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Abstract Quantifying spatial distribution patterns of air
pollutants is imperative to understand environmental justice
issues. Here we present a landscape-based hierarchical
approach in which air pollution variables are regressed
against population demographics on multiple spatio-
temporal scales. Using this approach, we investigated the
potential problem of distributive environmental justice in
the Phoenix metropolitan region, focusing on ambient
ozone and particulate matter. Pollution surfaces (maps) are
evaluated against the demographics of class, age, race
(African American, Native American), and ethnicity (His-
panic). A hierarchical multiple regression method is used to
detect distributive environmental justice relationships. Our
results show that significant relationships exist between the
dependent and independent variables, signifying possible
environmental inequity. Although changing spatiotemporal
scales only altered the overall direction of these relation-
ships in a few instances, it did cause the relationship to
become nonsignificant in many cases. Several consistent
patterns emerged: people aged 17 and under were sig-
nificant predictors for ambient ozone and particulate matter,
but people 65 and older were only predictors for ambient
particulate matter. African Americans were strong

predictors for ambient particulate matter, while Native
Americans were strong predictors for ambient ozone. His-
panics had a strong negative correlation with ambient
ozone, but a less consistent positive relationship with
ambient particulate matter. Given the legacy conditions
endured by minority racial and ethnic groups, and the
relative lack of mobility of all the groups, our findings
suggest the existence of environmental inequities in the
Phoenix metropolitan region. The methodology developed
in this study is generalizable with other pollutants to pro-
vide a multi-scaled perspective of environmental justice
issues.
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Introduction

Environmental justice can be a field of study for research-
ers, a public policy goal for government regulators, or a
social movement by stakeholders who are concerned about
the environment in which they live (Brulle and Pellow
2006). The environmental justice movement is rooted in the
civil rights era and many of the historic early studies
detailed the link between race and the inequitable siting of
toxic industries (United Church of Christ (UCC) 1987;
Bullard 1990). Based on evidence of inequitable conditions
demonstrated in these and other important studies, a Pre-
sidential Executive Order (12898) mandated that federal
agencies consider environmental justice issues in their
policies and actions (Cutter and Solecki 1996).

Environmental justice principally addresses two types of
justice: procedural and distributive. Procedural justice is
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often defined as fair application of environmental laws and
policies for all groups of people. Distributive justice is the
fair or equitable distribution of environmental benefits and
burden across all social groups, often examined in spatial
terms by neighborhoods (Rechtschaffen 2003). Studies in
distributive environmental justice examine relationships
between social demographics, such as race and class, and
patterns of environmental conditions, such as proximity to
sources of pollution, the quality of ambient air or water
resources, or even blighted and polluted neighborhoods
(Boone et al. 2014). When these inequitable conditions are
brought to light, policy makers can use that knowledge to
rectify the situation or citizens can use the information to
argue for improved environmental conditions.

This paper describes a novel methodology for studying
distributive environmental justice by comparing demo-
graphics at the census block group level to multiple spa-
tiotemporal scales of monitored pollution so as to determine
the multi-scalar extent of environmental inequity. The
methodology developed here is based on methods from
landscape ecology and utilizes geographical information
system (GIS) and network-based approaches to create pol-
lution models. Landscape ecology, a discipline devoted to
understand the spatial relationships between scales, pat-
terns, and processes, offers useful methods and insight into
the creation of these pollution models. The primary aim of
this methodology is to explore and highlight the differences
in results between multiple spatiotemporal scales in the
analysis. The methodology described here is generalizable
to other studies using pollution data that is multiscalar in
space and time.

In this paper, we detail a case study of distributive
environmental justice in Phoenix, Arizona using this multi-
scalar methodology. It focuses on ambient air quality col-
lected from government air monitoring networks and
examines how distinct socioeconomic groups are exposed
to ground-level ozone (O3) and particulate matter less than
10 µ in size (PM10), the two criteria pollutants of most
concern in this area. Acknowledging that environmental
justice can be more complicated than just the distribution of
pollutants, we discuss some of the legacy conditions
experienced by minority populations in the Phoenix area;
but we focus mainly on the utilization of landscape ecolo-
gical methods to create multi-scale pollution models, based
upon actual monitored pollution concentrations, to test for
possible distributive justice issues based on neighborhood
demographics.

Spatiotemporal Scale in the Environmental Justice
Literature

A number of environmental justice studies consider or
address scale (i.e., the areal unit of analysis) or scope (i.e.,

the geographic bounds of the study) issues using various
methods. For example, Cutter et al. (1996) conducted a
justice study in South Carolina to see how hazardous waste
and toxics releasing facilities affect low-income minority
groups at three different spatial scales: counties, census
tracks, and census block groups. Associations were found at
the county level, but not at finer scales. Huby et al.’s (2009)
justice study in England stresses the need for multi-scale
analysis, and notes that coarser scales can mask inequalities
due to aggregation. Baden et al.’s (2007) review of existing
empirical justice literature shows that studies span a range
of scales, some employ multi-scale methods, but few use
multiple units of analysis. Variation was observed across
the methods, but the authors note that smaller scales tend to
exhibit more statistically insignificant findings, concluding
that scale and scope can strongly influence analysis and
results (Baden et al. 2007).

Choosing the scale of analysis is important as different
scales can produce different results and using one scale to
make inferences about another scale can lead to false
deductions—phenomena known as the modifiable areal unit
problem (MAUP) and the ecological fallacy, subjects often
addressed in landscape ecology (Wu 2007). The MAUP
presents two interrelated problems with spatial data analy-
sis: the scaling problem and the zoning problem (Wu 2007;
Jelinski and Wu 1996; Openshaw 1984). The scaling pro-
blem is due to the aggregation of smaller units into fewer
and larger geographical units increasing correlation, but
reducing variation; while the zoning problem results from
the drawing of spatial boundaries that can create false
categories of data and is related to gerrymandering.
Researchers have tried different methods of analysis to
avoid the issues of the MAUP, such as using the hedonic
price method (Noonan et al. 2009) or dasymetric mapping
(Giordano and Cheever 2010; Boone 2008), with varying
findings. Presenting results from multiple scales can also be
effective against the MAUP, as an inequity observed at any
scale can arguably be considered evidence of an injustice
(Baden et al. 2007).

The temporal scale of analysis is equally important in
finding environmental inequity, especially when using
ambient air pollution as the environmental medium.
Although temporal scale of the analysis or data is often
mentioned (Jerrett et al. 2001), there is a deficit of envir-
onmental justice literature addressing multiple-scale tem-
poral analysis methods (Noonan 2008). The methodology
and case study described in this paper will address this
deficit by exploring spatiotemporal patterns at multiple
scales.

There have also been a number of previously conducted
environmental justice studies in the Phoenix metropolitan
area using different techniques and scales. These techniques
typically find environmental inequities, depending on the
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observed scale, the method used, and the medium investi-
gated. For instance, the Bolin et al. (2000) study investi-
gated point sources of toxic emissions to determine
environmental equity problems with the location, volume,
and toxicity of emissions. Their study found that minority
populations in South Phoenix faced injustices when com-
pared with the location of industries or volume of emis-
sions, but not toxicity of emissions as many high-tech
industries, implicated with emissions of greater toxicity, are
located in more affluent areas of Phoenix away from the
higher density locations of minority populations. A similar
spatial analysis by Bolin et al. (2002) found equity issues
between race and class and point sources of hazardous
waste industries and large quantity generators. Grineski
et al. (2007) quantified air pollution by laying a grid over an
ambient pollution surface of carbon monoxide, nitrous
oxides (NOx), and O3, modeled in a 1 h time resolution, and
analyzed the pollutant levels to the race and class compo-
sition of associated neighborhoods. They found equity
issues for Latinos and Native Americans, but not African
Americans. Grineski (2007) used the same pollution model,
along with the Toxics Release Inventory and a proxy for
indoor pollution hazards, to look for equity issues with
asthma cases. They found that African Americans experi-
enced injustices, but Latinos were not significant predictors
for rates of asthma hospitalization. Native Americans were
not included in that study.

These Phoenix-based studies employed a number of
different methods to find justice issues over different spatial
scales, with some differing results, showing that the scale of
observation is important. The case study detailed in this
paper does address both the spatial and temporal dimen-
sions of environmental justice by comparing race, ethnicity,
class, and age at the census block group level to multiple
spatiotemporal scales of monitored O3 and PM10 pollution,
so as to determine the multi-scalar extent of environmental
justice issues in the Phoenix area. Results with positive
correlation between demographics and pollution, taken in
the context of the historical patterns of inequitable planning
or the location of vulnerable populations with low mobility,
within the Phoenix metropolitan area were used as evidence
of possible injustices.

Methods

Case Study Area, Monitoring Stations, and
Pollution Data

The case study covers the Phoenix metropolitan statistical area
(MSA) in South-Central Arizona, a modern, thriving metro-
politan area with more than 20 self-governing municipalities
with over 4.2 million residents in 2010 (Wu et al. 2011)

(Fig. 1). There are two distinct study areas in this project,
one representing the O3 pollution monitoring network and
the other representing the PM10 network; O3 and PM10 are
the two criteria pollutants of most concern in the Phoenix
MSA, as they are listed as non-attainment for national
ambient air quality standards (U.S. EPA 2015). The O3

study area is ~2.3 million hectares in size, and the PM10

study area is ~1 million hectares in size. Both of these areas
are based upon Pope and Wu’s (2014a) study which char-
acterized spatiotemporal patterns of O3 and PM10 in the
Phoenix MSA. The Pope and Wu study delineated the study
areas based upon the spatial location of official pollution
monitoring stations and the assumed stationarity of data
within the metropolitan area, with a shallow buffer of
nearby rural monitoring stations (Pope and Wu 2014a).

There were 32 O3 and 30 PM10 pollution monitoring
stations within each respective study area; the stations were
operated by various state, tribal, and local agencies
(Table 1), and pollution monitoring complied with all fed-
eral regulations (Pope and Wu 2014a). Air pollution data for
the study were obtained from the United States Environ-
mental Protection Agency’s Air Quality System (AQS)
database.

O3 data were collected for the time period of 2008–2010;
the finest temporal resolution (or grain size) was 1 h (i.e.,
raw data were 1 h averages). Four temporal extents (i.e.,
time durations over which average values of measurements
were derived) were utilized: 1 h (at 15:00 on 15 July), 8 h
(15:00–22:00 on 15 July), 1 month (July), and seasonal
(April–October) (Table 2). The seasonal average was cho-
sen instead of an annual average because many of the O3

monitoring sites only operated during this time period. The
rationale used in these selections was to pick a random date
during the height of the summer O3 season and then to scale
this out from the hourly to the seasonal scales. A require-
ment was that no unusual weather or exceptionally high
pollution event occurred on this date across the 3 years of
the study period.

PM10 data were also collected from 2008–2010, though
the temporal resolution for PM10 was a 24 h average mea-
sured 1 day out of every 6 (1-in-6 day basis), as this is the
operating schedule for some of the PM10 monitors. Most
PM10 monitors operated on a finer time scale, collecting
daily 24-h or 1-h averages; however, all finer averages were
rolled into a 24-h average and all data outside of the 1-in-6
day schedule were eliminated to create a consistent coarse
resolution. These data were then utilized at three different
temporal extents: annually, monthly, and daily; monthly
and daily extents included both winter and summer seasons
(Table 2). As with the O3 data, a date was selected at ran-
dom with the qualifying criteria that no unusual weather or
high pollution event occurred. Due to significant seasonal
differences in pollution patterns (Pope and Wu 2014a), we
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chose to scale up from two dates, one in summer and one in
winter. The 1-in-6 day sampling period complicated date
selection, but of the final six selected dates (across 3 years),
five were weekdays and one was a weekend.

Pollution Surfaces

Pollution surfaces were modeled using the landscape ecolo-
gical methods in Pope and Wu (2014a). First, a semivariance
analysis was performed on the pollution data, and then a

kriging interpolation model was created. The semivariance
analysis was performed using the software GS+: Geostatis-
tics for the Environmental Sciences (Gamma Design
Software, 2006). The data were modeled in isotropic semi-
variograms using the Gaussian model for O3 and the sphe-
rical model for PM10, quantifying the structure of spatial
autocorrelation (see Pope and Wu (2014a) for further details).

Following the semivariance analysis, a universal kriging
interpolation map of the pollution surface was created at a
spatial resolution of 250 m. Kriging is a geostatistical

Fig. 1 Map of Central Arizona
including the Phoenix
metropolitan area. The map
includes the location of O3 and
PM10 monitoring stations, note
that some stations contain both
monitor types. American Indian
Reservations are labeled on the
map: a Ft. McDowell Yavapai
Nation, b Salt River Pima-
Maricopa Indian Community,
c Gila River Indian Community,
and d Tohono O’odham Nation
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interpolation method to estimate values at unsampled
locations based on the spatial autocorrelation structure
quantified in the semivariance analysis (Cressie 1990;
Fortin and Dale 2005). Our kriging maps of O3 and PM10

concentrations over the study area were created using the
Geostatistical Analysis Extension within ArcMap (ESRI
2010). All input settings were matched with those of the
GS+ software to maintain consistency with our semivar-
iance analysis. Thematic maps were created at each tem-
poral scale, for both O3 and PM10 (Fig. 2; also see Online
Resource Supplementary Figs. S1–S9).

To quantify error, prediction error maps were created and
a removal bias analysis was performed to quantify the
modeled error in the kriging interpolations. The removal
bias analysis involves creating the interpolated pollution
surface, and then systematically removing each input point
(i.e., monitoring station) and recreating the interpolation.
The difference, or bias, between the actual monitored value
and the predicted value after removing the station is
recorded to obtain an estimate of error in the interpolation
(Pope and Wu 2014b) (see Online Resource Supplementary
Figs. S10, S11).

Census Data

Census data were selected at the block group level, as this
was the finest resolution available for all variables (Table 3
and Fig. 3; also see Online Resource Supplementary Figs.
S12–S18 for demographic summaries). We selected the fine
resolution of census block groups as this represents best
neighborhood boundaries in a nationally consistent manner

and because neighborhood is the primary unit of analysis in
environmental justice studies (Williams 1999; Mohai and
Saha 2007). There were six variables in four groups:
socioeconomic status, age, race, and ethnicity (Table 4).
Our inclusion of status, race, and ethnicity was based upon
previous environmental justice research in the Phoenix area.
Although not typically used as a variable in environmental
justice studies, age was chosen here because the Phoenix
area is a popular retirement location with many elder-only
communities in locations that could possibly be at risk of
inequitable pollution levels. In addition, children and elders
are more vulnerable to higher pollution values, so infor-
mation regarding their unique risk is important (Tecer et al.
2008; Andersen et al. 2007).

GIS Model

Rasters for the 2008–2010 kriged pollution surface maps for
each temporal extent were averaged together using the
Raster Calculator tool in ArcMap, thus creating an average
pollution surface for each extent with a 250 m resolution.
These average surfaces were categorized into three spatial
scales: the initial pollution surface or raw data, pollution
deciles, and pollution quartiles (the decile and quartile
surfaces were created with the Reclassify tool in ArcMap).
After converting to polygons, these pollution surfaces were
spatially joined in a one-to-one relationship with the census
data using the pollution score at the centroid of each block
group; thus each census block group had its centroid-
associated pollution value listed. The spatially explicit
tables were then exported for statistical analysis (Fig. 4).

Table 1 List of agencies
operating monitoring stations
within the study area. Agencies
submit their data to the EPA’s
AQS database, which was the
source of data for this study

Agency Type of agency # O3 stations # PM10 stations

Arizona Department of Environmental
Quality

State 3 2

Fort McDowell Yavapai Nation Tribal 1 1

Gila River Indian Community Tribal 2 1

Maricopa County Air Quality Department Local (County) 17 14

Pinal County Air Quality Control District Local (County) 5 9

Salt River Pima-Maricopa Indian community Tribal 4 3

Table 2 Details on the temporal scales used within this study

Pollutant Temporal resolution Study
years

Temporal extents

Ozone 1-h averages, continuous
sample grain

2008–2010 Seasonal
(Apr–Oct)

Monthly (July) 8-h (15 July,
15:00–22:00)

1-h (15 July, 15:00)

PM10 24-h averages, 1-in-6 day
sample grain

2008–2010 Annual Monthly (Jan) Monthly (Aug) Daily (Jan)
[7 Jan, 2008,
7 Jan, 2009,
8 Jan, 2010]

Daily (Aug)
[22 Aug, 2008,
23 Aug, 2009,
24 Aug, 2010]

Note that the PM10 daily temporal extent occurs on different days in each of the study years because of the 1-in-6 day sample resolution

Environmental Management (2016) 58:753–766 757



758 Environmental Management (2016) 58:753–766



Statistical Model

We used hierarchical multiple regression models to examine
the independent effects of the four census groups (socio-
economic status, age, race, and ethnicity) with each pollu-
tion surface at each temporal extent and spatial aggregation.
This resulted in a total of 48 and 60 regression equations for
O3 and PM10, respectively. Models 1–4 were ordered in the
hierarchical multiple regression using an a priori decision of
socioeconomic status (median household income), age
(proportion age≤ 17 and proportion age≥ 65), race (pro-
portion African American and proportion Native Amer-
ican), and ethnicity (proportion Hispanic) (Table 5; also see
Supplementary Tables S1, S2 in the Supplementary Mate-
rials for complete details).

The models were created in SPSS Version 22.0 (IBM
Corp 2013). Input data were transformed as necessary, and
homoskedasticity was tested for with Breusch-Pagan and
Koenker tests. These tests revealed that data were sig-
nificantly heteroskedastic, so the heteroskedasticity-
consistent standard error estimator model HC3, run using
a script developed for SPSS by Hayes and Cai (2007), was
used to reduce bias.

Results

The hierarchical multiple regression models did find sig-
nificant relationships between the dependent pollution and
independent demographic variables (see Online Resources
Supplementary Tables S1, S2 for complete statistical

results). These relationships are summarized in Table 6,
which is based upon model 4 of the regressions, and iden-
tifies those that could possibly be a justice issue, i.e., the
independent variable is a significant predictor for the
dependent variable. These positive relationships were noted
as possible justice issues based upon the slope of the beta
score in the regression, e.g., a negative beta would
demonstrate a trend of the concentration of pollution
increasing while the median household income of the cen-
sus block group decreases and a positive beta reveals a trend
where the pollution concentration and the proportion of a
demographic group increase together.

There were few instances where changing the temporal
scale or spatial aggregation changed significant relation-
ships between the dependent and independent variables
(Table 6). The examples of this were O3 with the variables
median household income and proportion aged≤ 17, and
PM10 with income and proportion Hispanic; in all other
cases the direction of the effects were the same when sig-
nificant relationships were found.

There were many examples where changing scale
resulted in the model 4 relationship becoming non-
significant (Table 6). This was especially prevalent in the
median household income variable for both O3 and PM10.
In many of these cases, income did act as a significant
predictor for pollution levels in models 1 through 3; how-
ever, the addition of the proportion Hispanic independent
variable in model 4 explained away the relationship
between pollution and income causing the significant rela-
tionship to be lost (Supplementary results Supplementary
Tables S1, S2).

There were several distinct consistent patterns that
emerged in the data. At most scales, the proportion of
people aged 17 and under was a significant predictor for
both O3 and PM10; however, the proportion of people aged
65 and over was only a significant predictor for PM10 and
was negatively correlated with O3. The proportion of
African Americans was a strong predictor for PM10, but had
an equally strong negative relationship with O3. In contrast,
the proportion of Native Americans was a predictor for O3,
but had a negative relationship with PM10. The proportion
of Hispanics had a strong negative correlation with O3, but a
less consistent relationship with PM10, with the August

Fig. 2 An example of pollution contours overlaying population pro-
portion maps. a Displays O3 pollution contours (with units of PPB)
taken at the seasonal temporal extent and averaged from 2008–2010,
overlaying the population proportion of Native Americans at the
census block group level, b is the same map at a finer resolution and
focused upon the metropolitan Phoenix urban area to display details.
c Repeats this for PM10 contours (with units of µg/m3) at the annual
temporal extent overlaying the population proportion of African
Americans and d is a finer resolution in the urban metropolitan area.
See Supplementary materials, Figs. S1–S9, for complete maps from all
temporal extents

Table 3 Spatial and population statistics for the census block groups located within the O3 and PM10 study areas

Study area Census block groups spatial statistics Census block groups population statistics

N Min. size
(km2)

Max. size
(km2)

Mean size
(km2)

SD (km2) Population N Min. pop. Max. pop. Mean pop. SD

O3 2646 0.085 904.9 4.23 27.36 4,108,844 0 7293 1552.9 698.4

PM10 2172 0.085 603.0 2.91 17.30 3,380,319 0 7293 1556.3 680.9

Note that only block groups that were completely inside the respective study areas were included
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monthly and daily temporal scales varying between posi-
tive, negative, and non-significant beta scores (Table 6).

Discussion

Multi-scalar Results

Though changing the temporal scale changed the slope of the
model results, i.e., from negative to positive or vice versa, in

a few instances, the effect was less than anticipated (Table 6).
A more common occurrence was to change the relationship
from significant to non-significant, or vice versa, between the
independent and dependent variables when the temporal
scale was changed. This indicates that, in most cases, even
though the spatial pattern of the pollutant is visibly changed
between time periods, the representative relationship between
pollution sources/dynamics and demographics did not
change. Another interesting result was the change between
the PM10 winter and summer scales, especially in relation to

Fig. 3 Map of the census block
groups that were used within the
PM10 and O3 portions of the
study. Note that only those block
groups that were fully contained
within the respective study areas
were included. The very large,
sparsely populated block groups
in rural areas that crossed the
studies’ boundaries were
excluded. Block groups that are
colored light gray were used in
the O3 study, those that are
colored dark gray were used for
both the O3 and PM10 studies
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the Hispanic demographics. These changes in the spatial
pattern of PM10 are likely the result of changes in meteor-
ology between the seasons, as source apportionment likely
remains the same (Pope and Wu 2014a).

In many of these cases we do not have definitive proof
about the reasons for the change, or lack thereof, of the
relationships between demographics and the pattern of
pollutants at differing temporal scales. The spatial patterns
of pollutants often do change between the differing time
periods, so the reasons could range from the new patterns
affecting differing population groups to a blurring hetero-
geneity of demographics. However, apparent associations
between demographics and the pollution patterns are noted
where appropriate.

Changes in spatial aggregation of pollutant also resulted
in less effect than expected. We expected that aggregating
into deciles, and especially into quartiles, would bring many
changes from the MAUP scaling problem. In actuality, of
the 54 regression models, aggregating to deciles changed
the results (including changing to non-significance) five
times, or 9 % of the time. Aggregating to quartiles changed
the results a total of 13 times, or 24 % of the time (Table 6).

Environmental Inequity with O3 Pollution

Our analysis shows that significant relationships of possible
environmental inequity exists between O3 pollution and
Native Americans, youth under 17 years of age (at most

Table 4 Descriptive statistics for study variables, based upon census block groups

O3 study area N Range Min. Max. Mean SD Vari.

Socioeconomic status

Median household income (thousands) 2646 200.0 0.0 200.0 56.9 28.9 834.1

Age proportion

≤Age 17 (%) 2646 59 0 59 25 10 1

≥Age 65 (%) 2646 90 0 90 14 17 3

Race proportion

African American (%) 2646 60 0 60 5 5 0

Native American (%) 2646 98 0 98 2 7 1

Ethnicity proportion

Hispanic (%) 2646 94 0 94 28 24 6

O3 pollution

Seasonal O3 (ppb) 2646 11.6 33.0 44.5 36.9 2.0 4.1

Monthly (July) O3 (ppb) 2646 8.4 35.0 43.4 39.3 1.5 2.3

8-h O3 (ppb) 2646 19.6 33.2 52.8 41.8 4.0 16.3

1-h O3 (ppb) 2646 20.3 46.3 66.6 55.6 5.2 27.4

PM10 study area N Range Min. Max. Mean SD Vari.

Socioeconomic status

Median household income (thousands) 2172 200.0 0.0 200.0 54.4 28.0 782.8

Age proportion

≤Age 17 (%) 2172 59 0 59 26 10 1

≥Age 65 (%) 2172 86 0 86 13 15 2

Race proportion

African American (%) 2172 60 0 60 5 5 0

Native American (%) 2172 98 0 98 3 7 1

Ethnicity proportion

Hispanic (%) 2172 94 0 94 32 24 6

PM10 pollution

Annual PM10 (µg/m
3) 2172 74.0 20.7 94.6 30.4 6.9 47.5

Monthly (Jan) PM10 (µg/m
3) 2172 34.3 8.2 42.5 20.2 6.4 40.8

Monthly (Aug) PM10 (µg/m
3) 2172 57.0 24.0 81.0 31.3 5.3 28.4

Daily (Jan) PM10 (µg/m
3) 2172 35.8 10.0 45.8 21.3 6.0 36.1

Daily (Aug) PM10 (µg/m
3) 2172 50.3 17.9 68.2 24.7 4.8 23.4
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scales), and to a limited extent, with lower median house-
hold incomes (Table 6). This relationship, at least in regards
to Native Americans, was not unexpected as the spatial
patterns of O3 show concentrations tending to increase
toward the northeast portion of the study area, away from
the urban area and close to the Ft. McDowell Yavapai
Nation and Salt River Pima-Maricopa Indian Communities
(Pope and Wu 2014a, also see Supplementary figures
S1–S4 in the supplementary information). O3, being a
secondary pollutant, forms in sunlight from photoreactive
precursor chemicals mainly emitted by industrial and
transportation sources in the urban area. Prevailing easterly
and/or anabatic winds push the precursors and O3 plume up
against the northeastern mountains in the daytime where it
continues to react in sunlight, and the usually slower
nighttime katabatic winds drain it back into the lower ele-
vations, giving O3 a tendency to pool at the edge of the
urban areas and near the reservations (Pope and Wu 2014a;
Ellis et al. 1999). Furthermore, O3 within the urban area is
destroyed, or scavenged, during the night by NOx emis-
sions; but O3 in rural areas, lacking scavenging NOx, per-
sists longer in the environment before decay or deposition
(Gregg et al. 2003).

Given that, in general, O3 concentrations increase with
an increasing population proportion of Native Americans

and, more specifically, the increase in concentrations over
the reservations, we contend that an inequitable situation in
O3 distribution exists for Native Americans. Although the
O3 patterns are more a function of geography and meteor-
ology than a deliberate attempt to place polluting sources
near minority populations, given the legacy conditions that
Native Americans have endured, such as forced segregation
and economic hardship on the reservations (Meeks 2007),
the pattern of environmental injustice is clear.

It should also be noted that our findings differ from
earlier Phoenix area environmental justice studies using O3.
Grineski et al. (2007) found that Latino immigrants were
significant predictors for O3, while Native Americans had a
significant negative relationship. However, their study dif-
fered in time and scale, as it was based upon modeled data
from a single 1-h temporal scale, 27 August, 1999 at 16:00.

The relational patterns between O3 and people aged 17
and under are less clear than those with Native Americans.
The density of young people is highest in the urban areas of
west Phoenix and Mesa, but block groups with higher
proportions of young people are scattered into rural areas
and American Indian reservations (see Supplementary Figs.
S17, S22 in the supplementary information). Furthermore,
the relationships were less consistent, with the regression
models always showing negative correlations, until the

Fig. 4 The model used to generate spatial files combining pollution
surface data and census data. Ovals represent map data files, either
rasters (blue) or polygons (green). Rectangles represent tools or

processes within the GIS. The spatial join added the pollution value at
the centroid of each block group to the census files. The spatially
explicit table was then exported for statistical analysis

Table 5 Dependent variables
used in each of the hierarchical
multiple regression models

Model # Dependent variables

1 Median household income

2 Median household income, Age 17 and under, Age 65 and over

3 Median household income, Age 17 and under, Age 65 and over, Proportion African American,
Proportion Native American

4 Median household income, Age 17 and under, Age 65 and over, Proportion African American,
Proportion Native American, Proportion Hispanic
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Hispanic demographics were added in model 4 (Supple-
mentary Table S1 in the supplementary information). In
addition, this demographic was one of the few to show
differing results with a change of temporal scales, and O3 at
a monthly scale was either non-significant or negatively
correlated (Table 6). Thus while it is difficult to point
directly to an overall pattern of inequity, there are certainly,
on average, locales and temporal scales where youth are
exposed to an excessive distribution of O3 pollution.

Environmental Inequity with PM10 Pollution

Our analysis of the relationship between PM10 concentra-
tions and independent demographics show patterns that are
often directly opposite to those of O3. At most scales,
African Americans, Hispanics, and people aged 65 and
older, while having negative relationships with O3, became
significant predictors for PM10. People aged 17 and under
were usually predictors for PM10, except at January
monthly scale when the addition of the Hispanic population
to the regression model explained away the relationship
with youth. As in the O3 analysis, income was an incon-
sistent predictor for PM10, especially at the summer tem-
poral scales. Lower incomes were usually predictors for
PM10 in models 1–3 of the regression, but this relationship

often changed after adding the Hispanic demographic in
model 4 (Supplementary Table S2 in the Supplementary
information).

As with O3, the known characteristics and patterns of
PM10 pollution in Phoenix supports these results. Unlike
O3, PM10 is a primary pollutant that tends to aggregate
around its sources in addition to windblown transport from
the surrounding desert areas. Many of the PM10 ‘hotspots’
in the study area were created from localized sources
including agriculture in rural Pinal county and extractive
mining and material handling industries in South Phoenix
(Dimitrova et al. 2012; Fernando et al. 2009; Clements et al.
2013). In addition, South Phoenix is in the Salt River flood
plain and has the lowest average elevations in the metro-
politan area. The river channel acts as a natural transport
corridor and downwind sink for early morning particles
emitted from other portions of the metropolitan area
(Dimitrova et al. 2012). The South Phoenix area has high
proportions of African American and Hispanic populations,
though Hispanic populations are more spatially distributed
throughout the study area, and this is likely to account for
much of the correlation in the results.

The spatial correlation between the youth and elder age
groups and PM10 is more difficult to note with visual
inspection of the maps. Youth proportions appear to be

Table 6 Summary of hierarchical regression results for Model 4 of the O3 and PM10 parameters and demographic variables at each spatial and
temporal scale

Median household income Proportion age≤ 17 Proportion age≥ 65

Raw data Deciles Quartiles Raw data Deciles Quartiles Raw data Deciles Quartiles

O3 Seasonal + + NS + + NS – – –

Monthly NS NS – NS – – – – –

8-h NS NS NS + + + NS NS NS

1-h NS NS NS + + NS – – –

PM10 Annual – – NS + + + + + +

Jan monthly – – – NS NS NS NS NS +

Jan daily NS – – + + + + + +

Aug monthly NS NS + + + + + + +

Aug daily – NS NS + + + + + +

Proportion African American Proportion Native American Proportion Hispanic

Raw
Data

Deciles Quartiles Raw
Data

Deciles Quartiles Raw
Data

Deciles Quartiles

O3 Seasonal – – – + + + – – –

Monthly – – – + NS + – – –

8 h – – – + + + – – –

1 h – – – + + + – – –

PM10 Annual + + + – – – + + +

Jan monthly + + + – – – + + +

Jan daily + + + – – – + + +

Aug monthly + + + – – – NS NS –

Aug daily + + + – – NS + NS –

NS=No significant relationships found; –=Negative correlation suggesting unlikely inequitable relationship; += Positive correlation suggesting
possible inequitable relationship
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higher through the rural areas and urban fringe, which are
areas tending to have higher PM10 concentrations (Sup-
plementary Fig. S22 in Online Resource). Elder proportions
are highest in the retirement communities in the northwest
portion of the study area (Sun City), east Mesa, and the
center of the study area (Sun Lakes) (Supplementary Fig.
S23 in the Online Resource). PM10 concentrations were
relatively low at all scales in the Sun City area, therefore the
correlation with PM10 is likely due to the elder populations
living in Mesa and Sun Lakes.

The spatial pattern, quantified by the statistical results,
confirms an inequitable situation between PM10 distribution
and African American and Hispanic populations. Legacy
conditions with these populations, e.g., historical segrega-
tion into South and West Phoenix alongside industrial
source zoning, clarifies the origin of these long-term
inequities with minority population in these areas (Bolin
et al. 2005).

Limitations

Environmental justice studies, including this study, often
use classic regression models to test the relationship
between independent and dependent variables (Chakraborty
et al. 2011). The classic global regression model makes two
key assumptions, that observations and residuals are inde-
pendent and the process under study is stationary.
Assumptions regarding stationarity can be made if the
region under study and the data set are small enough and the
spatial units are as small as possible, as in the case of census
block groups for this study (Gilbert and Chakraborty 2011;
Páez 2004; Grineski and Collins 2008). However, the
demographic data used in this study did show clustering, as
Moran’s I tests returned significant results for all groups
(P< 0.01).

Based on the results shown by changing the spatial
aggregation of pollutant data, we believe that stationarity
bias in our regression model is low. However, future studies
could be improved by using regression techniques that
control for spatial dependence, such as geographically
weighted regression or simultaneous autoregressive models
(Brunsdon et al. 1999; Kissling and Carl 2008; Chakraborty
2009).

It should also be noted that there is inherent spatial error
involved in using kriging interpolation to create the pollu-
tion surfaces, especially when the density of the input net-
work is sparse. Although alternatives have been suggested
to minimize this error, e.g., using linear regression models
to improve the interpolation (Diem 2003; Diem and Comrie
2002), these methods have their own drawbacks including
the need for significant high-resolution data resources; and
thus are best suited to smaller scales.

Though we recognize the inherent problems with kriging
interpolation, we contend that since this study focuses pri-
marily on the regional scale pattern and its changes between
temporal scales, our pollution surfaces are adequately robust
for the purposes. To further test this contention, we created
error prediction surfaces and performed a removal bias
analysis on the interpolated surface (see Online Resources
Supplementary Figs. S10, S11). This analysis showed
estimated average bias for O3 at 2 ppb (Range: 7–0 ppb;
SD: 2 ppb). PM10 exhibited more error than O3, with an
average bias of 11.8 µg/m3 (Range: 91.5–0.1; SD: 18.7).
The highest bias existed in sparsely populated rural areas
where stations are farther apart in distance, and is especially
associated with PM10 hotspots located in rural areas south
of metropolitan Phoenix. PM10 bias in the metropolitan
area, where monitoring stations, and population, are more
densely located, was considerably lower (see Online
Resource Supplementary Fig. 11).

Conclusions

Distributive environmental inequities exist in the Phoenix
area across spatial scales for the two ambient pollutants of
most concern—O3 and PM10. These inequities affect dif-
ferent social groups to varying degrees, based on their
location and population proportion in the metropolitan area.
These populations have various legacy stories behind them:
Native Americans were forcibly confined to reservations in
the nineteenth century where the greater part of their free-
dom and livelihood was denied them (Meeks 2007). African
Americans and Hispanic people, arriving after the nine-
teenth century Anglo settlers, were excluded from living in
privileged areas reserved for Whites, including by restric-
tive deeds and covenants, and instead were segregated into
South and West Phoenix, where city planners placed heavy
industries and waste handling facilities (Bolin et al. 2013).
The observed patterns between air pollution and demo-
graphics today are in part a persistent legacy of past
segregation.

Youth and elder populations, most vulnerable to pollu-
tion effects, have different situations. The elder population,
while certainly not a unique group suffering oppression like
minority populations in the past, has nevertheless often
purchased their retirement homes with the expectation of a
clean and healthy environment; and the youth are obviously
under the authority of their guardians and have little to say
about the environment where they live. All of these groups
have distinct reasons for being protected from environ-
mental inequities, which begins with identifying the
relationships.

The occurrence of adverse health effects to these dif-
fering population groups because of excessive exposure to
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O3 or PM10 has not been confirmed with this study,
although serious health complications can be implied
from frequent acute or long-term chronic exposure to
these pollutants (Pope and Dockery 2006; Lippmann
1989). The case to be made here is that conditions, either
historical or current, are such that populations of limited
mobility are located in areas where they bear a larger
burden of criteria pollutant exposure. Our findings can
help policy makers and regulating agencies in the Phoenix
area to make more informed decisions to protect the health
of its communities.

Our case study has shown the usefulness of using a
multi-scaled spatiotemporal methodology for investigating
environmental justice issues. This methodology is gen-
eralizable to other studies where pollution data, especially
ambient air pollution data, from a network or model exists
across multiple scales of space and time. As shown in this
case study, air pollution patterns are spatially hetero-
geneous and temporally dynamic, so the utilization of a
multi-scaled spatiotemporal methodology is important to
discover the full extent of distributive environmental
inequity.
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