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Temperature sensitivity of SOM decomposition
and the positive feedback hypothesis

Atmospheric

Accelerated
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Soil Organic
Carbon



How will soil organic C pool respond to
global warming?

1. General temperature sensitivity of SOM decomposition
2. Substrate availability vs. T-sensitivity
3. T-sensitivity of labile vs. recalcitrant SOM decomposition

4. Rhizosphere interactions vs. T-sensitivity



Soil carbon pools and world life zones

Wilfred M. Post*, William R. Emanuel*,
Paul J. Zinket & Alan G. Stangenberger’
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How will soil organic C pool respond to
global warming?

2. Substrate availability vs. T-sensitivity



Michaelis—Menten (MM) kinetics:

Vimax X C
Ky,+C

R =

Theoretically, both V.., and K, are temperature-dependent, but
can cancel each other out. K_, is only effective when C is low.

We tested this using glucose saturation.



Hypothesis: As incubation temperature increases, substrate

availability decreases, the canceling effect of K, increases, and
the apparent Q,, value decreases.
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How will soil organic C pool respond to
global warming?

3. T-sensitivity of labile vs. recalcitrant SOM decomposition



Based on theoretical analysis, Bosatta &
Agren 1999 (SBB) concluded that the
decomposition of lower quality SOM
should have higher temperature
sensitivity than higher quality SOM.
This conclusion is consistent with
Arrhenius (1889) equation----lower
quality substrates require higher
activation energy.
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Grassland soils

;ﬂuliliiﬂmm'!

0.00 0.02 004 0.08 008 010
Proportion of C respired (g CO.-C g soil ')

Conant et al. 2008 GCB



Temperature sensitivity increases with soil organic carbon recalcitrance along
an elevational gradient in the Wuyi Mountains, China

Xia Xu®P®, Yan Zhou®¢, Honghua Ruan®*, Yiqi Luo®, Jiashe Wang ¢

Soil Biology & Biochemistry 42 (2010) 1811-1815

Temperature sensitivity of soil carbon fractions in boreal forest soil
Kristiina KaruU,! HANNU FriTzE,” KA1 HAMALAINEN,” PEKKA VANHALA.' HOGNE JUNGNER,” MARKKU OINONEN.”
ELont SONNINEN.? Mikko Tuomt! PeTER SpeTZ”> VEIKKO KITUNEN.? AND JART Liski'

' Finnish Environment Institute, Research Programme for Global Change, P.O. Box 140, FI-00251 Helsinki, Finland

Ecology, 91(2), 2010, pp. 370-376
© 2010 by the Ecological Society of America

“We show that the temperature sensitivity of decomposition
Increases remarkably from the youngest annually cycling fraction
(Qy < 2) to adecadally cycling one (Q,, = 4.2—6.9) but decreases
again to a centennially cycling fraction (Q,, = 2.4—2.8) in boreal
forest so1l.”



How will soil organic C pool respond to
global warming?

4. Rhizosphere interactions vs. T-sensitivity
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Global Convergence in the

Temperature Sensitivity of Respiration
at Ecosystem Level

Miguel D. Mahecha,?* Markus Reichstein,® Nuno Carvalhais,>* Gitta Lasslop,® Holger Lange,*

Sonia |. Seneviratne,? Rodrigo Uargas,S Christof Ammann,® M. Altaf Arain,” Alessandro Cescatti,®
lvan A. Janssens,” Mirco Migliavacca,'® Leonardo Montagnani,**? Andrew D. Richardson®®

The respiratory release of carbon dioxide (CO5) from the land surface is a major flux in the global carbon
cycle, antipodal to photosynthetic CO, uptake. Understanding the sensitivity of respiratory processes to
temperature is central for quantifying the climate—carbon cycle feedback. We approximated the sensitivity
of terrestrial ecosystem respiration to air temperature (Q44) across 60 FLUXNET sites with the use of a
methodology that circumvents confounding effects. Contrary to previous findings, our results suggest that
Q4 is independent of mean annual temperature, does not differ among biomes, and is confined to values
around 1.4 + 0.1. The strong relation between photosynthesis and respiration, by contrast, is highly
variable among sites. The results may partly explain a less pronounced climate—carbon cycle feedback
than suggested by current carbon cycle climate models.



Table 1 R? and Q,, values for the relationship between soil respiration and
temperature

Treatment R? Q1o

Control 0.91 3.5 (0.4)
Double litter 0.90 3.4 (0.4)
No litter 0.91 3.1 (0.3)
No roots 0.73 2.5(0.4)
No inputs 0.89 2.3 (0.2)
OA-less 0.82 2.6 (0.3)
‘Roots’ 0.95 4.6 (0.5)

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

For R? values; P < 0.01; Qo values are means (+ s.e.m.). Qo values were obtained from
the exponential curve of the form y = B,e*”, where Q,, = e'%? . Standard error for Qyg is
calculated as Q,, X 10 X s.e.(B).

Boone et al. 1998 NATURE
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| Continuous 3C-labeling
s#= Greenhouse at UCSC




Magnitude of the rhizosphere effect on SOM decomposition measured by isotope methods
(Based on Cheng and Kuzyakov 2005).

Plant Type Treatment Soil Type! PGC® %Priming® Time*(d) Reference

Wheat CLO GC -37 16 Cheng 96

Wheat Ambient CO, CLK GC 44 28 Cheng & Johnson 98
Wheat Elevated CO, CLK GC 17 28 Cheng & Johnson 98
Wheat Ambient CO,, +N CLK GC 42 28 Cheng & Johnson 98
Wheat Elevated CO,, +N CLK GC 73 28 Cheng & Johnson 98
Sunflower ~ Ambient CO, CLK GH 55 53 Cheng et al. 00
Sunflower  Elevated CO, CLK GH 31 53 Cheng et al. 00
Wheat 12/12 hrs light/dark CLK GC 100 38 Kuzyakov & Cheng 01
Wheat 12/60 hrs light/dark CLK GC -50 38 Kuzyakov & Cheng 01
Soybean Growing season mean  CLK GH 70 120 Fu & Cheng 02
Sunflower  Growing season mean CLK GH 39 120 Fu & Cheng 02
Sorghum Growing season mean  SLC GH -9 120 Fu & Cheng 02
Amaranthus Growing season mean  SLC GH -5 120 Fu & Cheng 02
Soybean CLK GH 3 35 Cheng et al. 03
Wheat CLK GH 7 35 Cheng et al. 03
Soybean CLK GH 382 68 Cheng et al. 03
Wheat CLK GH 287 68 Cheng et al. 03
Soybean CLK GH 312 89 Cheng et al. 03
Wheat CLK GH 130 89 Cheng et al. 03
Soybean CLK GH 254 110 Cheng et al. 03
Wheat CLK GH 60 110 Cheng et al. 03
Soybean Growing season mean  CLK GH 164 119 Cheng et al. 03
Wheat Growing season mean  CLK GH 96 119 Cheng et al. 03

%priming is calculated as: (planted - unplanted)/unplanted X 100.
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Which component of the total soil respiration
IS more sensitive to warming?
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In summary, rhizosphere priming may
Increase the temperature sensitivity of
SOM decomposition.



How will soil organic C pool respond to
global warming?

1. General temperature sensitivity of SOM decomposition
Conclusion-I: it is still controversial.

2. Substrate availability vs. T-sensitivity
Conclusion-11: substrate availability is an important factor.

3. T-sensitivity of labile vs. recalcitrant SOM decomposition
Conclusion-111: it is inconclusive.

4. Rhizosphere interactions vs. T-sensitivity
Conclusion-1V: rhizosphere processes modulate T-sensitivity.

5. What’s next? More research 1s needed.



Acknowledgements

Thanks to Feike Dijkstra, Nick Bader, Daniel Keck, and Biao Zhu for
doing the work.

Dyke Andreasen & David Harris analyzed all samples for isotopes.

Many undergraduate students provided assistance.

USDA NRI program (Grant # 2006-35107-17225) and Kearney
Foundation of Soil Science provided the funding.




lant Soil 248:

M.W., Wouterlood,
, P. &. Veneklaas,

., H., Cramer, M.D.,

&

-
mbers
S

SR T
) -
o
D ——

L/

T

....A.-.—f_‘



brief communications

Figure 1 Radiocarbon estimates of turnover times of carbon
fractions of two soils on an elevational gradient with similar parent
material, vegetation and distutbance history. Fractions were
separated by density and hydrobysis for each soil depth'?, The GO,
that would be evolved during one-year incubations (98 and 92 g C
m~2yr~" for Musick and Shaver soils, respectively) was calculat-

Biogeochemistry 6,000

Soil warming and
organic carbon content

oils store two or three times more 4,000

5,000+

carbon than exists in the atmosphere L ed from carbon stocks and turnover times. Dividing respired CO,
as CO,, and it is thought that the tem- © 3,000 by total seil carbon, as Giardina and Ryan® do in their one-pool
perature sensitivity of decomposing organic < model, yields neary identical turnover times estimates for the two
matter in soil partly determines how much 2 000 soils (53 and 54 yr for Musick and Shaver soils, respectively).
carbon will be transferred to the atmos- , W -100 v However, the cocler Shaver sail contains twice as much carbon
phere as a result of global warming'. Giardi- 1.000— Ml 50-100 yr with turnover times of about 50 yr and the wamer Musick soil has
na and Ryan® have questioned whether ’ [0 45-50yr a small but important pool that cycles more rapidly.
turnover times of soil carbon depend on L] 25yr
temperature, however, on the basis of 0 Musick  Shaver

soil soil

experiments involving isotope analysis and

T.T A L e

Eric A. Davidson®, Susan E. Trumboret,
#Ronald Amundson

NATURE 2000
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Fig.2 °C signature of CO, evolved from Brazilian pasture soils
incubated at 25 and 35 "C early during incubation (cumulative
CO,-C respiration equivalent to 2% of initial soil C; P = 0.219,
i1 = 3) or later (respiration of the same mass of CO,-C, but after
the equivalent of 6% of initial soil C had already been respired;
P=0.270, n =3). Error bars indicate standard errors estimated

from four replicateﬁ.

Conant et al. 2008 GCB





