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Abstract

To understand how urbanization has transformed the desert landscape in the central Arizona – Phoenix region of
the United States, we conducted a series of spatial analyses of the land-use pattern from 1912–1995. The results
of the spatial analysis show that the extent of urban area has increased exponentially for the past 83 years, and this
urban expansion is correlated with the increase in population size for the same period of time. The accelerating ur-
banization process has increased the degree of fragmentation and structural complexity of the desert landscape. To
simulate land-use change we developed a Markov-cellular automata model. Model parameters and neighborhood
rules were obtained both empirically and with a modified genetic algorithm. Land-use maps for 1975 and 1995
were used to implement the model at two distinct spatial scales with a time step of one year. Model performance
was evaluated using Monte-Carlo confidence interval estimation for selected landscape pattern indices. The coarse-
scale model simulated the statistical patterns of the landscape at a higher accuracy than the fine-scale model. The
empirically derived parameter set poorly simulated land-use change as compared to the optimized parameter set.
In summary, our results showed that landscape pattern metrics (patch density, edge density, fractal dimension,
contagion) together were able to effectively capture the trend in land-use associated with urbanization for this
region. The Markov-cellular automata parameterized by a modified genetic algorithm reasonably replicated the
change in land-use pattern.

Introduction

To understand the structure, function, and dynamics
of ecosystems it is necessary to integrate both eco-
logical and human processes. As a result of human
activities, pervasive ecological changes have occurred
at local, regional, and global scales. The change in
land cover through the appropriation of natural land-
scapes to provide for human needs is one such process
(Vitousek 1994). While the ecological and sociolog-
ical effects of land conversion for agricultural uses
have been studied (Riebsame et al. 1994), the ef-
fects of land conversion for human habitation, or
urbanization, is less understood (Pickett et al. 1997).
Urbanization is the general process of city growth;

native land cover is appropriated for industrial, com-
mercial, residential, and other land uses associated
with human demands. As human population increases
and as increasing proportions of people move to urban
environments, the number and size of urbanized ar-
eas will also increase globally (Simpson 1993; Cohen
1995). The importance of these particularly human-
dominated landscapes in controlling global biospheric
processes will be magnified.

The dynamic spatial configuration resulting from
human appropriation of regional landscapes can have
a variety of ecological effects. A direct effect of urban-
ization is the alteration of local ecological processes
through the modification of land cover. For example,
converting desert to residential land cover alters many
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environmental parameters, such as soil physical and
chemical properties, water availability, vegetation, and
associated animal and microbial communities. Addi-
tionally, urbanization alters the spatial configuration of
land-cover patterns within a region. New land-cover
types are juxtaposed within increasingly fragmented
native land-cover types. Changes in the structure of
the landscape can have ecological effects such as
modifying nutrient transport and transformation (Pe-
terjohn and Correll 1984; Hobbs 1993) and affecting
species persistence and biodiversity (Fahrig and Mer-
riam 1985; Wu et al. 1993; Dale et al. 1994b; With
and Crist 1995).

In this study we examined how urbanization has
affected the landscape pattern of the central Ari-
zona – Phoenix region by analyzing the spatial extent
of urbanization and landscape structural complexity.
Changes in land-use patterns are particularly impor-
tant to many arid-lands that are rapidly becoming
urbanized or converted to agricultural uses (Warren
et al. 1996; Lal 2000). To describe the effect of ur-
banization on the structure of the landscape in this
region the temporal change in selected spatial pattern
indices was examined. The influences of a potential
socio-economic driver, population size, and an envi-
ronmental constraint, topography, on development of
land-use patterns were also considered. We used pop-
ulation size as a simple surrogate for the multitude of
social variables that can be important in urbanization
patterns. Topographic patterns have the potential to
directly limit the locations of urbanization by making
some places inaccessible or unstable for buildings.

In addition to analyzing the pattern of land-use
change, a spatially explicit model for simulating land-
use change was developed. Our modeling objective
was to simulate spatial patterns of land-use change
at a temporal resolution of a single year. A model
at an annual time step facilitates the future integra-
tion of land use change with ecosystem and com-
munity dynamic process models. To accomplish this
we created a Markov-cellular automata derivative. In
this model spatially-explicit transition probabilities of
land-use changes were dependent upon land-use at a
location and neighborhood influences. Similar frame-
works have become popular for describing land-use
change in a spatially explicit context (Turner 1987,
1988; Baker 1989; Flamm and Turner 1994; Dale et al.
1994a; Kirtland et al. 1994; Clarke et al. 1997; Wu
1998). While land-use change results from influences
at a range of scales, new urban development often is
extended from existing urbanized areas. Cellular au-

tomata are appropriate for modeling processes where
neighborhood influences dominate system dynamics.
The basis for using cellular automata is the accretive
nature of human developments. In contrast to mod-
els maximizing a detailed realistic depiction of the
mechanistic processes involved in urbanization (e.g.,
Landis 1995), a cellular automata model maximizes
generality of land-use dynamics.

This model requires a down-scaling from the tem-
poral resolution of our data, 20 years. How such scale
translations are achieved has become a recent focus
of ecological research (Allen and Starr 1982; O’Neill
et al. 1986; Wu and Loucks 1995; Wu 1999). Because
of the interdependence of time and space, we exam-
ined the effects of spatial scale on model performance
by iterating the model at both a coarse and a fine scale.
While much research has been conducted on scale in
the analysis of patterns (Wu et al. 1997), little research
has been conducted to specifically examine the role of
scale in models. Thus, one of the aims of this study
was to evaluate model performance at different spatial
scales.

We examined the abilities of direct extrapolation
as well as statistical optimization to achieve this scale
translation. Our statistical optimization is an appli-
cation of an inverse modeling approach to estimate
model parameters. Inverse modeling provides infor-
mation about a system’s variables by determining the
set of parameters that produce the best correspon-
dence with data (Hilbourn and Mangel 1997). This
approach is becoming widely used for deriving in-
formation from satellite imagery (Asner et al. 1998),
ground water dynamics (Poeter and Hill 1997), and
atmospheric mixing (Gloor et al. 2000).

Combining the analysis of patterns with simulation
modeling allows for a richer understanding of land-
use change in the central Arizona – Phoenix region. In
this paper, we will show that patterns of urbanization
can be assessed and trajectories projected both through
a statistical extrapolation of the historical trend and
through simulation modeling.

Study area and data description

The extent of the study area was delimited by a
68.5 km × 88.75 km boundary centered on the city of
Phoenix, AZ, USA. An extensive research program,
the Central Arizona – Phoenix Long Term Ecologi-
cal Research (CAP–LTER), was recently established
in this region to study the ecology of the urban en-
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Figure 1. The historical reconstruction maps of the central Arizona region. The distribution of urban (black), agriculture (dark gray), and desert
land (light gray) cover types are shown for five different years: 1912, 1934, 1955, 1975, 1995.

vironment. This region exists on a sedimentary plain
surrounded by remnant mountains, some of which
exist inside the currently urbanized area of central
Arizona. These few remnant mountains provide es-
sentially all the topographic heterogeneity within the
central Arizona–Phoenix region. The climate of this
region is characterized as hot and dry (summer daily
mean maximum = 40 ◦C, mean annual precipitation
= 18 cm). Human habitation in this region began

several thousand years ago with the rise of the Ho-
hokam civilization. The population at that time may
have reached 50 000 inhabitants at its height followed
by a decline due to unknown causes (Redman 1992).
The central Arizona region did not again support this
number of inhabitants until 1920. The current revival
of the central Arizona urbanized region began as an
agricultural center that tapped into ground and sur-
face water to support continuous farming throughout
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Figure 2. Population data for the central Arizona–Phoenix region
(points) and the fitted simulation model of population growth (line).
For comparison, a fitted exponential statistical model is also shown
(dashed line).

the year (Gammage 1998). Currently this region is
changing into an industrial and commercial center of
the southwestern United States. As population has in-
creased, so has the extent of urban development at the
expense of agricultural and desert lands.

To analyze the change in land-use pattern, five re-
constructed land-use maps from 1912, 1934, 1955,
1975, and 1995, of the central Arizona region were ob-
tained (Knowles-Yanez et al. 1999) (Figure 1). These
maps classified land use into three separate classes:
urban, agriculture, and undeveloped desert; no ad-
ditional classes or linear features such as roads or
utility infrastructure were included. The data were
compiled primarily from USGS topographic maps and
land-use/land cover data, Salt River Project irrigation
maps, and Maricopa Association of Government Ex-
isting Land-Use data in addition to more specialized
sources. Coupled with land-use maps, topographic and
census data were obtained. Topographic information
was obtained from a USGS digital elevation model
(DEM).

Population records were obtained from the Mari-
copa Association of Governments, a quasi-political
organization that has documented population growth
since 1912. The population record was interpolated
to an annual time step with a single-state dynamical
population model fitted to the data. Population change
was modeled as:

dPop/dt = Popt−1 + (NetMigrationt + Birtht−
Deatht) dt,

where Net Migration and Birth were density-
dependent functions with linearly decreasing coeffi-
cients and death was a density-dependent function
with a constant coefficient. This model fit the data
better than a statistically based exponential regression,
and provided a more mechanistic description of popu-
lation growth for extrapolation purposes (Figure 2).

Methods of landscape analysis and modeling

A series of spatial analyses was carried out on each
of the land-use maps. This analysis began by raster-
izing the landscape into 250 × 250 m pixels (for a
total of 274 × 355 pixels). Each pixel was classified
by a majority rule criterion, based on the areal distri-
bution of land use classes on the base vector maps.
The choice of grain size and aggregation method both
strongly influence the results of a spatial analysis
(Jelinski and Wu 1997). Because we were not ad-
dressing a specific ecological process, we chose the
250 × 250 m scale as a compromise between fine
and large scale processes. Following rasterization, a
statistical analysis of the landscape was conducted to
examine the temporal change in the land-use pattern
of the central Arizona region. Proportional area of
each land-use class relative to the 1912 map provided
one index of land-use change. To quantify change in
landscape structural complexity we examined selected
metrics for the entire landscape, including number of
patches, edge density (the number of adjacencies be-
tween distinct land-use classes per hectare), fractal
dimension (a measure of the structural complexity of
the landscape), and contagion (a measure of landscape
configuration). These metrics were computed from the
rasterized land-use maps using the Fragstats software
package (McGarigal and Marks 1995). This suite of
spatial pattern metrics captures ecologically relevant
aspects of spatial pattern such as fragmentation (num-
ber of patches and contagion), patch shape (fractal
dimension), and amount of edges between contrasting
patch types (edge density and contagion).

To examine relationships between potential socio-
economic drivers and environmental constraints, land-
use patterns were correlated with population size and
topography. We compared the area classified as ur-
banized in each image to the interpolated population
size generated by the population growth model. To
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examine the potential constraints of topography, we
estimated the mean slope of each land-use class by
overlaying the DEM onto each land-use map.

To simulate the temporal sequence of the changing
land-use pattern we developed a probabilistic cel-
lular automata simulation model. Cellular automata
have been widely used for modeling spatially explicit
phenomena in ecology (Hogeweg 1988). A cellular
automata is a model embedded on a landscape ras-
terized into discrete cells. During each time step the
current state of each individual cell is updated based
on rules, either deterministic or probabilistic, which
are dependent on the state of the focal cell and neigh-
boring cells. The neighborhood and transition rules are
defined a priori.

To examine the effects of spatial scale on the per-
formance of the model, we conducted simulations
at the coarse grain size used in the spatial analysis,
250 m2 pixels, and at a finer scale of 75 m2 pixels.
To obtain the fine scale data we again rasterized the
original vector maps at the finer resolution using the
same procedures as described earlier.

We implemented the cellular automata in two-
dimensional space on the rasterized pixels of the 1975
land-use map. Based on our analysis of the pattern of
land-use change, we developed an initial set of transi-
tion rules that projected from one temporal sequence
to the next at an annual time step. To account for the
dual role of desert as an available area for urbanization
as well as non-developable land, a political land-use
class, desert park, was created. This class differenti-
ated between protected desert parks within the urban
perimeter from open desert outside the urban perime-
ter. As shown in the current land-use pattern, desert
remnant patches are common elements on the land-
scape. Our inspection of the 1975 and 1995 maps
showed that some of the desert remnants were ur-
banized during this time interval; thus not all desert
patches within the city are protected. In initializing
the model a random set of desert cells within the ur-
ban boundary was chosen to discriminate between the
desert parks that were prevented from further change
and those which were allowed to change. These tran-
sition rules allowed desert and agricultural land-use
types to change to either urban or desert park, both
of which are dependent upon the number of urban
neighbors of the focal cell.

During each time step, the number of neighbors
for each non-urban cell was calculated based on an
eight-neighbor rule, which counts both diagonal and
adjacent cells. Probability of a cell changing was

based on the number of urban neighbors; this prob-
ability was also dependent on the state of the focal
cell, which allowed for differentiation of urban and
agricultural cells. Land-use change in this model oc-
curs on a yearly time step, a finer resolution than the
20-year time step of the available data. Following the
determination of land-use change probabilities, a real-
ization of this probability was simulated. Of the sites
changing, a random subset of sites were allocated to a
desert remnant class. All other sites that changed were
urbanized. The procedures are summarized in a flow
chart for a single simulation (Figure 3).

Transition probabilities for the model were de-
termined using both a linear interpolation method
and an optimization algorithm. The linear interpola-
tion method derived transition probabilities from an
overlay of the 1975 and 1995 temporal images. The
probability that a cell with n urban neighbors would
become urbanized was computed by dividing the num-
ber of all cells with n urban neighborst−1 that became
urbanizedt, by the total number of non-urban cells
with n urban neighborst−1. To scale the transition
probabilities to an annual time step, each transition
probability was divided by the time interval between
the images, 20 years.

Additionally, we determined transition probabili-
ties by optimizing the model parameters to the spatial
characteristics of the 1995 land-use map. To simplify
this we generated a class modification function allow-
ing agricultural to urban transition probabilities to be
represented as a function of the desert to urban transi-
tion probabilities. The class modifying rule multiplies
the transition probability for a cell with n urban neigh-
bors by a power decay function based on the number
of neighbors for the agriculture class. Based on analy-
ses of the pattern of urbanization, agricultural land
had a higher probability of forming isolated urban
sites with less accretive growth. The decay function
was designed to incorporate this characteristic by in-
creasing the probability of change for agricultural cells
with only a few urban neighbors while decreasing the
change probability for agricultural cells with many
urban neighbors.

To optimize the parameter set we used a modified
genetic algorithm (GA). A GA is a generic method for
identifying solutions to problems that cannot be de-
termined analytically due to system complexity. This
process optimizes a set of parameters through iterative
mutation and selection of the more appropriate para-
meter sets (Mitchell 1996; Mitchell and Taylor 1999).
This technique utilized a genome consisting of eleven
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Figure 3. Flow chart for the implementation of the land use change model.

genes, nine describing the transition probabilities for
the number of urban neighbors (0–8) and two describ-
ing the power decay function distinguishing agricul-
ture and desert land use classes. The fitness of any
particular genotype (parameter set) was determined by
the correspondence between equally weighted indices
of the model output and data. We chose the following
spatial indices: patch number, edge density, fractal di-
mension, mean nearest neighbor, and contagion for the
entire landscape, and % landscape, number of patches,
edge density, fractal dimension, and mean nearest

neighbor for each land-use class. Because the model
is stochastic, the mean fitness from five iterations was
used to estimate the fitness of a genotype. Initial transi-
tion probabilities for the optimization algorithm were
determined based on a perceived graphical fitting be-
tween model output and the 1995 data set (Hilbourn
and Mangel 1997). This iterative approach identi-
fied parameter sets that modeled the land use change
between 1975–1995 in a visually realistic manner. Ini-
tializing the GA with this set of parameters should
decrease the search time required to find optimal pa-
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Figure 4. Change in the percent class coverage of the study region from the 1912 values.

rameter sets. The initial genotype was denoted the
parent genotype, from which a single mutant offspring
was generated. A single mutation was generated by
altering a randomly chosen gene by ±5%. If the mean
fitness of the mutant was higher than that of the parent
it became the new parent from which further mutants
were generated. This process was iterated for 3000
generations.

One of the problems frequently encountered by op-
timization techniques in multi-dimensional parameter
spaces is the occurrence of relatively low-fitness local
optima (Kauffman 1993). Local optima are genotypes
superior to all one mutant neighbors; a ±5% change in
any gene results in a genotype with a lower fitness. In
general, as problem complexity increases, the number
of local optima increases. To escape the local optima,
periodic high mutation events were used. If the GA
could not find a more fit mutant within 25 generations
(the number of possible one-mutant neighbors is 24),
the GA saved the current parameter set and made a
‘long jump’ by changing a random number of parame-
ters by ±20%. This technique is similar to the method
of simulated annealing. The new parent should be suf-
ficiently far away in parameter space from the previous
local optima whereby new optima can be found.

Comparisons between the model output and the
1995 map were made by examining the correspon-
dence of selected spatial pattern indices. Differences
between the model and data were determined through
a Monte-Carlo confidence interval estimation tech-
nique (Buckland 1984). Confidence limits were de-
rived from one hundred iterations of the model and
the computation of landscape indices for each itera-

tion. If the 1995 data pattern statistics exceeded the
95% confidence limits for values of the model output,
the model projection was statistically different from
the data. Otherwise the model generated a pattern ex-
hibiting statistical similarity to the data. This method
of model evaluation utilizes multiple spatial pattern
indices and incorporates Monte-Carlo techniques to
derive statistical estimates of performance. However,
even with the increase in statistical rigor provided by
the Monte-Carlo method, evaluating the ecological
equivalence between the simulated pattern and the real
pattern is difficult and is dependent upon the processes
of interest (Turner et al. 1989).

Results

Pattern analysis

The rapid expansion of urbanized area within the cen-
tral Arizona region was evident. Urban area increased
exponentially since 1912 (r2 = 0.97 for absolute areal
coverage). Concomitant with the urban expansion was
a substantial decrease in desert area. Agriculture land
has exhibited a varied response since 1912, initially
increasing and later decreasing back towards the 1912
extent (Figure 4). In addition to changes in the pro-
portion of land-use types, urbanization also increased
the structural complexity of the landscape (Figure 5).
Fragmentation has occurred at increasing rates for
both the entire landscape and for each individual
land-use type.

The extent of urban area was linearly correlated
with population size (r2 = 0.99) (Figure 6). An
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Figure 5. Changes in 4 landscape indices, (A) fractal dimension, (B) contagion, (C) number of patches, and (D) edge density (meters/hectare),
for the central Arizona region from 1912 to 1995.

Figure 6. Correlation between urban area and interpolated population size from 1912 to 1995 in the central Arizona region.
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extrapolation of the population model with the rela-
tionship between urban area and population projects
that the entire study site will be urbanized by the
year 2030. In contrast, the proposed environmental
constraint, topography, does not seem to limit the dis-
tribution of urban expansion (Figure 7). This is shown
by the net increase in the average slope of urbanized
land – as the city grows out, it also climbs up.

Modeling results

A study of the genetic algorithm behavior can be use-
ful for understanding the complexity of characterizing
land-use dynamics. As expected, the fitness landscape,
the fitness mapped to all locations in parameter space,
is wrought with many low-fitness local optima. For
the coarse-scale model a mean difference of 10% be-
tween the initial parameters and the 1995 data was
observed. After 3000 generations, 50 local optima
were found with a mean difference between selected
1995 data of 7.5% (max = 10.7%, min = 5.4%). The
best parameter set was found at generation 2028.

The four model parameter sets: optimized parame-
ters at a coarse scale, empirical parameters at a coarse
scale, optimized parameters at a fine scale, and empir-
ical parameters at a fine scale, differed substantially
(Figure 8). Models based on the empirically derived
parameters generated patterns with many disconnected
urban patches. In the fine-scale model, this resulted
in rapid urbanization of the entire region. This pat-
tern resulted from a higher probability of urbanization
at lower numbers of urban neighbors. The optimized
parameters produced a map that did not have this
problem. The differences between the empirical and
optimized parameter sets did not follow a simple pat-
tern (Figure 9). In general, the empirically derived
transition probabilities were lower than the optimized
set for the desert land-use class, while the opposite was
true for the agriculture land-use class.

Using a Monte-Carlo confidence interval estimate
allowed comparison between the optimized model pa-
rameters and the actual 1995 map for both coarse and
fine scale models (Figure 10). Statistical quantifica-
tion is unnecessary to determine the inappropriateness
of the empirically derived parameters. The optimized
parameter set for the coarse-scale model output was
statistically similar to the 1995 data for a variety of
landscape indices. The fine-scale model, in contrast,
generated a less congruent pattern.

Using the coarse-scale model with optimized pa-
rameters a projection for an additional 20 years to
the year 2015 was made (Figure 11). Projected ur-
ban extent by the land use model was less than that
generated by the population-based extrapolation. This
land-use change model projects that the entire study
area, excepting the protected desert remnants, will be
urbanized by the year 2038 (average of five model
runs).

Discussion

Statistical Analysis

Urban development in the central Arizona–Phoenix
region has altered the composition and configuration
of the regional landscape between 1912–1995. Native
desert and agricultural patch types have been dis-
placed by urban patch types. Increases in patch shape
complexity, the number of patches and edges have
substantially altered this part of the Sonoran Desert
landscape. These structural changes can affect ecolog-
ical processes in a variety of ways. Species that cannot
adequately function in edge areas will be hampered
by these landscape changes, while exotic species will
have more contact with the native communities poten-
tially increasing invasion rates. In addition, fragmen-
tation of patches can reduce landscape connectivity
thereby breaking a metapopulation into several iso-
lated populations. This may further lead to localized
extinctions of floral and faunal groups. Fragmentation
of the landscape may also alter transport and transfor-
mation of biotically reactive elements such as nitrogen
and phosphorus.

Because information on potential corridors and
barriers were not included, these results show a pat-
tern of landscape change resulting solely from land
conversion. A contrasting approach to examine the
change in landscape structure would be to examine the
temporal development of linear corridors and barriers,
such as the road and canal network. Linear features
like these can have important ecological effects, in
many cases similar to those due to land-use change
(Forman and Alexander 1998). Comparisons between
landscape change resulting from land-use conversions
and the development of linear features could provide
alternative, yet complementary views of urbanization.

The correspondence between the pattern of urban
development and population size suggests that popula-
tion size can be used as a coarse surrogate for a suite of
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Figure 7. Mean slope for each land use class in the central Arizona region from 1912 to 1995.

socio-economic drivers in examining land-use change
in the greater Phoenix, AZ region. It is likely that
population dynamics of the central Arizona–Phoenix
region are controlled by socio-economic factors such
as job opportunities, housing costs, or educational ser-
vices. While the population/urban area relationship
existed for only five data points, the strength of the
relationship suggests that this single variable might be
an effective interface between more complex social
and ecological processes. A further examination of
the spatial heterogeneity of human density and its cor-
respondence with other sociological variables should
be conducted to determine the scales at which this
inference is appropriate.

The failure of topography to constrain urbanization
up to 1995 was surprising. In several other regions
topography has been shown to be a strong determi-
nant of land-use patterns (Chomitz and Gray 1995;
Wear and Bolstad 1998) The topographic-urbanization
analysis suggested that urbanization proceeded fastest
on the flat valley floor. As topographically variable
land became surrounded by urbanized land, the pres-
sure to develop this land resulted in an upward en-
croachment of urbanization. Future studies examining
this relationship in multiple regions could to clarify the
generality of this relationship and factors that might
regulate it.

The potential effect of errors in generating clas-
sified maps should be considered when interpreting
the results of a spatial analysis. Reconstructing land-
use patterns nearly always results in errors that are
not readily quantified. Sources of error may include

temporal aggregation (data from some sources were
collected before or after the specified date), land-
use classification (areas such as agricultural lands left
fallow for an indeterminate number of years neces-
sitated some subjective decisions), and rasterization
(the modifiable areal unit problem; Jelinski and Wu
1996). However, these maps are the best available
reconstruction of the central Arizona region and we
believe the pattern of urbanization shown in these data
are accurate at the scale used in this analysis.

Modeling analysis

The modeling approach we implemented generated a
successful coarse-scale simulation of many statistical
properties of the most recent land-use data available.
Our model differs from previous models (e.g., Turner
1987, 1988; Flamm and Turner 1994) primarily in
our consideration of time. Human development gen-
erally proceeds in an accretive manner – new urban
area is built near existing urban sites. However, land-
use maps at decadal time intervals often show urban
development occurring at locations that had no ur-
ban neighbors on the previous map. This is one of
the fundamental problems in our translating of spatio-
temporal scales. To solve this problem while still using
a model time step equal to the data interval, one may
choose the site with the highest probability for transi-
tion, change that site, then recompute land-use change
probabilities for the entire landscape. The time in-
terval is completed when a set number of transitions
occurs. This number could be obtained from data or
from a hypothetical scenario. In contrast, we explic-
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Figure 8. Difference between the empirically derived and genetic algorithm (GA) derived parameter sets for both desert and agriculture land
use classes of the coarse scale model based on the number of urban neighbors.

itly modeled land-use change at a single-year interval.
Downscaling time served two functions: it provided
a more mechanistic interpretation of the model and it
provided a hypothesis for the intervening time steps.
Another utility of this temporal interpolation is that it
facilitates future integration between this model and
ecosystem or community models also implemented at
an annual time scale.

The methods used to achieve temporal downscal-
ing produced distinct results. The best model was not
based on the empirically derived transition probabili-
ties. This failure of the empirical approach highlights
problems of translating between scales (Wu 1999). For
our objectives a linear extrapolation between scales
was inappropriate. This was expected based on our
characterization of the neighborhood as only the eight
adjacent sites. Because the growth rate of urbaniza-
tion during the twenty-year interval was larger than
our pixel size, an empirical measure of urbanization
between 1975 and 1995 shows many cells becom-
ing urbanized which did not have any previous urban
neighbors. Examining the differences between the em-
pirical parameter set and the optimized set suggests
that no simple relationship exists between these two
parameter sets – the empirical approach was not help-
ful in downscaling. Alternative spatial frameworks
that might allow for easier downscaling include a poly-
gon based approach (Flamm and Turner 1994; Landis
1995), a hybrid polygon–raster approach (Wallin et al.
1994) and a hierarchical approach.

The scale of resolution affected the ability of the
model to simulate land use change. Previously, in-
creased spatial resolution has been shown to both in-
crease and decrease the performance of models (Ciret
and Henderson-Sellers 1989). In our study, the coarse-
scale model was better able to capture the dynamics
occurring between 1975–1995. As detail is increased,
the likelihood of errors also increases (Costanza and
Maxwell 1994). In contrast to a fundamental spatial
resolution of land-use change, a dynamic relationship
between temporal and spatial scale is more plausible.
Within a given unit of time particularly sized patches
of land, described by a mean and variance of patch
sizes, become urbanized – longer time intervals corre-
spond to larger areas of urban expansion. This amount
of urban expansion should be the appropriate spatial
resolution for the temporal resolution used.

By using an inverse modeling approach to model
spatial patterns, the resulting parameters can be eco-
logically interpreted. The better performance of the
coarse-scale model suggests that this scale is more
appropriate for approximating land use changes oc-
curring over a single year. Additionally, the strength
of accretive growth is approximated by the model
parameters at the coarse spatio-temporal scale. In con-
trast, due to scale translation, the empirically derived
parameters do not reproduce the spatial pattern of
land use change and are not ecologically interpretable.
However, because of our limited search of the infi-
nite parameter space (nine dimensions of real values),
more efficient characterizations of the fitness land-
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Figure 9. Results from one run of the simulation to the year 1995. All simulations were based on the 1975 data. Urban (black), agriculture
(dark gray), and desert (light gray) land cover types are shown.

scape will increase the strength of applying inverse
modeling to landscape dynamics.

The evaluation of a model is dependent upon the
validation technique used (Rykiel 1996). In this in-
stance, we examined the ability of the model to
recreate the spatial pattern of land use change. An
alternative technique is a direct pixel by pixel com-
parison between the simulated and real maps. For
ecological processes, the absolute locations of land-
scape elements is likely to be less important than the
overall pattern in the landscape. The spatial metrics
we used to evaluate the model should be relevant to
a variety of ecological processes, though any particu-
lar process will be differentially sensitive to specific

aspects of spatial pattern. Because of our emphasis
on the spatial pattern of landscape elements and our
general modeling framework, a pixel by pixel vali-
dation technique would not have properly evaluated
the model’s performance. While the model succeeded
in reproducing many aspects of the spatial pattern of
urbanization, the exact locations of many the land-
scape elements were reproduced less well. Still, the
relationship between locational and pattern validation
of landscape-change models remains an interesting
question.
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Figure 10. Deviation between the 1995 data and the model derived confidence intervals for selected class indices for the (A) coarse scale
models, and (B) fine scale model. Units scaled to allow 95% confidence intervals to be represented by ±1.0. Categories represent % Area –
percent landscape area, LPI – largest patch index, #Patches – number of patches, Edge Den. – edge density, MNN – mean nearest neighbor, NN
Std. – nearest neighbor standard deviation. In (B), + denotes indices which extend beyond ±10 confidence interval units, this allows for both
graphs to have the same scale and for the confidence interval band to be resolved.

Synthesis

Because human-dominated processes are probabilistic
and contingent a model such as the one presented here
allows examination of the entire class of land use pat-
terns sharing the statistical properties with the current
data. The ecological response to different realizations
of pattern in a statistically similar landscape could
be examined based on multiple realizations of the

model. Alternative spatial patterns can also be gener-
ated through parameter adjustment. These alternatives
can be used to find configurations of the landscape
that reduce the impact of urbanization and to identify
critical features of landscape pattern for maintenance
of ecological processes. Potential future patterns of
landscape structure can be examined by projecting
the land-use pattern beyond the currently available
data. The difference between the land use change
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Figure 11. Model projection of greater Phoenix, AZ urbanization patterns for the year 2015. This projection is derived from the coarse grain,
optimized model initialized from the 1975 data.

model and the projected population – urban area re-
lationship was attributable to the static nature of the
transition probabilities. Dynamic land-use transition
probabilities would consider of the non-linear increase
in human population and the correlated non-linear in-
crease in urban extent. Based on two independent
projections, if the current trend in population growth
or land-change continues, almost the entire study area
will be urbanized in only a few decades.

The cellular automata modeling framework is a
useful simplification which requires minimal infor-
mation. To implement this model we used only the
mapped distribution of land use. If more information
were to be used, such as the spatial distribution of
socio-economic variables as well as road and utility in-
frastructure, alternative modeling approaches might be
more appropriate. A semi-Markov model that incorpo-
rates information at a variety of scales is one powerful
alternative (Turner et al. 1996; Wear et al. 1996; Wear
and Bolstad 1998). However, the physical infrastruc-
ture of a city is a dynamic part of the urbanization

process; i.e. the spatial patterns of roads and utili-
ties change simultaneously with land-use change. This
study shows that the simplest spatial modeling frame-
work is able to realistically simulate many aspects of
land-use change in this region.

The ecological effects of urbanization are not eas-
ily determined. Urbanization in the desert results in
two broad types of change: localized changes in land
cover and landscape structural change. Localized ef-
fects include increased water availability (irrigation of
lawns), species changes (changes in vegetation type,
tropic level changes), primary productivity (both lo-
calized increases and decreases), as well as physical
disturbance and habitat engineering (housing struc-
tures, civil infrastructure). The modified genetic al-
gorithm land-use change model can create a spatial
framework for describing the pattern of urbanization.
This framework can be linked to models of ecological
processes to understand how ecosystems respond to
the accumulation of site-specific land-use change at a
regional scale.
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