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Abstract Advances in remote sensing technologies

have provided practical means for land use and land

cover mapping which is critically important for

landscape ecological studies. However, all classifica-

tions of remote sensing data are subject to different

kinds of errors, and these errors can be carried over or

propagated in subsequent landscape pattern analysis.

When these uncertainties go unreported, as they do

commonly in the literature, they become hidden

errors. While this is apparently an important issue in

the study of landscapes from either a biophysical or

socioeconomic perspective, limited progress has been

made in resolving this problem. Here we discuss how

errors of mapped data can affect landscape metrics

and possible strategies which can help improve the

reliability of landscape pattern analysis.
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Introduction

One of the primary goals of landscape ecology is to

elucidate the relationship between spatial pattern and

ecological processes (Turner 2005; Wu and Hobbs

2002). Accurately quantifying landscape pattern is a

prerequisite for achieving this goal. While a large

number of metrics have been developed for quanti-

fying landscape pattern since the seminal paper by

O’Neill et al. (1988), various conceptual and techni-

cal problems still exist. For example, Li and Wu

(2004, 2007) recently discussed three kinds of such

problems: conceptual flaws in landscape pattern

analysis, inherent limitations of landscape indices,

and improper use of landscape indices, and they

proposed a series of guidelines for overcoming these

problems to assure the effective application of

landscape pattern analysis methods.

Because most studies of landscape pattern analysis

use classified thematic maps based on remote sensing

data, the accuracy or uncertainty associated with the

maps is critical for our ability to reliably characterize

spatial pattern, detect changes, and relate pattern to

process (Hess 1994; Hess and Bay 1997; Wu and

G. Shao (&)

Department of Forestry and Natural Resources, Purdue

University, 715 West State Street, West Lafayette,

IN 47907-1159, USA

e-mail: shao@purdue.edu

J. Wu

School of Life Sciences & Global Institute of

Sustainability, Arizona State University, Tempe,

AZ 85287-4501, USA

J. Wu

Sino-US Center for Conservation, Energy and

Sustainability Science (SUCCESS), Inner Mongolia

University, Hohhot 010021, China

123

Landscape Ecol (2008) 23:505–511

DOI 10.1007/s10980-008-9215-x



Hobbs 2002; Iverson 2007). Unfortunately, all remote

sensing-based classifications are subject to different

kinds of errors, and these errors will be carried over or

even propagated in subsequent landscape pattern

analysis. Without knowing the magnitude of errors or

uncertainties in landscape data, the characterization of

landscape pattern is hardly reliable, inferences on

pattern–process relationships may be flawed, and

consequently, recommendations for conservation and

management are unwarranted. Nevertheless, limited

progress has been made in explicitly examining the

impacts of classification errors in spatial data on

landscape pattern analysis (but see Wickham et al.

1997; Fang et al. 2006). Rigorously addressing this

problem is one of the research priorities in landscape

ecology today (Wu and Hobbs 2002; Iverson 2007),

and has important implications for ecology in general

(Wu et al. 2006).

The applications of remote sensing data in land-

scape ecological studies are pervasive (Groom et al.

2006; Iverson 2007). With the rapidly increasing

availability of remotely sensed data and continued

widespread use of landscape pattern metrics, the

problem of classification accuracy may affect many

biophysical and socioeconomic studies of landscapes.

The objectives of this paper, therefore, are to discuss

how the inaccuracy of image data classification can

affect landscape pattern analysis and to explore

several possible approaches to improving the reli-

ability of landscape metrics.

Classification accuracy and reliability

of landscape metrics

The accuracy of land use and land cover (LULC)

maps that are derived with digital remote sensing data

is usually represented in terms of producer’s accuracy,

user’s accuracy, and overall accuracy, which are

commonly calculated from an error matrix (or con-

fusion matrix; see Congalton and Green 1999). For

clarity and consistence of the discussion, we briefly

present the definitions of these terms as commonly

used in the remote sensing community (see http://ccrs.

nrcan.gc.ca/; http://landcover.usgs.gov/accuracy/).

Producer’s accuracy is the percentage of a particular

LULC type on the ground is correctly classified in the

map, and measures the error of omission (1 - pro-

ducer’s accuracy). It is calculated as the ratio of the

number of correctly classified pixels for a class (i.e.,

LULC type) to the total number of ground truth pixels

for that class. User’s accuracy is the percentage of a

class on the map that matches the corresponding class

on the ground, and measures the error of commission

(1 - user’s accuracy). Therefore, ‘‘producer’s accu-

racy is a measure of the accuracy of a particular

classification scheme,’’ whereas ‘‘user’s accuracy is a

measure of the reliability of an output map generated

from a classification scheme’’ (http://ccrs.nrcan.gc.ca/).

While producer’s and user’s accuracy deal with

individual classes, overall accuracy is the percentage

of correctly classified pixels out of all pixels sampled

for all classes.

There is a common assumption that the higher the

classification accuracy, the more accurate a map

product, and thus the more reliable landscape indices

derived from the map. However, there are at least two

reasons why this assumption needs to be taken

cautiously. First, there is not a universally applicable

standard based on which the adequacy of classifica-

tion accuracy can be quantified, and most of the

publicly accessible landscape data have a lower

classification accuracy than usually expected. For

example, the USGS standard of image data classifi-

cation was originally set to 85% for overall accuracy

a priori (Anderson et al. 1976), but the actual

accuracy of image classification rarely reached that

standard. The overall accuracy of the land cover map

for the eastern United States derived from the 1992

Landsat TM data is 81% at Anderson level I (with

land cover types of water, urban, barren land, forest,

agricultural land, wetland, and rangeland), and

decreases to 60% at Anderson level II (Vogelmann

et al. 2001). The 17 class-IGBP (International

Geosphere-Biosphere Programme) land cover map

has an overall accuracy of 73.5% (Scepan 1999). Due

to high costs involved in accuracy assessment, many

remotely sensed map products have not been assessed

for accuracy, and thus the accuracy of landscape

metrics computed based on such remote sensing

products is completely unknown. Unfortunately,

because of the lack of a generally accepted threshold

for classification accuracy, such blind use of mapped

data has been widespread in landscape studies.

Recent studies have shown that the accuracy of

landscape indices often has an exponential relation-

ship with classification accuracy (Fig. 1; see Shao

et al. 2001; Li and Wu 2004; Shao and Wu 2004).
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Second, LULC mapping with remote sensing data

is hardly repeatable, and thus the same remote

sensing imagery does not necessarily produce the

same classified maps. Computer-aided automated or

semi-automated approaches have become the domi-

nant means in image classification as the quantity and

variety of remote sensing data have increased expo-

nentially in recent decades. Automated or semi-

automated classification schemes often do not create

maps of the same accuracy. For example, two global

land cover data sets of 1-km resolution derived from

1992–1993 Advanced Very High Resolution Radi-

ometer (AVHRR) imagery have been made available

by the IGBP Data and Information System (IGBP-

DIS) and University of Maryland—known as the

DISCover and UMd 1 km LULC maps, respectively.

Hansen and Reed (2000) showed that, because the

two groups of analysts used different classification

techniques, the global area totals of aggregated

vegetation types had a per-pixel agreement of only

74% between the two maps. The individual class

agreement between the two maps is only 49%. The

DISCover map, in general, has more forests, whereas

the UMd map has considerably more woody savanna/

woodland and savanna/wooded grassland with an

intermediate level of tree cover. If both datasets are

used to characterize LULC pattern at a global or

continent scale, the results and their interpretations

are expected to differ significantly. A provocative

question may follow: should we trust any of them?

Poor repeatability of image classification is also

common for geospatial data at landscape and regional

scales (Shao et al. 2001). For most remote sensing

applications, an image-classification project only

produces a single LULC map for a given area at a

given time. Since there is no practical way to prove

that this map is the best possible, there is no way to

assure that landscape metrics derived from the map

are the most accurate. Powell et al. (2004) discussed

the problem of poor repeatability in image classifi-

cation, and suggested that multiple interpreters are

needed to work together in accuracy assessment.

Groom et al. (2006) suggested to re-examine the roles

of remote sensing in landscape ecology with regard to

image data classification.

Suggestions for improving the reliability

of landscape metrics

Given the uncertainties associated with many cate-

gorical maps derived from remote sensing data, how

can we improve the accuracy of landscape analysis?

Here we discuss several possible approaches that

should be used in combination whenever possible.

Select appropriate classification techniques

Although the relationship between image classifica-

tion accuracy and landscape metrics is often

nonlinear, the variation in the values of landscape

metrics becomes lower when classification accuracy

is higher (Shao et al. 2001; Shao and Wu 2004). As a

rule of thumb, most landscape metrics tend to

stabilize in their values as the overall accuracy of

image classification approaches 90%. This means that

a high degree of classification accuracy is required

for assuring the consistency and reliability of land-

scape metrics. Of course, the degree of the accuracy

of landscape metrics is always dependent upon the

specific objective of a study.

There are a number of advanced techniques

available for improving classification accuracy. Com-

mercial packages of image processing provide

convenient interfaces that facilitate the use of com-

mon classification methods, but they may not

incorporate the most rigorous and powerful classifiers

better suited for landscape studies. For example,

Kettig and Landgrebe (1976) proposed a classifier

Errors of image data classification 

E
rr

or
s 

of
 la

nd
sc

ap
e 

in
di

ce
s 

Uncertainty 
range

Fig. 1 An illustration of GIGO (gray in, gray out) effect using

a semigarithmic scale on y-axis. Both the magnitude and

uncertainty range of landscape index errors have an exponen-

tial relationship with the errors of image data classification
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called ECHO (Extraction and Classification of

Homogeneous Objects), in which the classification

unit is conceptually similar to a patch as used in

landscape ecology. Studies have shown that the

ECHO classifier produces maps with much higher

accuracy than those with the commonly used Max-

imum Likelihood classifier (Wu and Shao 2002; Lu

et al. 2004). The object-oriented image analysis

software, eCognition or Definiens, allows implement-

ing expert knowledge, generates homogeneous

objects through a local optimization procedure, and

creates a hierarchical framework of decomposable

image objects (Benz et al. 2004). The concepts and

outcomes of eCognition applications are consistent

with landscape pattern analysis. Several works have

demonstrated the usefulness of eCognition in habitat

mapping (e.g., Lathrop et al. 2006).

Select imagery of appropriate scales

Remote sensing data come with a variety of spatial

and temporal resolutions. Although it may not always

be feasible, matching the spatial and temporal reso-

lutions of the imagery with the spatial and temporal

grain sizes at which a landscape is intended to be

characterized. Otherwise, a scale mismatch between

data and analysis would occur, a problem closely

related to the issue of scale effects that has been

widely studied (e.g., Turner et al. 1989; Wickham and

Riitters 1995; Jelinski and Wu 1996; Wu 2004). For

example, a narrow creek may be readily detectable on

a 30 m-resolution Landsat TM image, but not on a

80 m-resolution Landsat MSS image. If pixel sizes are

relatively large and patches of interest are relatively

small, measurements of patch shape becomes mean-

ingless. Similar effects are found with temporal

resolutions or grain sizes. Vegetation has different

spectral responses in different seasons, and leaf-on

and leaf-off are two distinct seasons for remote

sensing of vegetation. Discrepancies in the timing

and interval of remote sensing images may result in

major uncertainties in comparing different landscapes

or detecting changes of the same landscape.

In general, if remote sensing images have a much

finer resolution than the intended grain size of

analysis, one may either coarse-grain the images

(degradation) and then compute landscape metrics, or

compute landscape metrics first and then upscale the

metrics to a coarser grain size. Either of these two

approaches may be problematic. Image degradation

not only loses information on structural details but

also may distort landscape patterns (Moody and

Woodcock 1995; Saura 2004). Upscaling landscape

metrics across grain sizes is often difficult or

impossible because most metrics show erratic and

unpredictable scaling behavior (Wu 2004).

Balance producer’s and user’s accuracy

As mentioned above, classification accuracy can be

expressed in terms of producer’s accuracy and user’s

accuracy, which correspond to errors of omission and

commission, respectively. In most landscape ecolog-

ical applications, the area of each LULC type (or class

area) may be the most important measure. Shao et al.

(2003) derived an index called Relative Error of Area

(REA) from the error matrix, in which the accuracy of

class area on a map is a function of producer’s and

user’s accuracy. That is, REAk ¼ ð1=UAkÞ�ð
ð1=PAkÞÞ � 100, where UAk and PAk are user’s and

producer’s accuracy for class k, respectively. The area

of class k is overestimated if REAk [ 0, and under-

estimated if REAk \ 0. Evidently, REAk becomes

smaller when producer’s and user’s accuracy are

numerically more similar, or when the errors of

omission and commission converge. When

REAk = 0, the areal estimate of class k is 100%

accurate statistically although the spatial pattern of

class k may not be perfectly accurate unless both UAk

and PAk are perfect. Shao et al. (2003) demonstrated

that the actual accuracy of areal estimates of LULC

types is highly correlated with REAk, but not consis-

tently with UAk, PAk, or overall accuracy.

Because it is practically impossible to get 100%

accuracy in UAk and PAk to achieve a REAk of zero,

balancing producer’s and user’s accuracy can help

improve the accuracy of areal estimates of LULC

types. This is particularly important for large-scale

landscape studies and change detections. When UAk

and PAk both are high and close to each other in

value, the reliability of landscape metrics of even

spatial configuration is expected to be high as well.

Be aware of landscape metrics sensitive

to classification errors

The sensitivity of landscape metrics to changing scale

of analysis is now fairly well understood (Shen et al.
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2004; Wu 2004), but the sensitivity of many landscape

metrics to classification accuracy is much less known.

Nevertheless, several recent studies have shown that

some landscape metrics (e.g., mean patch size and

patch density) are more sensitive to classification

accuracy than others (Hess and Bay 1997; Wickham

et al. 1997; Shao et al. 2001; Li and Wu 2004). If a

landscape metric is insensitive to differences in

landscape pattern, it certainly reduces the variation

of the metric caused by classification errors, but also

fails to be able to detect landscape structural changes

that may be important to understanding ecological

processes. However, landscape metrics that are good

at detecting pattern changes are more likely those also

sensitive to classification errors. To resolve this

problem, we must know the level of classification

errors that can be tolerated for achieving an acceptable

degree of reliability of landscape metrics. Wickham

et al. (1997) examined the sensitivity of three

landscape metrics (average patch compaction, conta-

gion, and fractal dimension). These authors found that

the misclassification rate needed to be at least 5%

smaller than the actual differences in LULC compo-

sition in order to be confident that differences in

landscape metrics were not due merely to classifica-

tion errors. More comprehensive and systematic

studies of this sort with different kinds of landscape

patterns (i.e., ecotones) are needed to test and expand

these important findings (e.g., Arnot et al. 2004).

Multi-factor assessment of accuracy

Because there is no universally acceptable approach

to assessing the reliability of landscape indices, it

seems important to consider multiple assessment

criteria in landscape pattern analysis (Table 1). In

this example, we have selected a list of assessment

factors that are relevant to data accuracy, and

developed a scheme to assign reliability score to each

of them: high (=3), acceptable (=2), and unacceptable

(=1). This way, it is possible to determine the relative

degree of reliability of landscape indices (Table 1). In

general, more factors need to be considered for

comparing different landscapes at one point of time

or quantifying changes of a landscape at different

times than for analyzing one landscape at one point of

time. Here we listed three primary factors for one-

time landscape analysis: map quality, error balance,

and spatial resolution. Other factors such as T
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vegetation of interest (forest vs. desert or canopy layer

vs. understory layer), landscape contrast (continuous

vs. abrupt changes), and patch type characteristics

(within-patch variability) may all be important, but

are hard to quantify. For between-landscape compar-

ison or landscape change detection, at least six

additional factors need to be considered: consistency

in classification accuracy, consistency in spatial

resolution, consistency in data processing, mean

accuracy OA
� �

, consistency in seasonality, and con-

sistency in MMU. The overall reliability score (RS)

can be obtained by summing up the reliability scores

of all factors: RS ¼
P

n
i¼1Si, where n is the number of

factors considered and Si is a reliability score found in

Table 1.

Concluding remarks

No map is without errors. As landscape ecologists,

we need to know where the errors occur and how

large they are. The use of remote sensing data will

certainly continue to grow, and so will the use of

landscape metrics for characterizing spatial patterns.

Computerized classification algorithms or classifiers

deal with mainly the ‘‘color’’ of the image data, and

are still limited in the use of textural (spatial)

information. From this point of view, digital classi-

fication is far less intelligent than human

interpretation that can flexibly integrates various

kinds of information. From the selection of image

sources to the interpretation of landscape metrics,

professional knowledge of the landscape under study

is always critical, and cannot and should never be

substituted by machine-driven macros.

The problem of classification accuracy and its

influence on landscape metrics must be dealt with

more explicitly and more rigorously to make land-

scape pattern analysis ecologically more relevant and

effective (Li and Wu 2004, 2007). Unfortunately,

except for the few important studies in the 1990s

(e.g., Hess 1994; Hess and Bay 1997; Wickham et al.

1997), this critical problem has largely been ignored

in landscape ecology. As the issues of data acquisi-

tion and accuracy assessment are among the key

topics in landscape ecology (Wu and Hobbs 2002;

Iverson 2007), we hope that this paper will help

stimulate more research interests to elevate our

understanding of these issues to a new level.
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