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Abstract 

Landscape ecologists often deal with aggregated data and multiscaled spatial phenomena. Recognizing the 
sensitivity of the results of spatial analyses to the definition of units for which data are collected is critical to 
characterizing landscapes with minimal bias and avoidance of spurious relationships. We introduce and exam- 
ine the effect of data aggregation on analysis of landscape structure as exemplified through what has become 
known, in the statistical and geographical literature, as the Modifiable Areal Unit Problem (MAUP). The 
MAUP applies to two separate, but interrelated, problems with spatial data analysis. The first is the “scale 
problem”, where the same set of areal data is aggregated into several sets of larger areal units, with each com- 
bination leading to different data values and inferences. The second aspect of the MAUP is the “zoning prob- 
lem”, where a given set of areal units is recombined into zones that are of the same size but located different- 
ly, again resulting in variation in data values and, consequently, different conclusions. We conduct a series of 
spatial autocorrelation analyses based on NDVI (Normalized Difference Vegetation Index) to demonstrate 
how the MAUP may affect the results of landscape analysis. We conclude with a discussion of the broader- 
scale implications for the MAUP in landscape ecology and suggest approaches for dealing with this issue. 

Introduction 

Increasingly, ecological research is being conduct- 
ed at larger spatial scales - landscape and regional 
scales - in large part because of interest in land- 
scape dynamics, biodiversity, and global change 
(Hall et al. 1988; Ross et al. 1988; Jelinski et al. 
1994). Unfortunately, however, much of our 
knowledge of scale-dependent phenomena derives 
from the aggregation of area-based information 
obtained from small areas (less than 1 km2), repre- 
sented by even smaller plots (1-30 m2) (Burke 
1991). Thus the choice of the basic areal units 
(BSUs) for analysis and “scaling up” are often 
arbitrary (Meentemeyer 1989) or dictated by the 

resolution of available data (e.g., remotely sensed 
data). Further, the general absence of rules and 
methods to effectively deal with multiple-scale spa- 
tial phenomena remains a major hiatus to “scaling 
up” spatial data (Gardner et al. 1982; Rastetter et 
al. 1992; Levin 1992, 1993). The problems of 
aggregation error and inference across scales have 
been recognized for decades, but have assumed 
greater importance in landscape ecology with the 
current focus on analysis of landscape structure, 
and upscale integration of simulation models and 
parameter fields (Turner et al. 1991; Wiens et al. 
1993, Rastetter et al. 1992; Jelinski et al. 1994; Wu 
and Levin 1994). Additionally, the effects of 
changing scale on the analysis of spatial pattern 
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and process have been emphasized during the last 
decade, such as through increasing interest in hier- 
archy theory (Allen and Stan 1982; O’Neill et al. 
1986; Wu and Loucks 1995). 

Methods to detect the scale of landscape pattern 
can be traced back to the early work of plant ecolo- 
gists who recognized and developed methods to 
handle scale-dependent patterns and processes 
(e.g., Greig-Smith 1952, 1957, 1979; Kershaw 
1957, 1964). Of the work that has been published 
in the landscape ecology literature on the results 
from studies of spatially aggregated data, only a 
few have dealt empirically with the consequences 
of changing scale. For example, Nellis and Briggs 
(1989) used textural analysis at three levels of spa- 
tial resolution to assess landscape structure of tall- 
grass prairie grasslands subject to different man- 
agement regimes. Turner et al. (1989) studied the 
scale effects in landscape pattern analysis, using 
indices measuring diversity, dominance, and conta- 
gion. Data from USGS land use maps and comput- 
er-generated random maps showed the existence of 
thresholds in spatial patterns. A comprehensive 
treatment of statistical methods for scale-detection 
using landscape data was provided by Turner et al. 
(1991). Notwithstanding these treatments of aggre- 
gation problems, the effect of different zoning sys- 
tems used in the aggregation process on data values 
and inferences has received particularly little atten- 
tion in ecological research. 

Though virtually unknown in the landscape ecol- 
ogy literature, the most comprehensive treatment of 
the sensitivity of analytical results to the definition 
of data collection units is found in the statistical 
and geographical literature, where it is known as 
“the Modifiable Areal Unit Problem” (MAUP) 
(Openshaw and Taylor 1979, 198 1 ; Openshaw 
1984). The modifiable areal unit problem arises 
from the fact that areal units are usually arbitrarily 
determined and “modifiable”, in the sense that they 
can be aggregated to form units of different sizes or 
spatial arrangements. Thus the MAUP has two 
related but distinctive components: the scale prob- 
lem and the zoning (or aggregation) problem 
(Openshaw and Taylor 1979, Openshaw 1984). The 
scale problem is “the variation in results that may 
be obtained when the same areal data are combined 
into sets of increasingly larger areal units of analy- 
sis”. The zoning problem, in contrast, is “any varia- 

tions in results due to alternative units of analysis 
where n, the number of units, is constant” (Open- 
shaw and Taylor 1979). For any specified number 
of zones, there are many ways of defining the 
boundaries of these zones. 

In the contrived example shown in Figure l(a-c), 
one can see the effects of aggregating areal data 
from neighbouring zones as explified through the 
MAUP. While the mean value does not change, the 
variance declines with increasing aggregation. As a 
consequence of this smoothing effect, information 
on spatial heterogeneity in the landscape (patchi- 
ness) is lost or distorted. In Figure l(d-f), units 
(pixels) have been aggregated into zones with vary- 
ing orientations of the cardinal directions. For parts 
d and e, there is not much change in window mean; 
however, variance changes substantially as a func- 
tion of location. By comparing parts c, e and f one 
can see that even when the number of zones is held 
constant ( N  = 4) the mean and variance is affected. 
Moreover, a comparison of parts b and d show a 
change in variance when the orientation is altered 
but the size of the units remains fixed. 

Openshaw and Taylor (1977) studied the effects 
of the MAUP through three related experiments 
under different spatial and statistical conditions. 
The basic areal units in the data set were the 99 
counties in the state of Iowa. By correlating the 
percentage of elderly voters with Republican voters 
in Iowa, they showed that if the 99 counties mak- 
ing up the state were grouped together into fewer 
larger districts, and all possible combinations of the 
larger-scale districts were considered, correlations 
ranging from + 0.979 to - 0.8 1 1  could be produced 
by varying the scale and zoning strategies. Similar 
results were found in several earlier studies of 
aggregation effects (e.g. ,  Gehlke and Biehl 1934; 
Yule and Kendall 1950; Robinson 1950). The 
MAUP also carries implications for multivariate 
statistical analyses and spatial interaction models. 
Fotheringham and Wong (1991) showed that model 
calibration was sensitive to variations in scale and 
zoning systems, leading to highly unreliable results 
in multivariate analyses. It is noteworthy that all 
the aforementioned examples are based on geo- 
graphical data where the basic areal units usually 
vary in size and shape corresponding to administra- 
tive or political boundaries. 

The spatial association or mosaic patterning 
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Fig. 1. Contrived example showing the two interrelated aspects of the modifiable areal unit problem. 
a x .  Effects of areal aggregation 
d-f. Effects of various zoning systems 

among species in grassland communities (e.g., 
Greig-Smith 1983) presents another illustration of 
the MAUP. Typically, an ecologist would lay out a 
rectangular grid that is composed of a large number 
of continuous equal-sized square cells, over which 
frequency or density data of the species under 
study are collected. The size of the grid cell and the 
extent of the entire grid are usually determined by 
convention (e.g. 1 x 1 m2 for herbaceous vegeta- 
tion). The degree of association among these 
species, as measured by some statistic, changes 
when the data are aggregated from the basic areal 
unit (single grid cell) to larger blocks (see Greig- 

Smith 1983). This type of variation in a measure 
with the level of aggregation is typically the scale 
problem. In contrast, there are a large number of 
ways to arrange the areal units or to define the 
zones (blocks) within each level of aggregation 
(especially at lower scales in this case). The varia- 
tion in a measure (e.g., correlation coefficient, 
diversity index) caused by alternative blocking 
strategies is the zoning problem. This aspect of 
sampling and patch delineation has received partic- 
ularly scant attention. 

Recognition of patches (aggregates of individu- 
als and communities) in particular is fundamental 
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to understanding landscape structure (Watt 1947; 
Forman and Godron 1986; Urban et al. 1987; Wu 
and Levin 1994). Wherever areal data are used and 
aggregated to define patch structure, the modifiable 
areal unit problem may occur. It is critical to under- 
stand how the results of landscape analysis may be 
affected by both .scale and zoning problems. More- 
over, we believe that the MAUP in general has 
widespread implications for landscape ecological 
studies. In the following section, we shall illustrate 
the essence of the MAUP, through an example with 
remote sensing data where an N x N pixel grid is 
used. The effects of aggregation in the context of 
the MAUP are examined in terms of spatial auto- 
correlation. Spatial autocorrelation permits tests of 
hypotheses regarding spatial patterns (Cliff and 
Ord 1973) by considering if the presence of a fac- 
tor in a place makes its presence in neighboring 
places more likely (positive; aggregation) or less 
likely (negative; segregation). Thus the test both 
describes the structure of a spatial pattern and is 
also capable of detecting the presence of direction- 
al components (clinal trends) at various scales 
(Legendre and Fortin 1989). We recognize that a 
thorough analysis of patch size and pattern should 
include more than one method of spatial analysis 
(Cullinan and Thomas 1992; O’Neill et al. 1991). 
The main purpose here is to illustrate the MAUP, 
rather than present the results of a detailed analysis 
of landscape structure. We also discuss several 
ways of constructively dealing with the modifiable 
areal unit problem. 

Methods 

Landscape data 

To characterize the structure of the landscape we 
calculated NDVI (Normalized Difference Vegeta- 
tion Index) from three Landsat Thematic Mapper 
(TM) scenes. The first is of the Boreal Forest of 
north central Manitoba, Canada (taken September, 
1990). The study area has gentle relief, with a few 
lakes but many wetlands and treed bogs, and has an 
upland that is covered primarily with black spruce 
(Picea mariana), birch (Betula balsamifera) and 
jack pine (Pinus banksiana). Periglacial features 
include peat plateaus and boulder fields. Fire is a 

common agent of disturbance. The second land- 
scape is an area of intensive row-crop agriculture 
(primarily irrigated corn) near York, Nebraska (tak- 
en August 1992). There is very little topographic 
relief in the area. The final scene is a native mixed- 
grass prairie near Mullen, Nebraska (taken August 
1992). The topography is gently rolling. The vege- 
tation is a mixture of some grasses and forbs of the 
tallgrass and shortgrass prairies, with tallgrass 
species in moister sites and shortgrass species in 
drier places. There is little cropland in the area. 

The original data are at a nominal resolution of 
30 m2, from which we created a landscape with lin- 
ear dimensions of 300 x 300 pixels. NDVI data can 
be aggregated to define patches of vegetation and 
other landscape configurations (e.g. corridors). The 
NDVI expresses the difference between the inci- 
dent radiation reflected by photosynthetically- 
active pigments in green leaves, and that portion 
reflected in the near-infrared part of the spectrum. 
This metric is based on the differences in the con- 
tribution to the total reflectance in solar wave- 
lengths (i.e., the albedo) of the visible (0.52-0.60 
pm) and near-infrared (0.76-0.9 pm) portions of the 
spectrum. Thus, for growing green vegetation, the 
reflectance in the near-IR is greater than that in the 
visible; a condition which is in sharp contrast to the 
situation typical of bare soils, rock, and snowcover. 
It is this unique live vegetation signature that 
makes NDVI an important measure. The NDVI is a 
difference ratio of the radiances computed based 
from the following formula: 

B4 - B3 
NDVI = 

B4 + B3 

where 

B4 = brightness value from infrared band 4 of TM 
B3 = brightness value from red band 3 of TM 

Thus the NDVI is a bounded ratio that varies 
between - 1.0 and + 1.0, with only actively grow- 
ing vegetation having positive values (typically 
between 0.1 and 0.6). Although there is some sensi- 
tivity of the NDVI to parameters such as the sun- 
sensor-target geometry and backscatter from 
atmospheric aerosols, the dominant signal appears 
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to be some combination of surface conditions (Box 
et al. 1989). 

Scale problem 

To investigate the effects of scale ( ie .  grain size) of 
the landscape, we aggregated groups of n adjacent 
pixels into a single data unit. Pixels were aggregat- 
ed in arrays from the finest aggregation 1 x 1 (n = 
1 original pixels per aggregate unit, i.e., Basic Spa- 
tial Unit (BSU)) through the coarsest aggregate (n  
= 225 pixels per aggregate unit). Thus there were 
90,000 replicates for the 1 x 1 matrix and 400 
replicates for the 15 x 15 matrix. For both these 
analyses we ran moving windows (picture elements 
in a neighbourhood of an image data set) of vary- 
ing size and orientation across the landscape. 

Zoning effects 

Two systematic aggregation procedures were 
developed to investigate the zoning effects at sepa- 
rate scales. The criterion for both was equal num- 
bers of pixels per zone. The aggregations differ in 
the orientation of zones. Zones were first run in a 
east-west and then north-south direction. That is, 
for example, a 1 x 100 would indicate a zone of the 
east/west direction and a 100 x 1 would indicate a 
zone of the southhorth direction. 

1) Zoning System at Small Scale - Five alternative 
zones at the 16 BSU scale had the following 
dimensions (windows) for equal area zones: 

l x 1 6 , 2 ~ 8 , 4 x 4 , 8 ~ 2 a n d 1 6 x l  

2)Zoning Systems at Large Scale - Nine zoning 
alternatives at the 100 BSU scale had the following 
dimensions: 

1 x 100,2 x 50,4 x 25,5 x 20,lO x 10,20 x 
5,25 x 4,50 x 2 and 100 x 1 

Statistical analysis 

Spatial autocorrelation describes the degree of spa- 
tial clustering, that is, the degree to which values at 

one locality are determined in part by values at 
neighboring locations. The two most commonly 
used measures of spatial autocorrelation in geo- 
graphically-referenced ecological data are Moran’s 
I statistic and Geary’s c statistic (Legendre and 
Fortin 1989). To detect spatial autocorrelation, a 
matrix is constructed that represents the site rela- 
tionships in geographic space. Moran’s I is based 
on a cross-product computation of centered data: 

where n is the total number of areal units over the 
entire landscape, xi and xj are values of areal units i 
and j ,  and X is the mean of all areal units, and cij 
denotes the connectivity between areal units i and j ,  
taking a value of 1 if areal units i andj are adjacent 
and 0 otherwise. Moran’s I may vary from positive 
to negative, depending on the values of the variable 
for the locations connected by a particular adjacen- 
cy matrix. I approaches 1 when adjacent localities 
have similar values (positive autocorrelation) and 
negative values when adjacent localities have dis- 
similar values (negative autocorrelation). 

We also calculated Geary’s c as another measure 
of spatial autocorrelation. Geary’s c is a distance- 
type coefficient derived by summing squared dif- 
ferences between adjacent pairs of values. It is thus 
more sensitive to absolute differences between 
paired localities. Geary’s c is calculated as 

in the same notation as previously. For Geary’s c, 
positive spatial autocorrelation is indicated by a 
value smaller than its expected mean of 1. 

Results and discussion 

The global working null hypothesis is that there is 
no spatial autocorrelation for a broad range of 
aggregation and zoning schemes. While our results 
do not include any formal testing using a p value 
for any individual hypothesis, it is clear that spatial 
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Fig. 2. Effects of data aggregation on spatial autoconelation 
resulting from aggregation procedures for a 300 x 300 matrix of 
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1 . . .  . . r  .. 1 . autocorreiation is not uniform across me iana- 
scapes under different aggregation and zoning 
treatments. Specifically, aggregation effects are 
captured in Figure 2, which describes the spatial 
autocorrelation of the various NDVI aggregate 
units. The first value of spatial autocorrelation for 
the Boreal Forest site (1 x 1 - 30 m2 pixel) is posi- 
tive and then decreases, suggesting that patch size 
is smaller than the 2 x 2 aggregate (i.e., high patch- 
iness exists at that scale). However, for 3 x 3 to 4 x 
4 windows at this site, spatial autocorrelation 
trends upwards to a peak (I > 0.7), which presum- 
ably, corresponds to increased homogeneity in 
landscape structure. At larger zone size, spatial 
autocorrelation gradually tapers off, though it 
remains relatively high (c. 0.6). In contrast, for the 
Grassland and Cropland sites, there is a high 
degree of spatial autocorrelation at the outset. At 
both sites, autocorrelation then tapers off, but at 
very different rates, with smaller degree of autocor- 
relation, c. 0.42, for the Cropland compared to c. 
0.6 for the Grassland sites at the largest grain size 
15 x 15). The conclusion is, therefore, that autocor- 
relation changes with scale and hence there is evi- 
dence of a scale effect related to the MAUP among 
the various aggregations. Geary's c mirrored this 
pattern and thus these results are not reported here. 

Figure 3 illustrates the effect of zoning alterna- 
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Fig. 3. Effects of selected zone systems on spatial autocorrela- 
tion at the 16 BSU scale for a 300 x 300 matrix of 30m2 pixels 
of NDVI for Boreal Forest, Grassland and Cropland landscapes. 

tives. For the Boreal Forest site, the pattern of the 
indices implies directional patchiness for both large 
and small scale variation in zones, and thus a 
strong zoning effect. For example, an examination 
of Figure 3 shows that a window size of 1 x 16 
yields a spatial autocorrelation value in sharp con- 
trast to a window with the dimensions of 16 x 1. 
The same holds true for the case of a 2 x 8 versus 8 
x 2. Most importantly, the pattern is different in 
Figure 4 where spatial autocorrelation is low at the 
1 x 100 and 2 x 50 zones, but increases rapidly at 
the 4 x 25. Autocorrelation remains moderately 
high and drops off slightly to 0.6. Thus there is 
more similarity in structure for zones configured in 
the range from 4 x 25 through 100 x 1 than for the 
1 x 100 and 2 x 50 windows. The cause of orienta- 
tion in landscape structure may be linked to surface 
geology, which has been suggested to affect forest 
community development (Elliot-Fisk, 1988). Su- 
perimposed on this cause are vegetation and its dis- 
turbance history. The combination of these factors 
affect the distribution and configuration of patch 
types. The effects of zoning for the Grassland and 
Cropland site are in sharp contrast to that for the 
Boreal Forest site. There is no zoning effect at the 
1 x 16 through 16 x 1 zoning alternatives (Figure 
4). Similarly, there is little change for the Cropland 
site for all alternative except the 100 x 1, which 
makes intuitive sense in that cropped areas are 
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comparatively free of natural disturbance. Zoning 
alternatives do, however, seem to differentially 
affect grasslands. Explanations for this may be 
related to geomorphic structure of the landscape 
and (or) disturbance such as fire. In sum, the dra- 
matic difference in spatial autocorrelation between 
the Boreal Forest landscape and the Grassland and 
Crop landscapes at smaller scales may reflect high- 
ly conspicuous patchiness at these scales in the 
boreal landscape, while the other two are relatively 
homogeneous. Further analysis of the underlying 
processes are needed for a fuller explanation of the 
patterns shown here. 

Implications of MAUP for landscape ecology 

We have shown above the nature and extent of the 
interrelated scale and zoning effects inherent in the 
Modifiable Areal Unit Problem. Here we discuss 
the ramifications of MAUP more generally in land- 
scape ecology, and then suggest possible ways for- 
ward. First, MAUP has implications for the appli- 
cations of methods for spatial analysis such as 
Greig-Smith’s (1952, 1983) agglomerative contigu- 
ous quadrat (blocking) method. In this approach 
pairs of adjacent quadrates are successively com- 
bined into blocks of two through a hierarchy of 

block sizes (e.g., 2, 4, 8, 16, .... n). Means square 
variances are then plotted against block size. The 
peaks or clustering revealed in the mean square 
variance versus block size plot are believed to indi- 
cate the scales at which the patterns of population 
distributions take place (see Greig-Smith 1952, 
1983; Kershaw 1957, 1964; Wu 1992). Other 
workers (Usher 1969; Errington 1973; Cressie 
1993) have noted several types of problems that 
confound analyses with this type of approach. Sim- 
ilarly. it has been noted that the starting position for 
the blocks affects the outcome (Errington 1973; 
Upton and Fingleton 1985). This is an indicator of 
the existence of the MAUP with this method. How- 
ever, the zoning or block configuration problem 
was essentially ignored in the original quadrat 
blocking method. 

The MAUP may also affect the results of spatial 
simulation models when aggregation is involved in 
the modelling process. There have been studies of 
spatial interaction modelling which showed that 
both scale and zoning changes affected the model 
goodness-of-the-fit and parameter estimates (e.g., 
Openshaw 1977; Amrhein and Flowerdew 1989; 
Putman and Chung 1989). Grid-based modelling 
approaches have been used extensively in land- 
scape ecology in recently years (see Turner and 
Gardner 1991 for examples). However, little atten- 
tion has been paid to how the choice of the grid- 
cell size and aggregation procedures would affect 
the results and interpretations of the simulation 
models. There is no theoretical and empirical evi- 
dence precluding the existence of the MAUP in 
such approaches. 

Remote sensing observations are playing an 
increasingly large role in the study of landscape 
and regional change (Hall et al. 1988, Baker 1989). 
Low-cost satellite data is becoming more readily 
available, and many scientists interested in process- 
es and patterns amenable to remote sensing are 
making use of this data (Roughgarden et al. 1991). 
For example, the United States Geological Survey 
EROS Data Center recently released low cost five- 
channel, NDVI (Normalized Difference Vegetation 
Index) AVHRR (Advanced Very High Resolution 
Radiometer) data set for the conterminous U.S. 
(Loveland et al. 1991). A similar but coarser Glob- 
al Ecosystems Database was recently released by 
the National Geophysical Data Center (NGDC) and 
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the U.S. Environmental Protection Agency (EPA) 
(but see Williams and Jelinski 1995 for description 
of problems with initial data release). In remote 
sensing, the modifiable units are the pixels of the 
image, which represent the fundamental level of 
spatial resolution that is essentially determined by 
the capabilities of the sensor and corresponding 
technology. When different sensors (e.g., Landsat 
Thematic Mapper (TM), Landsat Multispectral 
Scanner (MSS), or Systeme Pour l’observation de 
la Terre (SPOT)) are used or when pixels are 
aggregated, these areal units are “modified”. Given 
the size of, say, the Loveland et al. (1991) database 
(2889 rows by 4587 columns), and in view of 
rapidly increasing use of GIs technology (Jelinski 
et al. 1994), it is highly probable that users of this 
database will be developing algorithms for differ- 
ent levels of aggregation, different window sizes 
and different zoning systems. Substantive errors 
may be introduced during such aggregation proce- 
dures if close attention is not paid to the rules for 
aggregation as shown herein. Several other empiri- 
cal studies have demonstrated that the results of 
analyses for the same area may vary due to the 
variation in spatial resolution of the imagery (see 
Johnson and Howarth 1987, Woodcock and 
Strahler 1987, Townshend and Justice 1990). 

Approaches for dealing with the MAUP 

Given the influence of the modifiable areal unit 
problem in spatial studies, the development of 
solutions to it is critically important. A number of 
ways to understand the impact of the modifiable 
areal unit problem on spatial analysis have been 
suggested in the geographical literature (see Open- 
shaw and Taylor 1981; Openshaw 1984; Fothering- 
ham 1989). We examine these alternatives in rela- 
tion to landscape ecology. 

1) A basic entity approach. This approach advo- 
cates the identification of individual entities that, in 
this case, are ecologically meaningful and not mod- 
ifiable, and to perform analysis directly on them 
(Fotheringham 1989). This approach would com- 
pletely avoid the MAUP, because the MAUT essen- 
tially stems from the modifiable nature of areal 
units and aggregation. Openshaw (1984) main- 

tained that “The usefulness of many forms of spa- 
tial study, quantitative or otherwise, depends on the 
nature and intrinsic meaningfulness of the objects 
that are under study”. In view of this, individual- 
based (e.g., Pacala and Silander 1985; DeAngelis 
and Gross 1992) and patch-based (Wu and Levin 
1994) approaches in spatial modelling are less sus- 
ceptible to, if not free from, the modifiable areal 
unit problem. However, there are difficulties with 
this basic entity approach. First, it is not always 
possible to identify what the basic entities are 
(except for units such as trees, animals, or gopher 
mounds). Measures such as density, fluxes and the 
like typically involve integration of spatially dis- 
tributed data (Hall et al. 1988). What are the basic 
entities for them? Also, there are situations where 
studies become impossible or impractical because 
too much detail leads to overwhelming complexity 
in the data collection, analysis, or modelling of the 
system under investigation, though the basic enti- 
ties are identifiable. For example, it is impractical 
and of little utility to incorporate all individual 
plants explicitly in an ecosystem study of nutrient 
cycling at a watershed or regional scale. 

2)An optimal zoning approach. In a series of 
papers, Openshaw (1977, 1984; Openshaw and 
Taylor 1979, 1981) suggested a “new paradigm” in 
spatial analysis of areal data, which involves the 
derivation of an “optimal” zoning system, i.e., a 
system that maximizes interzonal variation and 
minimizes intrazonal variation. Although this opti- 
mal zoning approach can avoid the variations in 
results of analysis caused by the MAUP, optimality 
is subjective in both definition and operation. In 
particular, the definition of optimality will change 
with types of problems under study and statistical 
methods used. In addition, a zoning system that is 
optimal for one variable may not be optimal for 
some other variable. For example, in their study of 
the MAUP in multivariate statistical analysis, 
Fotheringham and Wong (1991) concluded that an 
optimal zoning system that minimizes spatial auto- 
correlation of all possible combinations of vari- 
ables is not possible. 

3) A sensitivity analysis approach. Instead of 
avoiding the problem, an alternative approach to 
the MAUP is to get a sense of its scope and magni- 
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tude. By performing a series of sensitivity analysis, 
one can address the following two questions: What 
variables are sensitive to the variations in scale and 
zoning configuration? How sensitive? Conclusions 
from such studies should, therefore, be scale spe- 
cific and zoning-system explicit. This approach 
will advance our understanding of both the phe- 
nomenon under investigation and the MAUP in 
general. However, when the number of variables, 
the number of scales (levels of aggregation), and 
the number of zoning alternatives are large, the 
amount of work to perform a complete sensitivity 
analysis may become impractical (e.g., the comput- 
ing demand could easily exceed computational 
resources available to the researcher). 

4) Development of new methods of analysis. Anoth- 
er solution is to abandon traditional statistical 
methods which have been found sensitive to the 
MAUP (Tobler 1989). It has been suggested that 
more emphasis should be put on visualization of 
data than on statistical analysis; for example, repre- 
senting the data visually over a range of scales is 
preferable to performing a certain type of spatial 
analysis at only one level (Openshaw et al. 1987, 
1988; also see Fotheringham 1989). On the other 
hand, there has been a call for developing and 
using spatial analysis methods which are indepen- 
dent of spatial coordinates that are used for collect- 
ing and analyzing the data - “frame independent 
spatial analysis” (Tobler 1989). 

Tobler (1989) asserted that all methods whose 
results depend on areal units should be discarded a 
priori, and that only those techniques independent 
of areal units should be used. Though it is neces- 
sary to develop and use improved spatial statistics, 
Tobler (1989) underestimated the scope and magni- 
tude of the modifiable areal unit problem, and de- 
emphasized the insights that can be gained from 
studying the sensitivity of different methods to 
changes in scale and aggregation (e.g., Openshaw 
1984; Turner et al. 1989; Fotheringham and Wong 
1991). In addition, Openshaw and Taylor (1981) 
argued that “a context-free approach is contrary to 
geographical common sense irrespective of what 
other virtues it may have”. They concluded that the 
right solution to the MAUP should be geographical 
rather than purely statistical or mathematical. 

5)Emphasis of spatial analysis on the rates of 
change. Fotheringham (1989) suggested to shift the 
emphasis of spatial analysis towards relationships 
that focus on rates of change by asking the follow- 
ing questions: Can we acquire information on the 
rate of change in variables and relationships of 
interest with respect to scale? Do some variables 
and relationships show erratic fluctuations with 
scale changes while others do not? Fotheringham 
(1989) suggested the use of fractal dimension as a 
scale-independent measure of a spatial distribution 
or a spatial relationship. The approach is similar to 
sensitivity analysis in that both focus on the exami- 
nation of across-scale spatial characteristics of the 
variables or relationships under consideration. 

Fractal dimension remains constant only within 
the range of spatial scale where self-similarity 
exists. Even though fractal dimensions are scale- 
independent over some range of scales, the pattern 
and process in the real world may still change with 
scale (Wiens and Milne 1989). To make such an 
approach effective and feasible, a hierarchical per- 
spective is critically important. We argue that a 
more comprehensive and effective approach to the 
MAUP is to develop a conceptual framework based 
on hierarchical theory (Allen and Stan 1982; 
O’Neill et al. 1986, Urban et al. 1987) as opposed 
to a specific technique. Most if not all systems in 
nature are hierarchically structured. Certain pat- 
terns and processes occur on certain “characteris- 
tic” or “threshold” scales. Of course, the so-called 
characteristic scales are not points in the spatial 
dimension, but more appropriately finite ranges or 
domains of scales (see Milne 1988 and Wiens and 
Milne 1989). When the scale of the observational 
window matches the characteristic scale of the phe- 
nomenon of interest, we will see it; otherwise we 
miss it. These arguments form the premise of a 
hierarchical approach to the modifiable areal unit 
problem. A suggested procedure to deal with the 
MAUP is simply thus: first to identify the charac- 
teristic scales using methods such as spatial auto- 
correlation, semivariograms, fractal analysis, and 
spectral analysis, and then to focus the study on 
these scales. 
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Conclusions 

From the discussion in the previous sections, the 
presence of the modifiable areal unit problem is not 
only real, but probably also ubiquitous in many 
spatial investigations. Openshaw (1984) regarded 
the MAUP as a fundamental geographical problem 
inherent in all studies of spatially aggregated data 
because the results of such studies are always 
affected by the areal units used. More recently, 
Fotheringham and Rogerson (1993) listed the 
MAUP as the first among the eight impediments 
that arise in spatial analysis. Much greater attention 
must be paid to this issue in order to advance our 
understanding and improve the predictability of 
spatiotemporal pattern and process in nature. This 
is especially true considering the release of easily 
accessible remotely-sensed data sets, the rapidly 
increasing use of GIS, and the universally recog- 
nized need for scaling up in ecological studies from 
landscape to global levels. 

It has long been noted that aggregation of spatial 
data involves a smoothing or filtering effect. 
Specifically, “aggregating smaller areal units into 
regions filters out the harmonics whose wave- 
lengths are smaller than the size of the regions” 
(Tobler 1989). For simple traditional statistical 
analyses (e.g., correlation analysis, linear regres- 
sion), such changes can be theoretically expected 
and thus are relatively well understood (Tobler 
1989; Fotheringham and Wong 1991). In general, 
the zoning problem is much less well understood 
even for simple statistical analyses. The impact of 
the MAUP on multivariate analyses has been 
demonstrated to be far more complex and unpre- 
dictable, and yet little work has been done to char- 
acterize those effects. Therefore, much more 
research is needed to unravel the potential impacts 
of the MAUP in this area. 

From a hierarchical stand point of view, the 
MAUP is not really a “problem”, per se; rather, it 
may reflect the “nature” of the real systems that are 
hierarchically structured. It does not, therefore, pre- 
sent any real impediment to understanding spatial 
phenomena if recognized and dealt with explicitly. 
On the contrary, it carries critical information we 
need to understand the structure, function and 
dynamics of the complex systems in real world. 
Ecological theories and models have been pro- 

foundly influenced by the balance of nature notion 
and the assumptions of homogeneity and determin- 
ism, failing to explicitly recognize the effects of 
spatiotemporal heterogeneity, scale and multiplicity 
of ecological systems (DeAngelis and Waterhouse 
1987; Jelinski unpubl. ms, Wu and Loucks 1995). 
The study of the modifiable areal unit problem 
should provide insight for improved aggregation 
methods, process-oriented models, and paradigms 
in ecology. 
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