Lecture Notes for Ecological Modeling ---

Jianguo (Jingle) Wu

I. WHY BUILDING BLOCKS?

complex systems models.

1. BUILDING BLOCKS FOR SYSTEMS MODELS

(1) FIRST-ORDER SYSTEMS

PART Il. BASIC PROCEDURESIN SYSTEMSMODELING

BUILDING BLOCKSFOR SYSTEMSMODELS

Quote of the Day

“To do scienceisto search for repeated patterns,

not simply to accumulate facts..."
- Robert H. MacArthur (1972)

Building blocks, or simulation modules are simple model s that represent some basic system
structures and dynamics. These modules are very important for understanding many fundamental
processes common in biological, physical, and socioeconomic phenomena. One certainly needsto
understand them well before attempting to deal with complex feedback systems. In the sametime,
the model building blocks demonstrate how these commonly occurring basic processes are
represented in systems simulation, and often become convenient and effective for constructing

P First-order: One state variable (or 1 stock)

b Linear: No non-linear combinations of the state variable of

any sort in the algebraic equation of rates.

1. Linear Change

(1) Lin

One state variable.
Onerate variable.

Linear Growthin STELLA

X

o)

X(t) = X(t -
INT X =0
| NFLOVS:
dx dt = 2

dt) + (dX.dt) * dt

Therate of changeis aconstant, not dependent on the state variable. Thus, thereisno

feedback loop.

ear Growth

The rate of change is positive,
and thus represented as an

inflow.
Examples:

a Incresseinwater leve ina
tank with a constant
inflow of water into the

tank.

a Plant biomass sometimes
isfound to increase
linearly with certain soil

nutrients.

.

1:
2:

3=/

2:dX dt

30.007]
3.00

15.00_|

/

2.00

r
0.00 /
X

1.00°
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Graph 1 (Linear Growth) Time

T
9.00

1
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11:40 PM  4/7/97
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(2) Linear Decline
Therate of change is negative, and thus represented as an outflow.
Examples:

a

Decrease in the amount of materials left in a stock
when the materiads are taken out of the stock in the
same amount per unit of time.

Decrease in crop yield with declining annual
precipitation sometimes exhibits linear pattern.

Linear Declinein STELLA

X
dx dt
X(t) = X(t - dt) + (- dX.dt) * dt
INT X = 40
QUTFLOAS:
dX dt = 2

(3) Linear Growth and Decline
Combination of the linear growth and decline module.
One state variable. o
Either two uniflows (one v 45007

inflow and one outflow) or
one biflow (compare the
structural diagrams below).

The uniflow version gives
more details, whereas the . ot
biflow version ismore

concise. The choice of the
two formsis dependent on
the degree of detailsis

needaj 1 15.00

Linear growth occurs when
the total rate of change

3000}

2:dX dt

1.00

3=/

0.00 3.00

Graph 1 (Linear Growth) Time

T T 1
6.00 9.00 12.00

12:07 AM  4/8/97

(inflow minus outflow) is positive, and linear decline does otherwise.

Linear Growth and Declinein STELLA
(1) Two-uniflow model: (2) One-biflow model:
X Y
dX dt in dX dt out dy dt
X(t) = Xt - dt) + Y(t) = Y(t - dt) +
(dX dt_in - dX.dt_out) * dt (dy_dt) * dt
INT X=0 INTY = 40
| NFLO/G: | NFLO/G:
dXdt_in =2 dy dt = -1
QUTFLOMB:
dX dt_out =1
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2. Exponential Growth and Decay

D Exponent|a| Growth Exponential Growth in STELLA
Also known as compounding process N
One state variable. @
Onerate variable. o

One auxiliary variable.

Therate of change is equal to a constant
proportion of the state variable.

Because the rate variable depends on the state _
variable itself, they form a positive feedback loop, lN(Nt >T N E‘“Z
in which the state variable and the rate of change || \¢/ o
reinforce each other, generating an accelerating, dN dt = r*N
run-away behavior. =01
Therate of changeis always positive (i.e., the state
variable increases monotonicaly), andis
represented it as an inflow.

dN dt

]
- dt) + (dNdt) * dt

k . 10N, di dt
Time Constant Tc: Thereci procal of the constant r e R 1 TR
in the exponential model, T, = L/r, with the dimension
of units of time.
4 For exponent d. growth, T isthetimerequired | il
for the state variable to become e (= 2.7183)
times of its current value. Thiscan beseenfrom |
the following simple manipulations S 1500
N =N, e". Jo
Whentisequal to T, we have /
0.ao
0.o0 150.00 I00.00
N
L
N; =N,e* =N,e
Te 0 0 ,Q LN 2: dN dt
1 300.00
2 30.00
Ingenerdl, if t=nT,,
—nT n
Nn - N e = Noe 1 150.00
2 15.00
2
a Note: For continuous systems, 1/
the time step, Dt, in T /
simulation must be smaller —
than the smallest time L ] I "
constant in the model. ) 000 12.50 25.00 37.50 50.00
i Graph 1: Page 1 (Exponenti... Time 11:26 AM  4/8/97
=F

Doubling Time T,: Thetime required for the state variable in the exponential model to
doublein value.

To calculate the doubling time, let N = 2N, and let t = T,. Thus, from N = N,e", we have:
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2N, = N g™
Doubling Time
In2 =rT, 330
0.69 =0
Td = T r -I-d = 0.69 TC 250

a Therefore, the doubling time for exponential growth
isacongtant. Itisconversely proportional to the
rate of change, and is about 70% of the time
constant. Thisiswhere“therule of 70" in
popul ation demography comes from (i.e., population
doubling time = 70/ percent natural growth rate). 0 HHHHH

Exponential growth isa common type of dynamics that
existsin al different disciplines. Any phenomena
described by words such as “snowball effect”,
“vicious circles’, “virtuous circles’, and
“bandwagon effect” can be represented as a positive

feedback loop structure.
Examples:

a Savingsincrease in abank account due to interest

income

a Population growth when resources are not

limiting.
a Drug addiction.
a Armsrace (proliferation).

Superexponential (or supraexponential) growth:

a Inmany positive feedback systems, doubling 0.00 £0.00
time decreases, rather than remain constant, as the

Doubling Time (in years)
o o B
S 8 o

o
=]

Wt oo m
—_ & M <+

5.6
6.4

» 0.8

nnual Rate of Growth (%)

1:Super M v, dM dt super
LS B T g s e g

5420

dM dt super

12000
Super N

state variable increases. This meansthat the rate of changeis anonlinear function of the
state variable (see Figure). For example,

dN =(rN)N =rN?
dt

a Thedynamics generated by this

nonlinear system, with arate of
change faster than afixed

proportion of the state variable, is
called superexponential growth.

a The superexponential growth has
the same feedback structure asthe

exponential.

(2) Exponential Declay

Also known as draining process
One state variable.
Onerate variable.

Therate of change is equal to a constant

proportion of the state variable, but in
contrast with exponential growthiitis
negative.

p 1: Super N 2:N
%l 100.00 -
;l 51.00 4 2/
2/'/
1
.1—«2——"‘4:_’2
2| 2.00 v v v y
0.00 5.00 10.00 15.00 20.00
qa @/ Graph 1: Page 1 (Superexponen... Time 1:36 PM  4/8/97
N(t) = Nt - dt) + (dN._dt) * dt
INT N= 10
| NFLONE:
dN dt = r*N
Super _N(t) = Super Nt - dt) + (dN_dt_super) * dt
INT Super_N = 10
| NFLONE:
dN _dt _super = (r_2/10)*Super_N‘2
r =01
r 2 =if (tine<10) then 0.1 else O

Page 4



Lecture Notes for Ecological Modeling ---

Jianguo (Jingle) Wu

The rate variable depends on the state variable itself,

and form afeedback |oop between them. Because an
increase in the value of the state variable increases the

rate of change, but an increase in the rate decreases

the value of the state variable, the feedback is negative

(or goal-seeking).

Time constant T _: Thereciprocal of the constant
rmtheexponentld mode!, T, = Ur, with the

dimension of units of time.

a For exponential decay, T istheti me required
for the state variable to become e 1 (= 0.368)
times of its current value, or the time required
for 63% of the contentsin the stock to vanish.
Thisisaso called the relaxation time, which is
sometimes used as a measure of the speed with which a system is absorbing

disturbances.

Q)/

=e'N, =0.368 N,,

In general, when't = nT_, we have

- —:I'nTc

Ny = Ne ™

=& "N, = 0.368"N,

Exponential Decay in STELLA

N
bf

dN dt
r
N(t) = Nt - dt) + (- dN.dt) * dt
INT N = 100
QUTFLONG:
dN dt =r*N
r =0.1

Mathematically, relaxation time can be derived asfollows:

1:
2:

1:
2!

I I

100.00+
10.00

50.00}

5.00

0.00
0.00¢

2:dN dt

~.

~

1-&2
Hl—

N8 &/

0.00 12.50 25.00 37.50 50.00

Graph 1: Page 1 (Exponentia... Time 11:45 AM 4/10/97

Half-life T, : Thetime required for the state variable to reduce its current value by ahalf. It
isan analog of the doubling time in exponentia growth. It can be calculated asfollows:

1
SNo=Nge ™,

1
InE =-rT,, or In2=rT,, thus,

T—O—r69 or T, =0.69 T,

a Therefore, the haf-life time for exponential decay is aconstant (about 70% of thetime
constant), independent of the value of the state variable.

Examples:

a Draining water from atank

a Population-death rate process
a Redioactive decay process

(3) Exponential Growth and Decay Combined

Simply acombination of exponential growth and exponentia decay.
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The behavior of the first-order linear system exhibits three different patterns.
1) exponentia growth when growth constant is larger than decay constant;
2) exponential decay when growth constant is smaller than decay constant; and

3) remaining unchanged (unstable equilibrium) when the two constants are equal.

Exponential Growth/Declinein STELLA

N

inflow outflow

O+
ol

growth constant decay constant

N(t) = Nt -
INT N = 150
| NFLOWE:

i nflow = growt h_constant*N
QUTFLONE:

out fl ow = decay_constant *N
decay_constant = 0.1

growt h_constant = 0.1

dt) + (inflow- outflow * dt

j. JENY 2:N 3N

1: 300.00-\

1: 150.00

/

1hz
H

0.00'=1

L 0.00
N IEZS

12.50 25.00 37.50

Graph 1: Page 1 (Exponenti... Time

1
50.00

1:37 PM  4/10/97

3. Exponential Collapse
- Also known as accelerated decay,

indicating that the rate of change gets Q

Exponential Collapsein STELLA

level

pa
faster asthe level goes down.
A simple exponential collapse model outflow
may consist of 1 state variable, 1
outflow, and 2 constants. N collapse constant
A positive feedback: increasing level
--> increasing rate of change --> level (t) = level (t - dt) + (- outflow * dt

increasing level --> ...

A smple mathematical model for
exponentia collapse:

N
—=-r(M- N
prolL )

where N (< M) isthe state variable,

Examples:

INT level = 99

QUTFLONB:

outfl ow = col | apse_constant *( M| evel )
col | apse_constant = 0. 15

M = 100

and r and M are two constants.

a Population shrinking when smaller than MV P.
a Changein the interactive force between molecules when water is heated up and boils.
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a Decline of speciesdiversity J . 2: outflow
with increasing habitat B e,
fragmentation.
a Some other threshold 1
phenomenain physical and ﬂ
biologica processes may 1 5000] 1 4
exhibit behavior that Zo e
resembles exponentia
collapse.
1: 0.00 "
z 0.00 0.00 12'.50 25?00 37'.510_ 2 50.0(')
E_a @'/ Graph 1: Page 1 (Exponentia... Time 2:42 PM 4/10/97

4. Exponential Growth and Collapse Combined
A smple exponential collapse consists of 1 state variable, 1 bi-directional flow, and two

constants. Rate of Change
Thissimple model can be mathematically A J
expressed as. ' Exponential
anN - growth
dt —>
dN =r(N- M) :'
dt
The smple structure exhibits 3 different
behaviora patterns: 0 : » N
:M (unstable )
! equili_brium State Variable
a Exponential growthwhen N > M; — point)
a Exponential collapse when N < M; and Exponential
a Remaining constant when N = M. decay |
Exponential Growth/Collapsein STELLA
JJEEY 2:N 3:N N

1: 250.00

@

1 dN dt

1 125.00 /
1.

.1—21-3—6_\ﬁ 2
)\ r M
level (t) = level (t - dt) + (-
1: 0'(.)0 0.00 12.50 25.00 37.50 50.00 out f | ow) *dt
Sla =¥ Graph 1: Page 1 (Exponentia... Time 3:06 PM  4/10/97 INT level = 99
QUTFLONG:

outfl ow = col | apse_constant*( M| evel )
col  apse_constant = 0.15
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5. Goal-Seeking Behavior Simple Goal-Seeking in STELLA

@s mpI e Goal-Seeking

A simple goal-seeking model may consist
of 1 state variable, 1 biflow, and 2
constants.

The state variable and the flow form a
negative feedback.

A simple goal-seeking model may take the
form: constant

level

Inflow

goal
dL _ C(G L) discrepancy

dt
level (t) =level(t - dt) + (Inflow * dt
where L isthelevel, Gisthegod, and cisa INT level =2
constant. . . . | NELO/S:
Apparently, exponential decay is a specia Infl ow = const ant *di scr epancy
case of goal-seeking behavior, inwhichthe |constant = 0.1

goal is zero! di screpancy = goal -1 evel
goal = 100

Question: What is the time constant T, for
this simple model ?

?.9 1: \zgzloo- 2: level 3: level
2 SShaped Growth ] \
Also known as logistic growth or .
sigmoidal growth. 1 10000t : yt‘?_ 1~
It isafirst-order nonlinear system //
(seethe Rate-Level graphs). ]
The state variable and the flow /
form anegative feedback that 1 000 . . . 1
U|t| matdy glvS rl%to the goal a @'/ "o Graph 1:::-95:1 Simple goa...szh.:: szl-iol PM 4/10/59(100
seeking behavior (seethe Ne (
Forrester diagram).
It may take different forms (uniflow or
biflow versions). [For example, in level
population regulation, crowding may Inflow
affect only the per capitabirth rate, or @
only the per capitadeath rate, or both.] ]
The simple structure that generates S-
shaped dynamics may look like this:
LR TR
; . Ll Rate Value
: I sm | level (t) = level (t - dt) +
£ | e e (Inflow) * dt
s INIT level = 300
. e 1 I nflow = Rate_Val ue
Rafel evel G'r‘é&']“" Rate_Val ue = GRAPH(| evel ). ..
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The behavior of this simple structure has three patterns:
1) Increasing and approaching the goal if smulation starts with avalue of the level smaller

than the godl;
2) Decreasing and approaching the goal if smulation startswith avalue of the level larger
than the godl;
3) Remaining unchanged if smulation starts with the value of the level equal to the goal.
ﬁ 1: level 2: level 3: level
1: 300.00 4 \
3\
—2 2=3 2—3 —2—3
1: 150.001 l,-f’/_ﬁ !
_'_'_'_,—I"/ l
1: 0.00 +1 v v v \
. 0.00 12.50 25.00 37.50 50.00
E_a % f Graph 1: Page 1 (Simple sig... Time 5:08 PM 4/10/97

A familiar example of sigmoidal growth isthe logistic equation:

dN

= =N N/K)

Thisis afirst-order nonlinear differentia

3

INT N=2
| NFLONE:

K = 100
r =0.2

N(t) = Nt -
dt

dN dt

K

dN dt = r*Nf(K-N)/K

N

dt) + (dN dt) *

equation. Thefollowi ng |s an equwal ents mple

Qﬂ@/

5

aNdt

Na

2 (Untitled Graph) N

L

1 100.007
2 5.00

1 50.00}
2 2.50

0.00

0.0
0.0

12.50 25.00 37.50

raph 1: Page 1 (Simple goal-seeking) ~ Time 10:46 PM  4/10/97

systems model.
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ﬁ 1N 2:N 3N
1: 200.009
ZK
1: 100.00 3 o= /;,_,—'—'—’_ | ———
1
_’_'_'_’_,.'—/-/1

=1
1: 0.00 T T T d

0.00 12.50 25.00 37.50 50.00
: | a %fm Graph 1: Page 3 (Untitled Graph) Time 11:12 PM 4/10/97

Dynamics from the L ogistic Equation-Based Module

Feedback loop analysis of the S-shaped growth:

Positive vs negative feedback regions
Characteristics of therate-levd curve: severd similar, but distinctive forms
Goal -seeking does NOT always guarantee goal-achieving!

Rate &
a |« o >
dt .
Positive Negative
feedback . feedback
region : region
max
Goal
0 o >
Level, L AN

Rate A
a_ |« o >
dt
Positive Negative
feedback feedback

region
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(11) SECOND-ORDER SYSTEMS

First-order (continuous) systems do not generate overshoot and collapse or oscillations
unless significant time delays are introduced. Such behavioral patterns are commonly found in
second- or higher-order systems (with 2 or more stocks). The following section illustrates some
simple systems structures that give rise to non-monotonic dynamics.

6. Overshoot and Collapse

A smple structure that generates
overshoot and collapse behavior
includes 2 stocks (e.g., population
and food resource) and afew rates
associated with them (see the
Forrester diagram).

In this example, population grows
exponentially when food is not
limited. More and more food
resource is consumed by the
growing population, resulting in less
and lessfood resource. At some
point, death rate will rise above birth
rate, and the population eventually
collapse due to the lack of food.

=
=]
2| per_capita_death..,

Overshoot and Collapsein STELLA

population

death rate

per capita birth rate

g . r j hr
pita consumption rate per capjta death rate

&

food

consumption rate

food(t) = food(t - dt) + (- consunption_rate) * dt

INT food = 1000 {tones}

QUTFLOAE:

consunption_rate = per_capita_consunption_rate*popul ation
popul ation(t) = population(t - dt) + (birth_rate -
death_rate) * dt

IN'T popul ati on = 100

| NFLOAS;

birth_rate = per_capita_birth_rate*popul ati on
QUTFLOANB:

death_rate = per_capi ta_death_rate*popul ation

per_capita birth_ rate = 0.1 {1/tine}

per _capi ta_consunption_rate = 0.1 {tones/(individual
time)}

per_capita death_rate = GRAPHfood/ | N T(f ood))

*

(0.00, 0.995), (0.1, 0.645), (0.2, 0.45), (0.3, 0.3),
k : (0.4, 0.21), (0.5, 0.14), (0.6, 0.095), (0.7, 0.06),
g R (0.8, 0.03), (0.9, 0.01), (1, 0.00)
food/ IMIT(food)
,9 1: population 2: food
‘\\ B 1 consumption rate 2: death rate 3: per capita death rate
3 25000 NP 3 2000 -
0.00 1250 25.00 37.50 50.00 3 0.4 S
N a=4 Graph 1: Page 1 (Overshoot/c...Time 12:13 AM 4/11/97 3/”-'_'_'_
3N \ -
Pagg \
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Oscillationin STELLA

7. Oscillations Stock 1

inflow 1 outflow 1

Two stocks and four
rates associated. Cj/o

Thefirst stock promotes
the inflow to the second

stock, and the second productivity 1
stock acceleratesthe
depletion of the first
stock. Thisnegative

feedback is essential for 1
oscillatory behavior.
Stock 2
outflow 2

With STELLA, you

must use one of the nflow
Runge-Kutta simulation productivity 2
algorithms.
Stock_1(t) = Stock_1(t - dt) + (inflowl - outflow 1) * dt
(1) A Simple Generd INT Stock 1 =10
Structure (cf. Richmond et~ |/ NFLOS: . o
al. 1993). inflow 1l = Stock_2*productivity_1

QUTFLONE:

outflow 1l = 10

Stock_2(t) = Stock_2(t - dt) + (inflow2 - outflow 2) * dt
INT Stock_2 = 15

| NFLONB:

inflow?2 = 10

QUTFLONE:

outflow 2 = Stock_1*productivity 2

productivity 1 =1

productivity 2 =1

ﬁ 1: Stock 1 2: Stock 2
1] 20.00m=
2

- L .

2 2
1

1 L
2] 10.00 ;

- 1 2
3]
2 0.00 T T T 1

0.00 4.00 8.00 12.00 16.00

a = Graph 1 (Oscillation) Time 2:21 AM  4/11/97
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(2) A Predator-Prey Model

Oscillationin STELLA

prey births

per capita birth rate

3

birth rate

predator(t) = predator(t - dt) + (birth_rate - death_rate) * dt

INT predator = 10
| NFLONB:
birth_rate
QUTFLONE:
death_rate

0. 01* pr edat or * pr ey

0. 2*pr edat or

prey(t) = prey(t - dt) + (prey_births - prey_deaths) * dt

INT prey = 50
| NFLONB:
prey births
QUTFLONE:
prey_deat hs = 0. 03*pr edat or *pr ey

per_capita birth_rate = GRAPH prey)

prey

predator

q

prey deaths

3

per_capita_birth_rate*prey

death rate

(0.00, 0.685), (50.0, 0.41), (100, 0.295), (150, 0.215), (200, 0.15), (250, 0.11),
(300, 0.07), (350, 0.04), (400, 0.02), (450, 0.01), (500, 0.00)
99 1:prey 2: predator fs 1:prey oo 2: predator
2 40:00 /1
Lo \/_\
: 1000 .1 ! ! . gujj % o Fa oo Tooch

(From the same model but D-1 prey birth rate)
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(111) OsCILLATIONS GENERATED BY DRIVING FUNCTIONS

Driving variables (or functions) that change periodicaly (e.g., temperature, light intensity) may
introduce oscillations into a system of any order.
Oscillations forced by driving variables are called externally generated oscillations.

Externally Generated Oscillation

stock

£

C{vinflow

driving variable

outflow

time in stoch

stock(t) = stock(t -
outflow * dt
INT stock = 5

dt) + (inflow -

| NFLONB:

inflow = driving_variabl e
QUTFLOAE:

outflow = stock/tine_in_stoch
driving_variabl e = SI NMAVE( 4, 20) +3
tinme_in_stoch = 1 {tine unit}

p 1: stock
L

2: 7.00

NE

3.00

0.00
-1.00

e

7.00+

VAL
VYRV

2: driving variable

3a/

0.00 15.00 30.00 45.00 60.00

Graph 1 (Oscillation by Driving... Time 8:50 AM  4/11/97

A genera equation for modeling periodic driving functions:

Y =m+ Acos(o(t- 1))

whereY isadriving variable (e.g., temperature, light intensity), m is the mean value of the function,
A isthe amplitude of the peak above the mean, (t - T) shiftsthe peak by t physical units, and the

o isthe angular frequency per physical unit.

For example, suppose we have atime series:
Mean daily air temperatures. 40 degrees F

Amplitude: 25 degrees F
Period: 365 days

Position of the 1st peak: July 30 (Julian day 211)

The equation becomes:

&a2p o)
T =40+25c0os-—(t- 211
e365( )9
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(IV) Chain Structure and Time Delay

See modules.
SV16 SV17 svis
V16
(o) o fa) 9
‘\' \f’—h 5
116 016 017 E 5 ' 019
018

. exit fraction 3
transfer fraction 1 transfer fraction 2

Stock 1 Stock 2 Stock 3
Qﬁ ) :
transfer 1 transfer 2
exit 3

exit 1 exit 2 exit fraction 2

inflow

exit fraction 1

Page 15



