FOUR PHASES IN SYSTEMS MODELING -PHASE III: MODEL EVALUATION

Quote of the Day

"Truth is the intersection of independent lies."

--- Richard Levins (1970)

I. SOME IMPORTANT TERMS

1. Generality, Realism, and Precision

Levins (1966) recognized the existence of trade-offs among generality, realism and precision in model-building (**Levins' trichotomy**). He claimed that one can maximize only two (not all three) simultaneously, but all three can be improved at the same time to a certain level during the model-building process.

- Generality: the number of systems or situations to which the model applies.
- **Realism**: the degree to which model structure (including variables, assumptions, relationships) resembles the real system.
- **Precision**: the degree to which model behavior numerically matches that of the real system, i.e., the accuracy of the model predictions (output).

2. Verification

- Model verification refers to the process in which the correctness of the computational algorithms or computer code of a model is demonstrated. It usually involves debugging and detecting logical errors.
- Verification simply means to make sure that the simulation model does what it is supposed to do numerically. That is, the mathematical formulation and computer simulation are a faithful translation of the conceptual model.
- A verified model is not necessarily a validated or even useful model.
- 3. Validation
 - Validation is a demonstration that a model within its domain of applicability possesses a satisfactory range of accuracy consistent with the intended application of the model (Rykiel 1996).
 - Validation is a process to determine the relative usefulness of a model in a given context.
 - Validation refers to model quality with respect to the objectives of the modeling project (Haefner 1996)
 - Whether or not a model is "valid" depends greatly on validation criteria.
- 4. Calibration
 - Calibration is the estimation and adjustment of model parameters and constants to improve the agreement between model output and a data set.

- Calibration procedures can be used to estimate parameter values that are otherwise unknown.
- Calibration is different from, though related to, parameter estimation.

II. MODEL EVALUATION (OR VALIDATION)

Model evaluation involves several aspects:

- Assess the reasonableness of the model structure and the interpretability of functional relationships within the model
- Evaluate the correspondence between model behavior and the expected patterns of model behavior
- Examine the correspondence between model predictions and the data from the real system
- Determine the sensitivity of model predictions to changes in the values of important parameters

Suggested Readings

Barlas, Y. 1996. Formal aspects of model validity and validation in system dynamics. System Dynamics Review 12:183–210.

Rykiel, Jr., E. J. 1996. Testing ecological models: the meaning of validation. Ecological Modelling 90:229-244.

FOUR PHASES IN SYSTEMS MODELING -PHASE IV: MODEL USE

Quotes of the Day

"A model is a caricature of nature... The simplest version of nature can be perturbed numerically with its responses being indications of the directions nature may take."

--- Scavia, D., G.A. Lang, and J.F. Kitchell (1988)

"Every theory of the course of events in nature is necessarily based on some process of simplification and is to some extent, therefore, a fairy tale."

--- Sir Napier Shaw

PHASE IV: MODEL USE

- Develop and execute the experimental design for the simulations
 - o Deterministic vs stochastic
 - Follow the same general principles of experimental design (e.g., factorial design)
- Analyze and interpret the simulation results
 - Deterministic vs stochastic
 - *#* of replicate simulations for stochastic models
 - Single-value predictions vs. time-series predictions
 - Statistical analysis for stochastic models
- Examine additional types of management policies or environmental situations
- Communicate the simulation results.