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Abstract 

Understanding the relationship between pattern and scale is a central issue in landscape ecology. Pattern anal- 
ysis is necessarily a critical step to achieve this understanding. Pattern and scale are inseparable in theory and 
in reality. Pattern occurs on different scales, and scale affects pattern to be observed. The objective of our 
study is to investigate how changing scale might affect the results of landscape pattern analysis using three 
commonly adopted spatial autocorrelation indices, i.e., Moran Coefficient, Geary Ratio, and Cliff-Ord 
statistic. The data sets used in this study are spatially referenced digital data sets of topography and biomass 
in 1972 of Peninsular Malaysia. Our results show that all three autocorrelation indices were scale-dependent. 
In other words, the degree of spatial autocorrelation measured by these indices vary with the spatial scale 
on which analysis was performed. While all the data sets show a positive spatial autocorrelation across a range 
of scales, Moran coefficient and Cliff-Ord statistic decrease and Geary Ratio increases with increasing grain 
size, indicating an overall decline in the degree of spatial autocorrelation with scale. The effect of changing 
scale varies in their magnitude and rate of change when different types of landscape data are used. We have 
also explored why this could happen by examining the formulation of the Moran coefficient. The pattern 
of change in spatial autocorrelation with scale exhibits threshold behavior, i.e., scale effects fade away after 
certain spatial scales are reached (for elevation). We recommend that multiple methods be used for pattern 
analysis whenever feasible, and that scale effects must be taken into account in all spatial analysis. 

Introduction 

Landscapes are mosaics of patches that differ in 
size, shape, and contents (Risser etal. 1984; Forman 
and Godron 1986; Wu and Levin 1994). Numerous 
studies have shown that the spatial pattern of land- 
scapes may have significant influences on ecologi- 
cal processes, such as population dynamics, bio- 
geochemical cycling, and aspects of biodiversity 

(e.g., Burgess and Sharpe 1981; Zonneveld and 
Forman 1990; Opdam 1991; Wiens et al. 1993; Wu 
et al. 1993; Wu and Vankat 1991a, b, 1995; Wu and 
Levin 1994). Therefore, identifying and character- 
izing spatial pattern across a range of scales (espe- 
cially large ones) using various quantitative methods 
are often necessary in landscape ecological studies 
(Turner and Gardner 1991; Cullinan and Thomas 
1992; Wu 1992a). 
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In recent years, the importance of scale effects 
on spatial analysis and modeling has been increas- 
ingly emphasized in light of spatial heterogeneity 
and hierarchy theory (e.g., Allen and Starr 1982; 
Meentemeyer and Box 1987; Morris 1987; Turner 
et al. 1989; Levin 1992; Constanza and Maxwell 
1994; Wu et al. 1994; Wu and Levin 1994). Because 
of the spatial heterogeneity and hierarchical prop- 
erties of landscape systems, understanding the 
effects of changing scale on the analysis of land- 
scape patterns is critical to our ability to predict 
landscape dynamics across scales (Turner et al. 
1989; Wu and Levin 1994). Identifying scales of 
landscape patterns and examining the effects of 
changing scales on pattern analysis are intrinsically 
related but two aspects of the pattern-scale problem 
in ecology. Both studies should shed light on the 
problems of pattern and scale, and thus facilitate 
the scaling up or scaling down of ecological infor- 
mation (Wiens 1989; Levin 1992; Wu 1992b). How- 
ever, little systematic investigation has been done as 
to how changing scale affects the results of spatial 
analysis (but see Turner et al. 1989), although there 
has been a considerable amount of work done on 
the detection and characterization of spatial pattern 
(e.g., Getis and Boots 1978; Getis and Ord 1992; 
O’Neill et al. 1988; Fortin et al. 1989; Legendre and 
Fortin 1989; Turner and Gardner 1991; Cullinan 
and Thomas 1992; Wu 1992a). 

Detecting and characterizing spatial pattern in 
ecology dates back to the early work on plant com- 
munity analysis (e.g., Greig-Smith 1952; Kershaw 
1957). Nevertheless, it was not until the recent de- 
velopment of landscape ecology that the classic 
blocking method originally developed by Greig- 
Smith began to be extended to larger scale studies, 
and that a number of new methods started being 
explored (e.g., Milne 1988; O’Neill et al. 1988; 
Turner and Gardner 1991). Recent reviews with 
examples of several classical and newly developed 
techniques for pattern analysis are available (e.g., 
Turner and Gardner 1991; Levin et al. 1993). 
Cullinan and Thomas (1992) evaluated several 
methods (tests of non-randomness, grid blocking 
method, variance ratio analysis, spectral analysis, 
fractal dimension, correlation analysis) as to their 
suitability for detecting and characterizing land- 

scape patterns and associated scales. Their data sets 
included two artificially generated Poisson random 
series and plant cover data along a transect, all of 
which were one-dimensional. Cullinan and Thomas 
(1992) asserted that tests of non-randomness and 
nearest-neighbor techniques were of limited use in 
the study of landscape patterns. In general, other 
methods showed varying ability to respond to 
changes in the scales of spatial patterns, with each 
method performing better for certain scales. There- 
fore, Cullinan and Thomas (1992) concluded that 
multiple methods should be used for examining 
landscape pattern and scale. 

Based on actual landscape data from USGS land 
use maps and computer-generated random maps, 
Turner et al. (1989) investigated the effects of 
changing scale on landscape pattern analysis using 
different indices (diversity, dominance, and con- 
tagion). Spatial scalemay refer to either the “grain” 
(i.e. , the spatial resolution) or the “extent” (i.e., 
the total study area). Turner et al. (1989) found that 
three indices were all sensitive to the changes in 
spatial scale. They also showed that the scale effects 
on indices of dominance and contagion exhibited 
different patterns as the definition of scale changed 
from grain to extent. Specifically, both indices 
decreased with an increase in grain size, but in- 
creased as the extent increased, showing stair-step 
pattern as a result of being sensitive to the number 
of land cover types present (Turner et al. 1989). 

Although it is well known that changing scale will 
somehow affect the results of spatial analysis, the 
questions regarding and “why” remain 
largely unanswered, and systematic investigations 
to address such issues are urgently needed. With in- 
creasing use of spatial autocorrelation analysis in 
landscape ecology, we believe that it is important to 
systematically investigate how changing scale af- 
fects the results of such analyses. In particular, 
based on two landscape data sets of Peninsula 
Malaysia, we have conducted a series of analyses by 
manipulating grain size across a range of scales to 
explore how this might affect the results of spatial 
autocorrelation analysis using three frequently 
practiced spatial autocorrelation indices - Moran 
coefficient, Geary ratio, and Cliff-Ord statistic. 
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Data and methods 

The two data sets used for this study are geo- 
referenced digital data of elevation and above- 
ground biomass in Peninsular Malaysia (Fig. la, b; 
see Brown et al. 1994 for more details). Informa- 
tion in these data sets is represented using a rectan- 
gular lattice or grid, each cell of which has one or 
more values. Both data sets have 220 rows and 188 
columns, with a grid cell size (the minimum or basic 
spatial unit, BSU) of 2.25 x 2.25 kilometers. 

To change the grain size across a range of spatial 
scales, we systematically aggregated the data from 
the original spatial resolution to larger areal aggre- 
gates in the following way. Each BSU was treated 
as one basic unit, and therefore the grain size at this 
scale was expressed as 1 by 1. A 2 x 2 areal unit, 
then, corresponded to the grain size that contained 
four BSUs (two on each side). This was accom- 
plished by aggregating four adjacent basic areal 
units, assigning the arithmatic mean of the four to 
the newly formed areal unit. This procedure was 
repeated until the entire region of the data sets was 
covered. In total, 20 different grain sizes (spatial 
scales) were created, ranging from 1 x 1 through 
20 x 20 BSUs (ie., 1, 22, 32,. . ., 202). Table 1 
gives detailed information on the grain sizes, the 
number of areal units at grain size, and the starting 
position of aggregation at each scale. 

In the aggregation process, sometimes the origi- 
nal data sets had to be modified (edge rows or 
columns were omitted or repeated) to obtain integer 
numbers of rows and columns. For example, in 
some cases we trimmed off the first 8 columns be- 
cause they consisted mainly of zeros, representing 
ocean or areas of no concern. In some other cases, 
more rows were needed to maintain an integral 
number of rows for moving up to the next spatial 
scale, and we duplicated the first and/or last row. 
While this kind of modification was necessary only 
for technical convenience, we believed that this 
modification would not affect the results of our 
analysis because of the relatively large size of the 
dates. 

Moran Coefficient (MC), Geary Ratio (GR) and 
Cliff-Ord statistic (CO) are among the most com- 
monly used indices for the analysis of spatial auto- 

correlation in geographically referenced ecological 
data (Cliff and Ord 1973, 1981; Odland 1988; 
Goodchild 1986; Griffith 1988; Legendre 1993). 
These autocorrelation coefficients are defined as 
follows (Griffith 1988). 

(1) Moran Coefficient 

(2) Geary Ratio 

(3) Cliff-Ord statistic 

(3) i=n  

i =  1 
w$- $(xj- $/ C (xi- $2 

i=n 

i=  1 
with C w, = 1 and0  I w.. I 1 (4) V 

where n is the total number of areal units over the 
entire landscape, xi and xj are values of areal units 
i and j ,  and X is the mean of all areal units. 
cij denotes the connectivity between areal units 
i and j,  and it takes a value of 1 if areal units i and 
j are adjacent and 0 otherwise). C = ( cij ] is called 
the connectivity matrix (n x n). wij is the 
standardized connectivity between i and j,  (i.e., 
w, = c, Fc,), and W = ( wij) is the standardized 
connectivity matrix (Griffith 1988). 

Two areal units i and j are considered adjacent if 
they are within certain distance from each other. In 
practice, the values of cij and hence wij are deter- 
mined simply by checking if two areal units i and j 
are immediately next to each other. In other words, 
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Fig. 1. The landscape data sets of Peninsular Malaysia: (a) elevation, where the actual altitude increases with the degree of darkness 
with category 0 denoting the sea level; (b) above-ground biomass in 1972, where areas with greater biomass are represented by darker 
pixels. All the data sets have 220 rows and 188 columns, and have a spatial resolution of 2.25 X 2.25 kilometers. 

areal units i and j are regarded as being adjacent if 
they share a line. In our case where a regular rectan- 
gular lattice is used, a grid cell can only be adjacent 
to the neighboring cells on the four sides (i.e., upper, 
lower, left, and right). 

All three statistics have the following common 
properties: (1) there exists an expected value (mean) 

that corresponds to the case of no spatial autocorre- 
lation, (2) the coefficient is able to discriminate be- 
tween different spatial arrangements of the same 
set of values (xi) on a two-dimensional surface, 
and (3) all of them also have well established distri- 
butions based on conventional sampling theory 
(Griffith 1988; Odland 1988). The spatial correla- 
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tion indices, as defined above, are determined by 
two factors: the value of each areal unit and the 
spatial relationship among all the areal units. In all 
our calculations, the spatial extent was fixed, so 
that our study was focused completely on the scale 
effects from a grain size point of view. We calcu- 
lated the three spatial autocorrelation indices at 
each of the 20 spatial scales that were specified by 
different grain sizes for the two data sets. The three 

indices were used together for comparing their sen- 
sitivity to scale change and verifying the algorithm 
we developed. We realized that altering grain sizes 
would involve two closely related but different is- 
sues: change in the area of the spatial unit at differ- 
ent grain sizes and arrangement or configuration of 
spatial units at smaller scales to form higher level 
aggregates (e.g., Wu et al. 1994). However, this 
study was concentrated only on the first issue. 
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Table 1. Layout of the aggregating scheme from the basic spatial 
unit (1 x 1 BSU) to larger areal unit aggregates (up to 20 x 20 
BSUs). Grain size, starting row, and starting column are mea- 
sured or denoted by the basic spatial units, while the numbers of 
rows and columns represent the actual numbers of the areal units 
corresponding to each spatial scales (grain sizes or levels of 
aggregation). 

Grain 
size 

1 x 1  
2 x 2  
3 x 3  
4 x 4  
5 x 5  
6 x 6  
7 x 7  
8 x 8  
9 x 9  
10 x 10 
11 x 11 
12x 12 
13 x 13 
14 x 14 
15 x 15 
16x 16 
17 x 17 
18 x 18 
19 x 19 
20 x 20 

#Areal units Starting 
at each scale row 

220 x 180 
l lOx90 
73 x 60 
55 x 45 
44 x 36 
36 x 30 
31 x26 
27 x 23 
24 x 20 
22 x 18 
20x 16 
18 x 15 
17x 14 
15 x 13 
14x 12 
13x 11 
13 x 11 
12x 10 
11 x 9  
11 x 9  

3 
3 
4 
3 
3 
4 
4 
4 
4 
3 
3 
4 
3 
5 
6 
7 
3 
4 
7 
3 

Starting 
column 

9 
9 
9 
9 
9 
9 
7 
5 
9 
9 
11 
9 
7 
7 
9 
11 
2 
9 
11 
9 

Constructing the connectivity matrix is usually 
the most critical step for calculating spatial auto- 
correlation indices (Griffith 1988). It is often the 
computational bottleneck that limits the size of the 
spatial data sets (Griffith 1990). There are, in total, 
41,360 grid cells in our original data set (220 rows 
by 188 columns). This would produce a connectivi- 
ty matrix of 41,360 by 41,360, which is too large for 
a personal computer to handle. Fortunately, the 
property of a regular rectangular lattice of data 
allows us to reduce the computational demand by 
changing the way of dealing with the connectivity 
matrix. In general, for a spatial data set with k rows 
and p columns, there are at most 4kp-2k-2p non- 
zero values in the connectivity matrix of kp x kp. 
Therefore, we can use a matrix of 4 x kp, instead 
of kp x kp, to record all the information contained 
in the connectivity matrix. By so doing, the com- 
puter memory usage can be reduced by a factor of 
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Fig. 2. Scale effect on spatial autocorrelation indices (Moran 
Coefficient - MC, Geary Ratio - GR, and Cliff-Ord statistic - 
CO): (a) elevation, and (b) biomass. 

kp/4, as compared to the conventional algorithm 
(e.g., Griffith 1990). In this study, k and p are 220 
and 188, so the computational demand is cut down 
by a factor of 10,340 (i.e., 4 x 188 x 220 = 

165,440 elements in the connectivity matrix in 
total) . 

Results and analysis 

For the three autocorrelation indices used here, the 
values for both Moran coefficient and Cliff-Ord 
statistic usually fall in between -1 and 1, though 
they may exceed 1 .O for some weights and attribute 
values (Goodchild 1986). The theoretical value for 
no spatial autocorrelation for these two indices is 
-l/(n-1). A value of less than zero indicates a nega- 
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tive spatial autocorrelation, and a value larger than 
zero suggests a positive spatial autocorrelation. The 
value of Geary Ratio, on the other hand, ranges 
from 0 to 2, with 1 for no, larger than 1 for nega- 
tive, and smaller than 1 for positive spatial auto- 
correlation. Therefore, a positive spatial autocorre- 
lation is always detected if the computed value falls 
between 0 and 1, no matter which of the three auto- 
correlation coefficients is used. 

We shall discuss the results of our analysis by 
addressing the following three related questions. 
(1) Based on the two landscape data sets, how does 
changing grain size affect he results of analysis 
using the three spatial autocorrelation correlation 
coefficients? (2) For a given spatial autocorrelation 
index, how do such scale-dependent changes vary 
with different types of landscape data? (3) Why do 
such differences occur for various types of land- 
scape data? 

To explore the first question above, we examined 
the sensitivity of the three autocorrelation coeffi- 
cients to changes in spatial resolution by applying 
them simultaneously to the same data set. Figure 2 
shows how the numerical values of these coeffi- 
cients respond to increasing grain sizes. In all the 
analyses with the two data sets, the computed 
values for Moran coefficient and Cliff-Ord statistic 
are very closely related across a wide range of 
scales. This may be expected from a scrutiny of the 
similar formulation of the two indices (see Eqs. 1 
and 3). For the elevation data set, Moran coeffi- 
cient and Cliff-Ord statistic decrease steadily from 
changing grain size affect the results of analysis 
using the three spatial autocorrelation correlation 
coefficients? (2) For a given spatial autocorrelation 
index, how do such scale-dependent changes vary 
0.96 to about 0.68, as the grain size increases from 
the minimum spatial unit to the 11 by 11 BSU 
aggregate, and then tend to level off (Fig. 2a; Table 
2). Geary ratio, on the other hand, increases almost 
linearly first from 0.038 to 0.37 as the grain size in- 
creases to the scale of 11 by 11 basic areal units, and 
then gradually levels off around the value of 0.4 
(Fig. 2a; Table 2). 

For the biomass data set, Moran coefficient and 
Cliff-Ord statistic again decline with increasing 
grain size (Fig. 2b). The decrease continues all the 

Table 2. Values of the three spatial autocorrelation coefficients 
for different data sets with changing grain size. The grain size is 
denoted by the basic spatial areal units (BSUs) for these data 
sets. 

Grain Elevation Biomass 
size 

MC GR CO MC GR CO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11  
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.9691 
0.9370 
0.8998 
0.8638 
0.8332 
0.8076 
0.7751 
0.7435 
0.7398 
0.6948 
0.6822 
0.6727 
0.7083 
0.6703 
0.6700 
0.6646 
0.6558 
0.6375 
0.6689 
0.6620 

0.0382 
0.0764 
0.1180 
0.1609 
0.1961 
0.2259 
0.2630 
0.2999 
0.3092 
0.3558 
0.3695 
0.3891 
0.3454 
0.3961 
0.3947 
0.3948 
0.4095 
0.4428 
0.4140 
0.4217 

0.9620 
0.9237 
0.8834 
0.8433 
0.8090 
0.7837 
0.7489 
0.7169 
0.7087 
0.6677 
0.6532 
0.6432 
0.6732 
0.6353 
0.6319 
0.6251 
0.6198 
0.5941 
0.6124 
0.6032 

0.7647 
0.7468 
0.7336 
0.7227 
0.7246 
0.7333 
0.7173 
0.7190 
0.7318 
0.6997 
0.6862 
0.6763 
0.6671 
0.6750 
0.6669 
0.6294 
0.6174 
0.6054 
0.5839 
0.5644 

0.2314 
0.2607 
0.2698 
0.2794 
0.2750 
0.2687 
0.2836 
0.2759 
0.2657 
0.2963 
0.3057 
0.3288 
0.3372 
0.3338 
0.3262 
0.3836 
0.3721 
0.4158 
0.4406 
0.4615 

0.7691 
0.7416 
0.7339 
0.7237 
0.7242 
0.7360 
0.7202 
0.7272 
0.7324 
0.7064 
0.6900 
0.6779 
0.6679 
0.6732 
0.6605 
0.6271 
0.6146 
0.5859 
0.5603 
0.5453 

way to the grain size of 20 by 20 BSUs, but it seems 
more gradual (from 0.76 to 0.54 for the entire range 
of scales, see Table 2). Geary ratio shows a reversed 
trend with increasing spatial scale as it does for the 
elevation data set. All three indices show a rather 
distinctive change (through) around the grain size 
of 11 by 11 basic areal units in the data sets of eleva- 
tion. We speculate that this may correspond to an 
abrupt change in spatial patchiness of some sort 
around that scale in the peninsular Malaysia land- 
scape. However, we cannot completely rule out the 
possibility that it may be a result of some artifact in 
the data aggregation procedure. This phenomenon 
deserves further examination in future analysis of 
this type, especially when data sets of higher spatial 
resolution and larger extent are available. 

Given the existence of obvious effects of chang- 
ing scale on the results of spatial autocorrelation 
coefficients as demonstrated above, one of the 
questions in order is whether there is any generality 
about them. In this particular case study, we ex- 
plore how scale effects manifest themselves with the 
different types of landscape data sets under con- 
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Fig. 3. Comparison of scale effects on Moran Coefficient among different landscape data sets. 

Table 3. Values of Moran coefficient computed at the smallest, middle and largest spatial scales for the two different data sets. The 
changes in Moran coefficient between any two of the three grain sizes are also given in the table, with the percentage changes in the 
parentheses. 

MC value A MC 

Data type 1 x 1  l ox  10 20 x 20 1x1- 20x20 1x1-10x10 10x10- 20x20 

Elevation 0.9691 0.6948 0.6620 0.3071 0.2743 (89.3%) 0.0328 (10.7%) 
Biomass 0.1641 0.6997 0.5644 0.2003 0.0650 (32.5%) 0.1353 (67.5%) 

sideration. The answer to this question has already 
been touched upon earlier in the discussion of the 
results that show how the three indices are affected 
by changing scales using the same data sets. To fur- 
ther elucidate this question, however, we choose to 
use Moran coefficient to highlight the comparison 
(Fig. 3). The choice of Moran coefficient is based 
on the observation that the three indices used in this 
study are in good agreement, with Moran coeffi- 
cient and Cliff-Ord statistic exhibiting great sim- 
ilarity in both pattern of change and numerical 
values. 

From Fig. 3, some differences in the pattern of 
change in spatial autocorrelation with scale are ap- 
preciable. There is a noticeable contrast in the am- 
plitude of decrease in the degree of autocorrelation 
from the smallest spatial unit (1 x 1 BSU) to the 

largest areal aggregate (20 x 20 BSUs) for the two 
data sets, with the maximum decrease of 0.3071 for 
elevation and a minimum of 0.2003 for biomass. In 
addition, the rate of decrease (i.e., the steepness of 
each curve) is different for these data sets. For in- 
stance, the degree of spatial autocorrelation for 
biomass data drops appreciably more slowly than 
for elevation. Also, the biomass data set shows a 
faster changing pace over the larger spatial scales 
(from 10 x 10 BSU to 20 x 20 BSU areal aggre- 
gates) than smaller ones (from 1 x 1 BSU to 
10 x 10 BSU aggregates), which is in contrast with 
elevation (Table 3). 

Why does Moran coefficient show different scale 
effects for different types of landscape data sets? 
One way to explore this question is to examine the 
formulation of the autocorrelation index. The 
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Fig. 4. Effect of changing spatial scale on Moran Coefficient 
and its two aggregated terms: (a) elevation, and (b) biomass. 

formula used to calculare Moran coefficient may 
i=n  i=n  

be decomposed into four terms: n, C C cU, 
i= l  j = 1  

i = n  j = n  i=n 
C C cij(xi- $(xj- 3, and C (xi-  q2 (see 

i = l  j = 1  i= 1 

Eq. 3). It does not seem to make any sense to ana- 
lyze scale effects using each term separately. How- 
ever, when we regroup them into two terms, n / 

i=n 

(xi - F)2, we are able to gain insights into the ques- 
tion being addressed here. With increasing grain 
size, the first term exhibits a nearly linear increase, 
and the second term decreases which essentially 
resembles the behavior of Moran coefficient as a 
whole (Fig. 4a-b). Apparently, the decreasing trend 

of the second term overwhelmes the increasing trend 
of the first term and, therefore, the overall pattern 
of change in spatial autocorrelation is primarily de- 
termined by that of the first term. A similar dissec- 
tion of the formulas for Cliff-Ord statistic and 
Geary ratio can also be done, and the outcome is ex- 
pected to be similar. The first term in the Moran 
coefficient formula is affected only by spatial 
aggregation or partitioning of the original data set, 
while the second term is influenced by both the 
manipulation of grain size and the numerical value 
of each grid cell. Therefore, the first term has the 
same response to all the data types of the same par- 
titioning, whereas the second term presents differ- 
ent responses ,for different landscape data sets due 
to their numerical differences. 

Discussion and conclusions 

It is common in landscape ecology to represent spa- 
tial data with a regularly divided rectangular lattice 
that is composed of a large number of equal-sized 
grid cells. The dimension of the grid cell determines 
the spatial resolution or grain size of the data set. 
Such geographically referenced data sets of differ- 
ent spatial resolutions are often used and spatial 
aggregation is frequently needed in landscape eco- 
logical studies. For instance, to assess and monitor 
the change in biomass in a region, one may use 
SPOT, Thematic Mapper, MSS, or AVHRR satel- 
lite data, each of which has a different spatial reso- 
lution (16 x 16 meters for SPOT, 30 x 30 meters 
for TM, 180 x 180 meters for MSS, and 1 x 1 
kilometers for AVHRR). To advance our under- 
standing of spatial processes in landscape ecology, 
therefore, it is critically important and absolutely 
imperative to first understand how changing spatial 
scale (e.g., grain size) affects the results of spatial 
analysis of landscape patterns. Our study on spatial 
autocorrelation coefficients sheds some light on 
this issue. 

Our study shows that both data sets (elevation 
and biomass) of Peninsula Malaysia are positively 
spatially autocorrelated across a range of scales 
(from 2.25 x 2.25 km to 45 x 45 km). From the 
results discussed earlier, it is clear that changing 
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spatial scale significantly affects the values of all 
three autocorrelation indices. Therefore, spatial 
analysis of landscape pattern using these indices at 
single scales, in general, may provide little useful, 
or even misleading information. Specifically, as the 
grain size increases, the values of Moran coefficient 
and Cliff-Ord statistic decrease, while Geary ratio 
increases. In other words, the degreee of spatial 
autocorrelation as measured by these three indices, 
in general, decreases with increasing spatial scale. 
This result is not readily intuitive. It appears that 
for certain types of landscape data (e.g., elevation), 
there exists a spatial threshold beyond which scale 
effects are no longer obvious. Yet, for other types 
of landscape data (e.g., biomass) such a threshold 
does not seem to occur or, if it does, it would be on 
a much larger spatial scale that is beyond the range 
limit considered in our study. Although some geo- 
graphical studies suggested that these three indices 
could behave differently (e.g., Cliff and Ord 1973, 
198 l), we found no appreciable difference among 
them with regularly gridded data sets used in this 
study. 

Given the scale effects, the results of all spatial 
analysis should be presented with explicit specifica- 
tion of the scale on which the study is conducted. 
Whenever feasible, an examination of scale effects 
on the analytical results across a range of scales that 
are relevant to the landscape pattern under investi- 
gation is most desirable. In the case of spatial auto- 
correlation analysis, the three indices do not seem 
to differentiate significantly from each other in 
terms of the ability to detect the scale effects ac- 
cording to our study. Yet, we concur with other 
researchers that multiple methods should be used 
wherever possible for the sake of comparison and 
verification (Turner et al. 1989; Cullinan and 
Thomas 1992). Now that landscape patterns and 
methods to analyze them are both scale dependent, 
an important task for landscape ecologists today is 
to develop not only techniques to detect charac- 
teristic spatial domains (Wiens and Milne 1989), 
but also the ways to scale up and down pattern and 
process in various landscapes (Turner, Dale and 
Gardner 1989; Constanza and Maxwell 1994; Wu 
and Levin 1994). 
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