. L. Timmins, K. B. Jackson, K. B. Jones,

K. H. Riitters, and J. D. Wickham, 1996. Scale problems in reporting landscape pattern at
the regional scale. Landscape Ecology, 11:169-180.

 
[17] Openshaw, S., 1984.  The modifiable areal unit problem. CATMOG 38.  GeoBooks,

Norwich.
 
[18] Plotnic, R. E.,  R. H. Gardner, and R. V. O’Neill, 1993.  Lacunarity indices as measures of

landscape texture.  Landscape Ecology, 8:201-211.
 
[19] Pickett, S. T. A., and M. L. Cadenasso, 1995. Landscape ecology: spatial heterogeneity in

ecological systems. Science, 269:331-334.
 
[20] Qi, Y. and J. Wu, 1996.  Effects of changing spatial resolution on the results of landscape

pattern analysis using spatial autocorrelation indices. Landscape Ecology, 11:39-50.
 
[21] Rey-Benayas, M. Jose, and K. O. Pope, 1995.  Landscape ecology and diversity patterns in

he seasonal tropics form Landsat TM imagery. Ecological Applications, 5:386-394.
 
[22] Richardson, A. J., and C. L. Wiegand, 1977.  Distinguishing vegetation from soil

background information. Photogrammetric Engineering & Remote Sensing, 43:1541-1552.
 
[23] Riitters, K. H., R. V. O’Neill, C. T. Hunsaker, J. D. Wickham, D. H. Yankee, K. B.

Timmins, and B. L. Jackson, 1995. A factor analysis of landscape pattern and structure
metrics. Landscape Ecology, 10:23-39.

 
[24] Risser, P. G., 1990. Landscape Pattern and Its Effects on Energy and Nutrient Distribution.

In Changing  Landscapes: An Ecological Perspective, Edited by I. S. Zonneveld and R. T.
T. Forman, Springer-Verlag, New York, pp. 45-56.

 
[25] Roughgarden, J., S. W. Running, and P. A. Matson, 1991.  What does remote sensing do

for ecology?  Ecology, 72: 1918-1922.
 
[26] Tucker, C. J.,  1979.  Red and photographic infrared linear combinations for monitoring

vegetation. Remote Sensing of Environment, 8:127-150.
 
[27] Tueller, P. T.,  1989.  Remote sensing technology for rangeland management applications.

Journal of Range Management, 42:442-452.
 



Wu, Gao & Tueller

12

[28] Turner, M. G., 1989.  Landscape  ecology: The effect pattern on process. Annual Review of
Ecology and Systematics, 20:171-197.

 
[29] Turner, M. G., R. V. O’Neill, R. H. Gardner, and B. T. Milne, 1989.  Effects of changing

spatial scale on the analysis of landscape pattern.  Landscape Ecology, 3:153-162.
 
[30] Turner, M. G. and R. H. Gardner, 1991. Quantitative Methods in Landscape ecology.

Springer-Verlag, New York.
 
[31] Wickham, J. D, and K. H. Riitters, 1995.  Sensitivity of landscape metrics to pixel size.

International Journal of Remote Sensing, 16:3585-3595.
 
[32] Wiens, J. A., N. C. Stenseth, B. V. Horne, and R. A. Ims, 1993.  Ecological mechanisms

and landscape ecology. Oikos, 66:369-380.
 
[33] Woodcock, C. E., and A. H. Strahler, 1987.  The factor of scale in remote sensing. Remote

Sensing of Environment, 21:311-332.
 
[34] Wu, J., and D. E. Jelinski., 1995.  Pattern and scale in ecology: The modifiable areal unit

problem.  In Lectures in Modern Ecology, Edited by Li Bo, Science Press, Beijing, pp.1-9.
(In Chinese)

 
[35] Wu, J., and S. A. Levin, 1994.  A spatial patch dynamic modeling approach to pattern and

process in an annual grassland. Ecological Monographs, 64(4): 447-464.
 
[36] Wu, J., and S. A. Levin, 1997.  A patch-based spatial modeling approach: conceptual

framework and simulation scheme. Ecological Modelling, 101:325-346.
 
[37] Wu, J., and O. L. Loucks, 1995.  From balance-of-nature to hierarchical patch dynamics: A

paradigm shift in ecology. Quarterly Review of Biology, 70:439-466.
 
[38] Wu, J., J. L. Vankat, and B. Barlas, 1993.  Effects of patch connectivity and arrangement on

animal metapopulation dynamics: a simulation study. Ecological Modelling, 65:221-254.
 



Wu, Gao & Tueller

13

Table 1.  Results of linear regression between the landscape metrics (diversity, dominance, richness) and TM3, TM4, TM7, NDVI, TNDVI,

and RVI at 4 different sample sizes (5x5, 11x11, 15x15, and 19x19 pixels).  Variance, mean, V/M and CV of the nine variables at each sample

size are used separately in the analysis.

Measure  Landscape R2 P-value R2 P-value R2 P-value R2 P-value
 Indies

    5 * 5 (25 pixels)     11 * 11 (121 pixels)     15 * 15 (225 pixels)   19 * 19 (361 pixels)

Diversity 0.1637 0.3964 0.3943 0.0015** 0.4459 0.0003** 0.7679 0.0000**
Variance Dominance 0.2191 0.1950 0.311 0.0138* 0.4240 0.0006** 0.9999 0.0000**

Richness 0.1192 0.6183 0.3179 0.0117* 0.5500 0.0000** 0.7049 0.0000**

Diversity 0.256 0.1117 0.3778 0.0024** 0.4553 0.0002** 0.3883 0.0018**
Mean Domanence 0.1473 0.4735 0.3494 0.0052** 0.4872 0.0001** 0.4232 0.0006**

Richness 0.2471 0.1286 0.3449 0.0059** 0.4361 0.0004** 0.4022 0.0012**

Diversity 0.2505 0.1218 0.2531 0.0492* 0.4166 0.0163* 0.3889 0.0174*
V/M Domanence 0.2293 0.1682 0.3231 0.0103* 0.5485 0.0000** 0.3181 0.0116*

Richness 0.2315 0.1534 0.2933 0.0211* 0.5731 0.0000** 0.4207 0.0007**

Diversity 0.1278 0.5725 0.1568 0.2919 0.2214 0.0966 0.5232 0.0001**
CV Domanence 0.1138 0.6469 0.1808 0.1994 0.2180 0.1031 0.2885 0.0236*

Richness 0.1359 0.5305 0.1448 0.3478 0.2511 0.0534 0.2514 0.0531

* P ≤ 0.05

** P ≤ 0.01
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Table 2. Results of analysis of variance between the landscape metrics (diversity, dominance, richness) and TM3, TM4, TM7, NDVI, TNDVI,
and RVI at 4 different sample sizes.  The variance value of each variable at each sample size is used in the analysis.

Sample size Diversity Dominance Richness
vs. P value vs. P value vs. P value

TM3 0.08091 TM3 0.42235 TM3 0.17482
TM4 0.59403 TM4 0.61092 TM4 0.76886

5X5 TM7 0.41344 TM7 0.74131 TM7 0.57186
NDVI 0.94461 NDVI 0.36995 NDVI 0.80863
RVI 0.15879 RVI 0.05845 RVI 0.23338

TNDVI 0.69449 TNDVI 0.06810 TNDVI 0.44635

TM3 0.00015** TM3 0.01066* TM3 0.00077**
TM4 0.39013 TM4 0.09552 TM4 0.72986

11X11 TM7 0.64337 TM7 0.68709 TM7 0.18886
NDVI 0.03771* NDVI 0.02759* NDVI 0.16830
RVI 0.06890 RVI 0.06370 RVI 0.15953

TNDVI 0.71911 TNDVI 0.38048 TNDVI 0.97257

TM3 0.00002** TM3 0.00249** TM3 0.00000**
TM4 0.55443 TM4 0.21824 TM4 0.79383

15X15 TM7 0.20461 TM7 0.08522 TM7 0.11359
NDVI 0.00206** NDVI 0.01068* NDVI 0.01075*
RVI 0.04888* RVI 0.01108* RVI 0.01462*

TNDVI 0.84668 TNDVI 0.16059 TNDVI 0.95484

TM3 0.00000** TM3 0.00000** TM3 0.00000**
TM4 0.63878 TM4 0.00000** TM4 0.97097
TM7 0.00006** TM7 0.00000** TM7 0.00025**

19X19 NDVI 0.00000** NDVI 0.00000** NDVI 0.00000**
RVI 0.42321 RVI 0.31253 RVI 0.27869

TNDVI 0.94307 TNDVI 0.56559 TNDVI 0.50972
* P ≤ 0.05;  ** P ≤ 0.01
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Table 3. Results of correlation analysis between the landscape metrics (diversity, dominance, richness) and TM3, TM4, and TM7 at 4

different sample sizes.  The variance value of each variable at each sample size is used in the analysis.

       TM                     Diversity Dominance            Richness     
   (Variance)

   R2             P         R2       P      R2    P
  5x5 pixels
     TM3 0.2866         0.0365*    -0.125 0.7789 0.2266 0.0799
     TM4 0.0772         0.3180     0.0018          0.4955 0.0775 0.3174
     TM7    0.3205         0.0219*    -0.096 0.7221 0.2473  0.0019*

11x11 pixels
     TM3 0.5082         0.0001**    0.3620 0.0154* 0.4769 0.0004**
     TM4 0.3602         0.0060**    0.3537 0.0069** 0.2994 0.0238*
     TM7 0.4849         0.0004**    0.3223 0.0127* 0.3512 0.0094**

15x15 pixels
     TM3 0.5697         0.0041**    0.3820 0.0248* 0.6361 0.0013**
     TM4 0.3664         0.0052**    0.3312 0.0107* 0.3672 0.0051**
     TM7 0.5478         0.0000**    0.4496 0.0007** 0.6043 0.0000**

19x19 pixels
     TM3 0.6020         0.0000**    0.4048 0.0050** 0.6677 0.0000**
     TM4 0.3680         0.0020**    0.3374 0.0095** 0.5114 0.0015**
     TM7 0.6728         0.0000**    0.4204 0.0001** 0.7118 0.0000**

_________________________________________________________________________________________________________

* P ≤ 0.05
** P ≤ 0.01
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Fig. 1. Schematic representation of the analysis design: 3 dependent variables (diversity, dominance, and richness); 6 independent

variables (TM3, TM4, TM7, NDVI, TNDVI, and RVI); 4 different representation forms of variables (mean, variance, variance/mean ratio,

and coefficient of variation); and 4 different sample sizes (5x5, 11x11, 15x15, 19x19 pixels, respectively).
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Fig. 2. Illustration of the layout of samples of four different sizes: 5x5, 11x11, 15x15, and 19x19 pixels.  The numbers in the parentheses

in (B) are the coordinates of the center cells in each sample.
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Fig. 3.  Accumulative R2  values for the multiple linear regression between landscape metrics and spectral variables as a function of

increasing sample sizes (5x5, 11x11, 15x15, and 19x19 pixels).  Dependent variables are diversity (A), dominance (not shown here), and

richness (B), and independent variables are TM3, TM4, TM7, NDVI, TNDVI, and RVI.  Variance, mean, V/M and CV of the nine

variables at each sample size are used separately in the analysis (see also Table 1).
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Fig. 4. R2  values for the multiple linear regression between landscape metrics and spectral variables as a function of increasing sample

sizes (5x5, 11x11, 15x15, and 19x19 pixels).  Dependent variables are diversity, dominance (not shown here), and richness, whereas

independent variables are TM3, TM4, TM7, NDVI, TNDVI, and RVI.  Variance (A), mean (B), V/M (C) and CV (D) of the nine variables

at each sample size are used separately in the analysis.  Also refer to Table 1 for numerical values.
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