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PART II.  BASIC PROCEDURES IN SYSTEMS MODELING

BUILDING BLOCKS FOR SYSTEMS MODELS

Quote of the Day
“To do science is to search for repeated patterns,

not simply to accumulate facts..."
                                   - Robert H. MacArthur (1972)

I. WHY BUILDING BLOCKS?

Building blocks, or simulation modules are simple models that represent some basic system
structures and dynamics.  These modules are very important for understanding many fundamental
processes common in biological, physical, and socioeconomic phenomena.  One certainly needs to
understand them well before attempting to deal with complex feedback systems.  In the same time,
the model building blocks demonstrate how these commonly occurring basic processes are
represented in systems simulation, and often become convenient and effective for constructing
complex systems models.

II. BUILDING BLOCKS FOR SYSTEMS MODELS

(I) FIRST-ORDER SYSTEMS

⇒ First-order: One state variable (or 1 stock)
⇒ Linear: No non-linear combinations of the state variable of

any sort in the algebraic equation of rates.

1. Linear Change
• One state variable.
• One rate variable.
• The rate of change is a constant, not dependent on the state variable.  Thus, there is no

feedback loop.

(1) Linear Growth
• The rate of change is positive,

and thus represented as an
inflow.

• Examples:
◊ Increase in water level in a

tank with a constant
inflow of water into the
tank.

◊ Plant biomass sometimes
is found to increase
linearly with certain soil
nutrients.

Linear Growth in STELLA
X

dX dt

X(t) = X(t - dt) + (dX_dt) * dt
INIT X = 0
INFLOWS:
dX_dt = 2
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(2) Linear Decline
• The rate of change is negative, and thus represented as an outflow.
• Examples:

◊ Decrease in the amount of materials left in a stock
when the materials are taken out of the stock in the
same amount per unit of time.

◊ Decrease in crop yield with declining annual
precipitation sometimes exhibits linear pattern.

(3) Linear Growth and Decline

• Combination of the linear growth and decline module.

• One state variable.
• Either two uniflows (one

inflow and one outflow) or
one biflow (compare the
structural diagrams below).

• The uniflow version gives
more details, whereas the
biflow version is more
concise.  The choice of the
two forms is dependent on
the degree of details is
needed.

• Linear growth occurs when
the total rate of change
(inflow minus outflow) is positive, and linear decline does otherwise.

Linear Decline in STELLA

X

dX dt

X(t) = X(t - dt) + (- dX_dt) * dt
INIT X = 40
OUTFLOWS:
dX_dt = 2
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Linear Growth and Decline in STELLA

(1) Two-uniflow model: (2) One-biflow model:
X

dX dt outdX dt in

Y

dY dt

X(t) = X(t - dt) +  Y(t) = Y(t - dt) +
   (dX_dt_in - dX_dt_out) * dt    (dY_dt) * dt
INIT X = 0 INIT Y = 40
INFLOWS: INFLOWS:
dX_dt_in = 2 dY_dt = -1
OUTFLOWS:
dX_dt_out = 1
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2. Exponential Growth and Decay

(1) Exponential Growth
• Also known as compounding process
• One state variable.
• One rate variable.
• One auxiliary variable.
• The rate of change is equal to a constant

proportion of the state variable.
• Because the rate variable depends on the state

variable itself, they form a positive feedback loop,
in which the state variable and the rate of change
reinforce each other, generating an accelerating,
run-away behavior.

• The rate of change is always positive (i.e., the state
variable increases monotonically), and is
represented it as an inflow.

• Time Constant Tc: The reciprocal of the constant r
in the exponential model, Tc = 1/r, with the dimension
of units of time.
◊ For exponential growth, Tc is the time required

for the state variable to become e (= 2.7183)
times of its current value.  This can be seen from
the following simple manipulations:

 
 N = N0e rt .

 When t is equal to Tc, we have
 

 NTc
= N0e

1

Tc

Tc

= N0e

 In general, if t = nTc,
 

 NnTc
= N0e

1

T c

nTc

= N0e
n

 
◊  Note: For continuous systems,

the time step, ∆t, in
simulation must be smaller
than the smallest time
constant in the model.

 

• Doubling Time Td : The time required for the state variable in the exponential model to
double in value.
To calculate the doubling time, let N = 2N0 and let t = Td.  Thus, from N = N0e rt , we have:

Exponential Growth in STELLA
N

dN dt

r
N(t) = N(t - dt) + (dN_dt) * dt
INIT N = 2
INFLOWS:
dN_dt = r*N
r = 0.1
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2N0 = N0e
rTd

ln2 = rTd

Td =
0.69

r
   or   Td = 0.69 Tc 

◊ Therefore, the doubling time for exponential growth
is a constant.  It is conversely proportional to the
rate of change, and is about 70% of the time
constant.  This is where “the rule of 70” in
population demography comes from (i.e., population
doubling time = 70 / percent natural growth rate).

• Exponential growth is a common type of dynamics that
exists in all different disciplines.  Any phenomena
described by words such as “snowball effect”,
“vicious circles”, “virtuous circles”, and
“bandwagon effect” can be represented as a positive
feedback loop structure.

• Examples:
◊ Savings increase in a bank account due to interest

income
◊ Population growth when resources are not

limiting.
◊ Drug addiction.
◊ Arms race (proliferation).

• Superexponential (or supraexponential) growth:
◊ In many positive feedback systems, doubling

time decreases, rather than remain constant, as the
state variable increases.  This means that the rate of change is a nonlinear function of the
state variable (see Figure).  For example,

 
dN

dt
= (rN)N = rN2

◊ The dynamics generated by this
nonlinear system, with a rate of
change faster than a fixed
proportion of the state variable, is
called superexponential growth.

◊ The superexponential growth has
the same feedback structure as the
exponential.

(2) Exponential Declay
• Also known as draining process
• One state variable.
• One rate variable.
• The rate of change is equal to a constant

proportion of the state variable, but in
contrast with exponential growth it is
negative.
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N(t) = N(t - dt) + (dN_dt) * dt
INIT N = 10
INFLOWS:
dN_dt = r*N
Super_N(t) = Super_N(t - dt) + (dN_dt_super) * dt
INIT Super_N = 10
INFLOWS:
dN_dt_super = (r_2/10)*Super_N^2
r = 0.1
r_2 = if (time<10) then 0.1 else 0
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• The rate variable depends on the state variable itself,
and form a feedback loop between them.  Because an
increase in the value of the state variable increases the
rate of change, but an increase in the rate decreases
the value of the state variable, the feedback is negative
(or goal-seeking).
• Time constant T c: The reciprocal of the constant

r in the exponential model, Tc = 1/r, with the
dimension of units of time.
◊ For exponential decay, Tc is the time required

for the state variable to become e -1 (= 0.368)
times of its current value, or the time required
for 63% of the contents in the stock to vanish.
This is also called the relaxation time, which is
sometimes used as a measure of the speed with which a system is absorbing
disturbances.

◊ Mathematically, relaxation time can be derived as follows:
 
 N = N0e−rt ,

 
 For a time period from t=0 to t=Tc,
 

 NTc
= N0e

− 1

Tc

Tc

= e−1N0 = 0.368 N0 ,

 
 In general, when t = nTc, we have
 

 NnTc
= N0e

− 1

Tc

nTc

= e− nN0 = 0.368n N0

• Half-life Th : The time required for the state variable to reduce its current value by a half.  It
is an analog of the doubling time in exponential growth.  It can be calculated as follows:

1

2
N0 = N0e

− rTh ,

ln
1

2
= −rTh , or  ln2 = rTh , thus,

Th =
0.69

r
   or   Th = 0.69 Tc

◊ Therefore, the half-life time for exponential decay is a constant (about 70% of the time
constant), independent of the value of the state variable.

• Examples:
◊ Draining water from a tank
◊ Population-death rate process
◊ Redioactive decay process

(3) Exponential Growth and Decay Combined
• Simply a combination of exponential growth and exponential decay.

Exponential Decay in STELLA
N

dN dt

r
N(t) = N(t - dt) + (- dN_dt) * dt
INIT N = 100

OUTFLOWS:
dN_dt = r*N
r = 0.1

11:45 AM   4/10/97

0.00 12.50 25.00 37.50 50.00

Time

1:

1:

1:

2:

2:

2:

0.00

50.00

100.00

0.00

5.00

10.00

1: N 2: dN dt

1

1

1
1

2

2

2
2

Graph 1: Page 1 (Exponentia…



Lecture Notes for Ecological Modeling  ---  Jianguo (Jingle) Wu

Page 6

• The behavior of the first-order linear system exhibits three different patterns:
1) exponential growth when growth constant is larger than decay constant;
2) exponential decay when growth constant is smaller than decay constant; and
3) remaining unchanged (unstable equilibrium) when the two constants are equal.

3. Exponential Collapse
• Also known as accelerated decay,

indicating that the rate of change gets
faster as the level goes down.

• A simple exponential collapse model
may consist of 1 state variable, 1
outflow, and 2 constants.

• A positive feedback: increasing level
--> increasing rate of change -->
increasing level --> ...

• A simple mathematical model for
exponential collapse:

dN

dt
= −r(M − N)

where N (< M) is the state variable, and r and M are two constants.
• Examples:
◊ Population shrinking when smaller than MVP.
◊ Change in the interactive force between molecules when water is heated up and boils.

Exponential Growth/Decline in STELLA

N

outflow

decay constant

inflow

growth constant

N(t) = N(t - dt) + (inflow - outflow) * dt
INIT N = 150
INFLOWS:
inflow = growth_constant*N
OUTFLOWS:
outflow = decay_constant*N
decay_constant = 0.1
growth_constant = 0.1
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Exponential Collapse in STELLA

level

outflow

collapse constantM

level(t) = level(t - dt) + (- outflow) * dt
INIT level = 99

OUTFLOWS:
outflow = collapse_constant*(M-level)
collapse_constant = 0.15
M = 100
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◊ Decline of species diversity
with increasing habitat
fragmentation.

◊ Some other threshold
phenomena in physical and
biological processes may
exhibit behavior that
resembles exponential
collapse.

4. Exponential Growth and Collapse Combined
• A simple exponential collapse consists of 1 state variable, 1 bi-directional flow, and two

constants.
• This simple model can be mathematically

expressed as:
 

 
dN

dt
= r(N − M)

• The simple structure exhibits 3 different
behavioral patterns:

 
◊ Exponential growth when N > M;
◊ Exponential collapse when N < M; and
◊ Remaining constant when N = M.
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Exponential Growth/Collapse in STELLA

N

M

dN dt

r

level(t) = level(t - dt) + (-
outflow)*dt
INIT level = 99
OUTFLOWS:
outflow = collapse_constant*(M-level)
collapse_constant = 0.15
M = 100
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5. Goal-Seeking Behavior

(1) Simple Goal-Seeking
• A simple goal-seeking model may consist

of 1 state variable, 1 biflow, and 2
constants.

• The state variable and the flow form a
negative feedback.

• A simple goal-seeking model may take the
form:

dL

dt
= c(G − L)

where L is the level, G is the goal, and c is a
constant.
• Apparently, exponential decay is a special

case of goal-seeking behavior, in which the
goal is zero!

 
• Question: What is the time constant Tc for

this simple model?

(2) S-Shaped Growth
• Also known as logistic growth or

sigmoidal growth.
• It is a first-order nonlinear system

(see the Rate-Level graphs).
• The state variable and the flow

form a negative feedback that
ultimately gives rise to the goal
seeking behavior (see the
Forrester diagram).

• It may take different forms (uniflow or
biflow versions).  [For example, in
population regulation, crowding may
affect only the per capita birth rate, or
only the per capita death rate, or both.]

• The simple structure that generates S-
shaped dynamics may look like this:

Simple Goal-Seeking in STELLA

level

Inflow

goal
constant

discrepancy

level(t) = level(t - dt) + (Inflow) * dt
INIT level = 2

INFLOWS:
Inflow = constant*discrepancy
constant = 0.1
discrepancy = goal-level
goal = 100
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level
Inflow

~

Rate Value

level(t) = level(t - dt) +
(Inflow) * dt
INIT level = 300
INFLOWS:
Inflow = Rate_Value
Rate_Value = GRAPH(level)...

Rate-Level Graph
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The behavior of this simple structure has three patterns:
1) Increasing and approaching the goal if simulation starts with a value of the level smaller

than the goal;
2) Decreasing and approaching the goal if simulation starts with a value of the level larger

than the goal;
3) Remaining unchanged if simulation starts with the value of the level equal to the goal.
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A familiar example of sigmoidal growth is the logistic equation:
 

dN

dt
= rN(1− N / K)

This is a first-order nonlinear differential

equation.  The following is an equivalent simple

systems model.
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N

dN dt

r

K

N(t) = N(t - dt) + (dN_dt) *
dt
INIT N = 2

INFLOWS:
dN_dt = r*N*(K-N)/K
K = 100
r = 0.2
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11:12 PM   4/10/97
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Dynamics from the Logistic Equation-Based Module

Feedback loop analysis of the S-shaped growth:

• Positive vs negative feedback regions
• Characteristics of the rate-level curve: several similar, but distinctive forms
• Goal-seeking does NOT always guarantee goal-achieving!

dL
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0
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dL
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(II) SECOND-ORDER SYSTEMS

First-order (continuous) systems do not generate overshoot and collapse or oscillations
unless significant time delays are introduced.  Such behavioral patterns are commonly found in
second- or higher-order systems (with 2 or more stocks).  The following section illustrates some
simple systems structures that give rise to non-monotonic dynamics.

6. Overshoot and Collapse

• A simple structure that generates
overshoot and collapse behavior
includes 2 stocks (e.g., population
and food resource) and a few rates
associated with them (see the
Forrester diagram).

• In this example, population grows
exponentially when food is not
limited.  More and more food
resource is consumed by the
growing population, resulting in less
and less food resource.  At some
point, death rate will rise above birth
rate, and the population eventually
collapse due to the lack of food.

 

  Overshoot and Collapse in STELLA
population

death ratebirth rate

per capita birth rate

food

~

per capita death rate

consumption rate

per capita consumption rate

food(t) = food(t - dt) + (- consumption_rate) * dt
INIT food = 1000 {tones}
OUTFLOWS:
consumption_rate = per_capita_consumption_rate*population
population(t) = population(t - dt) + (birth_rate -
death_rate) * dt
INIT population = 100
INFLOWS:
birth_rate = per_capita_birth_rate*population
OUTFLOWS:
death_rate = per_capita_death_rate*population
per_capita_birth_rate = 0.1 {1/time}
per_capita_consumption_rate = 0.1  {tones/(individual *
time)}
per_capita_death_rate = GRAPH(food/INIT(food))
(0.00, 0.995), (0.1, 0.645), (0.2, 0.45), (0.3, 0.3),
(0.4, 0.21), (0.5, 0.14), (0.6, 0.095), (0.7, 0.06),
(0.8, 0.03), (0.9, 0.01), (1, 0.00)
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7. Oscillations

• Two stocks and four
rates associated.

• The first stock promotes
the inflow to the second
stock, and the second
stock accelerates the
depletion of the first
stock.  This negative
feedback is essential for
oscillatory behavior.

• With STELLA, you
must use one of the
Runge-Kutta simulation
algorithms.

(1) A Simple General
Structure (cf. Richmond et
al. 1993).

  Oscillation in STELLA

inflow 2

Stock 1
inflow 1 outflow 1

productivity 1

outflow 2
Stock 2

productivity 2

Stock_1(t) = Stock_1(t - dt) + (inflow_1 - outflow_1) * dt
INIT Stock_1 = 10
INFLOWS:
inflow_1 = Stock_2*productivity_1
OUTFLOWS:
outflow_1 = 10
Stock_2(t) = Stock_2(t - dt) + (inflow_2 - outflow_2) * dt
INIT Stock_2 = 15
INFLOWS:
inflow_2 = 10
OUTFLOWS:
outflow_2 = Stock_1*productivity_2
productivity_1 = 1
productivity_2 = 1
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(2) A Predator-Prey Model

  Oscillation in STELLA
prey

prey births prey deaths

~

per capita birth rate

predator

birth rate death rate

predator(t) = predator(t - dt) + (birth_rate - death_rate) * dt
INIT predator = 10
INFLOWS:
birth_rate = 0.01*predator*prey
OUTFLOWS:
death_rate = 0.2*predator
prey(t) = prey(t - dt) + (prey_births - prey_deaths) * dt
INIT prey = 50
INFLOWS:
prey_births = per_capita_birth_rate*prey
OUTFLOWS:
prey_deaths = 0.03*predator*prey
per_capita_birth_rate = GRAPH(prey)
(0.00, 0.685), (50.0, 0.41), (100, 0.295), (150, 0.215), (200, 0.15), (250, 0.11),
(300, 0.07), (350, 0.04), (400, 0.02), (450, 0.01), (500, 0.00)
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(From the same model but D-I prey birth rate)
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(III) OSCILLATIONS GENERATED BY DRIVING FUNCTIONS

Driving variables (or functions) that change periodically (e.g., temperature, light intensity) may
introduce oscillations into a system of any order.
Oscillations forced by driving variables are called externally generated oscillations.

A general equation for modeling periodic driving functions:

Y = m + Acos( (t − ))

where Y is a driving variable (e.g., temperature, light intensity), m is the mean value of the function,
A is the amplitude of the peak above the mean, (t - ) shifts the peak by  physical units, and the

 is the angular frequency per physical unit.

For example, suppose we have a time series:
• Mean daily air temperatures: 40 degrees F
• Amplitude: 25 degrees F
• Period: 365 days
• Position of the 1st peak: July 30 (Julian day 211)

The equation becomes:

T = 40 + 25cos
2π
365

(t − 211)
 
 

 
 

Externally Generated Oscillation

stock

inflow outflow

driving variable time in stoch

stock(t) = stock(t - dt) + (inflow -
outflow) * dt
INIT stock = 5

INFLOWS:
inflow = driving_variable
OUTFLOWS:
outflow = stock/time_in_stoch
driving_variable = SINWAVE(4,20)+3
time_in_stoch = 1 {time unit}
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(IV) Chain Structure and Time Delay

See modules.

SV16 SV17 SV18

SV19

I16 O16 O17

O18

O19

DV16

Stock 1

inflow

Stock 2 Stock 3

transfer 1 transfer 2
exit 3

exit 2exit 1

transfer fraction 1 transfer fraction 2

exit fraction 1

exit fraction 2

exit fraction 3


