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Scale and scaling: a cross-disciplinary
perspective

7.1 Introduction

Scale and heterogeneity are two key concepts in landscape ecology which
are inherently related. Scale would matter little in a world where entities and
relationships remain invariant across space or time, or in a landscape that is
spatially or temporally homogeneous (i.e., uniform or random). However, real
landscapes are heterogeneous biophysically and socioeconomically, and they
must be treated as such for most questions and problems that interest us as
scientists or citizens. Spatial heterogeneity – the diversity of entities and their
spatial arrangement – is one of the most essential and unifying features of all
natural and anthropogenic systems. Landscape heterogeneity is the manifesta-
tion of patchiness (discrete patterns) and gradients (continuous variations) that
are intertwined across multiple spatial scales. Thus, scale is indispensable for
describing and understanding landscape pattern.

It is not surprising, therefore, that scale has become one of the most funda-
mental concepts in landscape ecology, a field that focuses prominently on spa-
tial heterogeneity and its ecological consequences (Risser et al. 1984, Forman
and Godron 1986, Forman 1995, Turner et al. 2001). In fact, landscape ecol-
ogy has been widely recognized by biologists, geographers, and even social sci-
entists for its leading role in studying scale issues (McBratney 1998, Marceau
1999, Withers and Meentemeyer 1999, Meadowcroft 2002, Sayre 2005). How-
ever, it was not until the 1980s that the notion of scale began to gain its promi-
nence in landscape ecology (and in ecology in general). Also, landscape ecology
is not the only discipline that deals with scale and spatial pattern. The goal of
geographical research is to describe and explain the spatial patterns of natural
and anthropogenic features on the Earth’s surface (Harvey 1968), and scale as a
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geographic variable is “almost as sacred as distance” (Watson 1978). However,
geographers have long opted for single-scale studies without adequate justifi-
cation (Watson 1978, Meentemeyer 1989).

Nevertheless, studies explicitly dealing with spatial scale in both ecology and
geography date back to several decades ago. For example, plant community
ecologists have used various block-variance methods to investigate multiple-
scale patterns of vegetation since the 1950s (Greig-Smith 1952, Dale 1999).
On the other hand, insightful discussions on the relationships among pat-
tern, process, and scale were provided by several prominent geographers in
the 1960s and the 1970s (e.g., Haggett 1965, Harvey 1968, Miller 1978), when
the field of landscape ecology was still unknown to most ecologists around the
world. The most notable research on scale issues in the geographic literature,
however, is the study of the so-called “modifiable areal unit problem” or the
MAUP (Openshaw 1984, Jelinski and Wu 1996). The MAUP is quite relevant to
scale issues in landscape ecology and will be further discussed later.

Even those disciplines that do not focus explicitly on spatial patterns have
not been able to completely ignore the role of scale. For example, economists
have long made the distinction between microeconomics and macroeconomics
that correspond to fine-scale and coarse-scale economic patterns and processes,
whereas different levels of institutions or organizational hierarchies (e.g.,
household, community, regional, national, and international) often define the
scope and objectives of sub-disciplines and research topics in social and polit-
ical sciences. In these cases, however, scale has often been treated implicitly or
rather coarsely. Although scale is as important in social sciences as in natural
sciences, greater progress has been made in ecological and physical sciences in
recent decades. To date, efforts to compare and integrate scale issues across dis-
ciplines are lacking, but urgently needed (Wu and Hobbs 2002, Sayre 2005).

The main goal of this chapter is to provide an overview of the key con-
cepts, methods, and state-of-the-science of scale and scaling issues that are
relevant to landscape ecology. Obviously, this is an extremely ambitious goal
because of the enormous scope and complexity of this topic. I shall discuss both
the conceptual and technical issues of scale and scaling, and identify major
research questions and challenges in scaling across heterogeneous landscapes.
Although the principal emphasis is placed upon spatial scale, most of the
concepts and methods also apply to temporal scale.

7.2 Concepts of scale and scaling

The terms scale and scaling have acquired a number of connotations
from various disciplines. No matter how it is defined, scale generally “implies a
certain level of perceived detail” (Miller 1978), which most commonly pertains
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to time, space, or levels of organization. Scale definitions may be grouped into
three classes: dimensions, kinds, and components of scale (Table 7.1). Space,
time, and organizational hierarchies represent three primary dimensions of
scale, of which space and time are most fundamental. Organizational hierar-
chies, when nested, generally follow the space–time correspondence principle:
higher levels correspond to broader spatial and longer temporal scales, whereas
lower levels are associated with finer spatial and shorter temporal scales (Simon
1962, Urban et al. 1987, Wu 1999). Within each scale dimension, one can distin-
guish between different kinds of scale: intrinsic scale, observation scale, exper-
imental scale, analysis/modeling scale, and policy scale (see Table 7.1 for defini-
tions). Except for intrinsic scale, all other types of scale are defined or imposed
by the investigator. To quantify variations of a pattern or process across scale,
however, one must specify scale components that are operational. Common
components of scale include cartographic (map) scale, grain (resolution, sup-
port), extent, coverage (sampling density, intensity), and spacing (interval, lag).
While cartographic scale remains a fundamentally important concept in map-
ping science, grain and extent have firmly established themselves as the most
frequently used, operational concepts of scale in ecology. Specifically, grain
refers to the finest level of spatial or temporal resolution of a pattern or a data
set, and extent is the spatial or temporal span of a phenomenon or a study (Allen
et al. 1984, Turner et al. 1989a, Wiens 1989).

The term scaling is sometimes also known as scale transfer or scale transfor-
mation (Blöschl and Sivapalan 1995, Bierkens et al. 2000). In physical sciences,
scaling has traditionally referred to the derivation of power laws, and this nar-
row definition has been adopted in biology and ecology for decades. In partic-
ular, biological allometry involves deriving power-law relationships between
the size of organisms and biological processes (Schmidt-Nielsen 1984, Niklas
1994). Some researchers treat ecological scaling simply as the search for power
laws in the biological world (e.g., Calder 1983, Brown and West 2000). How-
ever, a broader definition of scaling, i.e., the translation of information across
scales or organizational levels, has widely been used in ecology, geography, and
environmental sciences (Turner et al. 1989a, Wiens 1989, King 1991, Rastet-
ter et al. 1992, Blöschl and Sivapalan 1995, Marceau 1999, Wu 1999, Bierkens
et al. 2000). Accordingly, the process of transferring information from finer
to broader scales is called scaling up or upscaling, whereas translating infor-
mation from broader to finer scales is known as scaling down or downscal-
ing. In general, scaling involves changing grain size, extent, or both (Allen
et al. 1984, Turner et al. 1989a, King 1991, Wu 1999). Note that hierarchical
levels and scales in time and space are different but closely related concepts. All
levels can be characterized in terms of specific spatiotemporal scales, but not
all scales represent organizational levels of hierarchical systems. Nevertheless,
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ta b l e 7 . 1 . A three-tiered conceptual framework for scale definitions. While all the
definitions are useful for different purposes, only scale components are operational in the
practice of scaling

Dimensions of scale

Time A fundamental dimension that allows for fast

or frequent events to be distinguished from

those that are slow or infrequent

Space A fundamental dimension whereby large and

small entities can be distinguished and their

configurations can be discerned

Organizational hierarchy A directional ordering of interacting entities

that have distinctive process rates, thus

forming different levels. As ecological

organizations exist in space and time, levels

always correspond to certain spatial and

temporal scales

Kinds of scale

Intrinsic scale Scale at which a pattern or process actually

operates

Observation scale Scale at which measurements are made or

sampling is conducted

Experimental scale Scale at which an experiment is performed

Analysis/modeling scale Scale at which an analysis is conducted or a

model is constructed

Policy scale Scale at which policies are intended to be

implemented

Components of scale

Grain Finest level of spatial or temporal resolution of

a pattern or a data set; equivalent or similar

to resolution, support, or minimum

mapping unit (MMU)

Extent Spatial or temporal span of a phenomenon or a

study; equivalent to the study area or study

duration

Coverage Proportion of the study area or duration

actually sampled; also called sampling

density or intensity

Spacing Distance between two neighboring sampling

units; also called sampling interval or lag

Cartographic scale Ratio of map distance to actual distance on the

Earth’ s surface; also called map scale
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“a change in scale often necessitates consideration of new levels of organiza-
tion” (O’Neill and King 1998).

7.3 Scale effects, MAUP, and “ecological fallacy”

Scale-related studies in landscape ecology during the past two decades
have focused on three distinctive but intrinsically linked issues: characteristic
scales, scale effects, and scaling. In this section I shall discuss the first two, with
an emphasis on scale effects. Scaling approaches and methods will be the sub-
ject of the next section. In particular, this section makes a deliberate effort to
compare and contrast scale effects in ecology with the MAUP and the so-called
“ecological fallacy” in geography and the social sciences.

7.3.1 Characteristic scales and scale effects

The characteristic scale of an ecological phenomenon is the spatial and
temporal scale on which the phenomenon principally operates and thus can
be most appropriately studied. The background assumption of characteristic
scales is that many, if not most, patterns and processes each take place on a finite
range of scales (or scale domains), and thus different phenomena can be charac-
terized by their distinctive scale domains. A number of empirically constructed
space–time diagrams, in which phenomena are plotted against the space and
time scales of their occurrences, corroborate this assumption (e.g., Stommel
1963, Clark 1985, Urban et al. 1987, Delcourt and Delcourt 1988, Blöschl and
Sivapalan 1995). On the other hand, different phenomena may overlap in their
scale domains to varying degrees, and this scale overlap can tell us the nature of
the relationship between the different processes of interest. For example, pro-
cesses operating on commensurate scales may interact frequently, whereas pro-
cesses with disparate rates (e.g., a few orders of magnitude apart) may have no
direct effect on each other. From this perspective, identifying the characteris-
tic scales of relevant patterns and processes is a critical first step in designing a
successful research project. Hierarchy theory has provided a conceptual frame-
work as well as practical guidelines for the search of characteristic scales, whose
detection is often associated with scale breaks (e.g., O’Neill et al. 1991, Cullinan
et al. 1997, Wu 1999, Hay et al. 2001, Hall et al. 2004).

A phenomenon may not be observed or gauged properly if the scale of obser-
vation is not commensurate with the characteristic scale of the phenomenon.
While the scale of observation is a choice by the observer, characteristic scales
are intrinsic to that being observed. Across a landscape, changing the “lenses”
of observation may lead to a series of different patterns, and the same phe-
nomenon may be manifested differently on different scales. These are scale
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effects, reflective of both the scale multiplicity of landscape structure and arti-
facts in pattern analyses (Wu 2004, Li and Wu, Chapter 2, this volume). More
specifically, scale effects may occur in any statistical analyses or dynamic mod-
els that use area-based data when grain size or extent is changed. Although
the effects of quadrat size and position on observed vegetation pattern were
explicitly investigated in the 1950s by plant ecologists, it was not until the
late 1980s that landscape ecologists began to investigate the various effects of
changing grain size and extent on landscape pattern analysis and, to a lesser
extent, on landscape modeling. Turner et al. (1989b) were among the first to
systematically study how changing grain size and extent could affect three
landscape indices (diversity, dominance, and contagion). Since then, numerous
studies have examined scale effects in landscape pattern analysis (Benson and
Mackenzie 1995, Wickham and Riitters 1995, Jelinski and Wu 1996, O’Neill
et al. 1996, Saura 2004, Wu 2004) and spatial modeling (King et al. 1991, Wu and
Levin 1994, Ciret and Henderson-Sellers 1998, Kersebaum and Wenkel 1998,
Jenerette and Wu 2001).

7.3.2 The MAUP

When landscape ecologists were busy “discovering” scale effects with
new pattern metrics and remote sensing data in the 1990s, studies of the
MAUP-related issues had existed for several decades in geography and the
social sciences. The root of the MAUP, as the name suggests, is the use of areal
units that are “modifiable” or arbitrary. Area-based data include census data,
remote sensing data, and raster-based maps of soil, vegetation, land use, and
other themes. The MAUP has two components: the scale effect and the zoning
effect (Openshaw 1984, Jelinski and Wu 1996). The scale effect here refers to
the variation in the results of statistical analysis caused by spatially aggregat-
ing data into fewer and larger areal units (i.e., reducing the spatial resolution or
coarse-graining). This is equivalent to the effect of changing grain size in land-
scape ecology (Turner et al. 1989b, Wu 2004). The zoning effect is the variation
in the results of statistical analysis due solely to different ways of aggregating
areal units to a given scale of analysis (i.e., changing the boundaries and con-
figurations of areal units at a given spatial resolution). In landscape ecology,
variability in statistical results due to the aggregation of pixels along different
directions is an example of the zoning effect (Jelinski and Wu 1996, Wu 2004).

The phenomenon of arbitrarily defined areal units affecting statistical
results was first noticed in electoral geography more than 100 years ago when
politicians purposefully manipulated the local boundaries of electoral districts
to alter the outcome of an election without changing the individual votes them-
selves (gerrymandering). As the earliest study of the MAUP, Gehlke and Biehl
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(1934) conducted a correlation analysis between male juvenile delinquency
and median monthly income from 252 census tracts in Cleveland, USA, and
found that the correlation coefficient increased considerably as the areal units
were aggregated contiguously. While early studies were sporadic, the resur-
gence of interest in the MAUP in the 1980s was evident from the flurry of stim-
ulating studies by Openshaw and his associates (e.g., Openshaw and Taylor
1979, Openshaw 1984). Numerous MAUP studies have been published ever
since, most of which were concerned with correlation and regression analy-
ses (Arbia 1989, Goodchild and Gopal 1989, Fotheringham and Wong 1991,
Wrigley 1994, Amrhein 1995).

After decades of research, however, geographers still have different views
on the nature and scope of the MAUP (Goodchild and Gopal 1989, Wrigley
1994, Jelinski and Wu 1996, Marceau 1999). One extreme view regards the
MAUP as simply a consequence of using “bad” or improper methods, and thus
the solution is to find “scale-independent” or “frame-independent” methods.
But most other views recognize that the MAUP is a result of the interactions
between the methods and the data used. That is, spatial effects are not just arti-
facts, and the MAUP can provide useful information on the multiple-scaled
patterns embedded in the data (Jelinski and Wu 1996, Marceau 1999, Hay
et al. 2001).

7.3.3 The “ecological fallacy”

The existence of the MAUP implies that statistical relationships from
area-based data may change with the scale of analysis, and thus cross-scale
inferences are unwarranted. This point was made clearly and loudly by
Robinson (1950) when he introduced the distinction between “an individ-
ual correlation” and “an ecological correlation.” In individual correlations the
variables are descriptive properties of indivisible individuals, whereas in eco-
logical correlations the variables are descriptive properties of groups of individ-
uals. A striking example in Robinson (1950) was the correlation between nativ-
ity and illiteracy for the USA in 1930. The analysis using individual-level data
produced a positive correlation between foreign birth and illiteracy (i.e., the
individual correlation=0.118), supporting the common observation that the
native-born generally had a better command of American English. However,
the same analysis using the state-level aggregated data indicated that the per-
cent illiterate was negatively correlated with percent foreign-born (the ecolog-
ical correlation=−0.619). Apparently, this aggregate-level result could lead
to a wrong inference at the individual level that the foreign-born were more
likely to be literate of American English than the native-born. In reality, this
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aggregate-level correlation was due largely to the fact that most foreign-born
lived in states where the native-born were relatively literate (Freedman 2001).

Robinson (1950) concluded that individual and ecological correlations were
almost always different in practice because the ecological correlations were
usually stronger than the individual correlations. Since then, the phenomenon
of improper inferences of individual behavior from an analysis of groups has
been known as the “ecological fallacy” (Wrigley et al. 1996, King 1997). Note
that the word, “ecological,” in this case means “of groups” or “of aggregates,”
not really related to the interrelationship between organisms and their envi-
ronment. Unfortunately, this connotation of “ecology,” a dangerously mis-
leading distortion of the original meaning of the word, has long been used in
the social and behavioral sciences, such as “ecological correlations,” “ecologi-
cal regressions,” “ecological inferences,” and “ecological fallacies” (e.g., Dogan
and Rokkan 1969, Poole 1994, Wrigley et al. 1996, King 1997, Freedman 2001).
Alker (1969) attempted to develop “a typology of ecological fallacies” to include
several types of inappropriate inferences from aggregated areal data. In par-
ticular, the individualistic fallacy referred to the improper generalization of
aggregate-level relationships from individual-level results, a somewhat con-
verse problem of the “ecological fallacy.” The rest of the “ecological fallacies”
identified by Alker (1969) were related to different kinds of sampling and con-
ceptual errors in statistical inferences. The “ecological” and individualistic fal-
lacies are both cross-level inference fallacies, and really should have been called
as such.

Robinson’s (1950) study has attracted a great deal of attention particularly
because quantitative social and political studies (and thus policies and actions
based on such studies) at the time were based primarily on aggregate areal
data. It “startled, dismayed, and even infuriated many users” of areal data
(Alker 1969), and “sent two shock waves through the social sciences that are
still being felt, causing some scholarly pursuits to end and another to begin”
(King 1997). Unfortunately, a number of unintended yet misleading conse-
quences have resulted from Robinson’s (1950) study. In particular, the notion
of “ecological fallacy” has led to several misguided conceptions: individual-
level models are always better specified and more accurate than aggregate-
level models, aggregate-level relationships are always intended as substitutes
of individual-level relationships, and aggregate-level variables have no rele-
vance to causal relationships and mechanistic explanations of individual-level
activities (Allardt 1969, Schwartz 1994). In fact, aggregate-level relationships
can be quite useful for defining the context, generating potential hypothe-
ses, and identifying the relevance for studying individual-level phenomena.
Frequently, aggregate-level variables may not only be constraints on, but
also direct causes of, individual-level processes. For example, population-level
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studies are crucial for identifying important public health problems, and
certain risk factors for diseases genuinely operate at the population level
(Pearce 2000).

7.3.4 Towards a more comprehensive understanding of scale effects

The numerous studies of the MAUP and cross-level fallacies are evidently
relevant to understanding scale issues faced by landscape ecologists as well as
other scientists. The literature of the social sciences on these issues is a rich
source of information for learning how scale can help elucidate complex pro-
cesses, identify hierarchical linkages, or create spurious patterns in human
landscapes where social, economic, and political forces are dominant drivers.
Findings of the effects of MAUP on correlation analysis, regression analysis,
and geospatial models (Openshaw 1984, Arbia 1989, Goodchild and Gopal
1989, Fotheringham and Wong 1991, Amrhein 1995) should be relevant for
similar types of landscape ecological analyses.

The “ecological fallacy” is a problem of disaggregation (or downscaling) in
which inferences about a lower level are made from knowledge of an upper
level. Ecologists are frequently faced with such challenges to predict the prop-
erties of “trees” using information on the “forest.” Developed in the social
sciences over the past several decades, the various methods for solving the
problem of cross-level fallacies may prove to be useful for solving genuinely
ecological problems as well. These methods are collectively known as the
“ecological inference” methods, including “ecological regression” (Goodman
1953, Freedman 2001), the neighborhood method (Freedman et al. 1991), and
the EI method (King 1997). However, analogous to deciphering land cover com-
position within a pixel of a remote sensing image, inferring the behavior of
lower levels from higher-level data is inherently difficult because: (1) aggre-
gate data usually do not contain explicit information on subgroup behavior,
and (2) the characteristics of aggregates may be outcomes of nonlinear inter-
actions among subgroups or emergent properties, so that they cannot be sim-
ply “decomposed” using reductionist methods. Like other downscaling meth-
ods (more in the next section), none of the ecological inference methods can
work well in all circumstances. Both impressive progress and thorny problems
in cross-level inference research are evident in a series of exchanges between
some leading scholars in this area (Freedman et al. 1998, Freedman et al. 1999,
King 1999).

In spite of its relevance to ecology, the term MAUP seemed completely absent
in the ecological literature until the mid-1990s when Jelinski and Wu (1996)
discussed the implications of the MAUP for landscape ecology. Even today,
the enormous literature on the MAUP and cross-level fallacies continues to
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Basic operations

1-E: Change extent only (extrapolation)

1 - E 2 - G

4 - EG

7 - EGC

5 - EC

3 - C

6 - GC

and singling out)

2-C: Change grain only (coarse- and

Changing 
coverage (c)

Changing 
extent (E)

Changing 
grain (G)

fine-graining)

Combinations

4-EG: Change extent and grain
5-EC: Change extent and coverage

7-EGC: Change extent, grain, and coverage
6-GC: Change grain and coverage

3-C: Change coverage only
(interpolation and sampling)

f i g u r e 7 . 1

Seven different kinds of scaling operations. In practice, a scaling project may often
involve two or more operations in combination

be ignored by biological and physical scientists, including the most scale-
cognizant landscape ecologists. This situation is puzzling because ecological
analyses frequently use area-based data and because landscape ecology is actu-
ally known for being highly interdisciplinary. In geography and the social sci-
ences, on the other hand, even the recent literature on the MAUP and cross-level
fallacies seldom cites any of the scale-related studies in ecology. This is equally
disappointing given that geography and landscape ecology both emphasize
spatial views and approaches.

7.4 Theory and methods of scaling

Spatial scaling is about translating information across heterogeneous
landscapes. The significance and challenges for spatial scaling both reside in
the fact that landscape patterns and processes are spatially heterogeneous, non-
linearly interactive, and replete with feedbacks and threshold dynamics. Thus,
to move from one scale to another in such complex landscapes, one has to either
assume away heterogeneity, nonlinearity, and feedbacks, or deal with them
explicitly and effectively. In practice, spatial scaling is done through seven basic
operations (Bierkens et al. 2000). Changing extent, grain size, and coverage
are the three basic operations, whereas the other four are different combina-
tions of the three (Fig. 7.1). Strictly speaking, extrapolation is to increase the
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extent of an observation set, while interpolation is to increase the coverage of a
study area. In landscape ecology and geography, scaling frequently involves the
change of extent (extrapolation) and grain size or resolution (fine-graining and
coarse-graining). The key to spatial scaling is to figure out ways to implement
these scaling operations, i.e., scaling approaches and methods.

Scaling methods may be grouped into two general approaches (Blöschl and
Sivapalan 1995, Bierkens et al. 2000): the similarity-based scaling approach
(SBS) and the dynamic model-based scaling approach (MBS). SBS is based on the
principles of similarity, and often characterized by power-law scaling functions
derived either analytically or empirically. In contrast, MBS transfers informa-
tion between different scales through changing the input, parameters, and
formulation of dynamic models. MBS tends to be more comprehensive, and
usually does not lead to simple scaling functions as does SBS.

7.4.1 The SBS approach

Similarity has long been used as the background assumption in a num-
ber of scaling methods. Two systems are said to be similar if they share some
properties that can be related across the systems by a simple conversion fac-
tor (Blöschl and Sivapalan 1995). These similarities can be of different kinds,
including geometric, dynamic, and functional similarities. An important and
relatively new concept in the SBS approach is self-similarity, which is the key
idea in fractal geometry (Mandelbrot 1982, Hastings and Sugihara 1993). Self-
similarity refers to the phenomenon that the whole is composed of smaller
parts resembling the whole itself and that patterns remain similar at different
scales. In the following, I discuss two commonly used SBS methods: similarity
analysis and allometric scaling.

7.4.1.1 Similarity analysis
Similarity analysis aims to reduce dimensional quantities required for describ-
ing a phenomenon based on the known governing equations (Blöschl and
Sivapalan 1995). Barenblatt (1996) provided a “general recipe” for similarity
analysis that included seven steps: (1) to specify a system of governing variables
that are necessary to describe the phenomenon of interest, such that a mathe-
matical relation of the form, a=f (a1, . . . , ak, b1, . . . , bm), can be assumed to hold;
(2) to determine the dimensions of variables and select those variables whose
dimensions are independent of each other; (3) to represent or transform the
relations under study as products of powers (or dimensionless ratios) of vari-
ables with independent dimensions; (4) to estimate the numerical values of the
similarity parameters (dimensionless variables) using empirical data; (5) to for-
mulate scaling laws (i.e., relationships between nondimensional groups) under
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the assumption of complete similarity, and test them against empirical data; (6)
if the test in step 5 fails, then formulate scaling laws under the assumption of
incomplete similarity (or self-similarity) and test them against empirical data
(in this case, scaling analysis cannot be completed using dimensional analysis
because the power laws are fractal); and (7) to formulate similarity laws with as
few similarity parameters as possible.

There have been a number of successful applications of similarity analysis in
geophysical sciences. The Monin–Obukhov theory assumes that atmospheric
boundary-layer flows can be viewed as being dynamically similar across scales
and relates turbulent fluxes to a mean vertical gradient of wind, temperature,
and specific humidity (Brutsaert 1982, Wu 1990). Thus, the gradient-diffusion
theory (or K-theory), originally developed for molecular-level diffusion pro-
cesses, has been used to estimate broader-scale turbulent transfer of heat and
mass based on the small-eddy concept that treats turbulent transport as a result
of local mixing by small eddies. In other words, even though the turbulent
diffusivity (about 1m2 s−1) is as much as 105 times greater than the molecu-
lar diffusivity (about 10 to 20mm2 s−1), turbulent transfer may still be treated
as a dynamically similar process to molecular diffusion. Of course, this is not
always a valid treatment. While the K-theory has been successful in modeling
turbulent transfer for the boundary layer above vegetation, its success is lim-
ited within plant canopies where the small-eddy concept is less appropriate
(Brutsaert 1982, Wu 1990).

Similarity analysis has widely been used in soil and hydrological sciences
(Blöschl and Sivapalan 1995, Sposito 1998, Bierkens et al. 2000). A well-known
example is the derivation of scaling equations for soil-water transport on the
basis of the fine-scale similar-media concept known as the Miller–Miller simil-
itude (Miller and Miller 1956, Sposito 1998). Similarity analysis has not been
widely used in ecology maybe because the required governing equations for
most ecological processes are either nonexistent or analytically intractable.

7.4.1.2 Allometric scaling
Allometry usually refers to the study of the relationship of biological form
and process to the size of organisms (LaBarbera 1989, Niklas 1994, Brown and
West 2000). The allometric scaling relations are usually based on assumptions
of similarity (e.g., geometric similarity and self-similarity), and take the form
of a power law: Y = Y0Mb, where Y is some variable representing a pattern or
process of interest, Y0 is a normalization (or scaling) constant, M is some size-
related variable (e.g., body mass), and b is the scaling exponent. There are two
ways of obtaining allometric scaling relations: the analytical and empirical
approaches. This dichotomy may be generalized for all SBS methods in physi-
cal and biological sciences.
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The analytical approach derives scaling relations from the existing theory
of similarity using techniques such as dimensional analysis, and thus has the
ability to explain and predict cross-scale relationships. However, these analyt-
ically derived scaling relations must be tested against empirical observations
for their validity. The empirical approach is descriptive and inductive, and usu-
ally employs two kinds of regression analysis. Ordinary least squares regression
(OLS) can be used when the purpose of a study is only to predict one variable
based on the other, or to find out if the relationship is statistically significant (in
this case simple correlation analysis can also be used). However, if the purpose is
to determine the exact value of the scaling exponent (i.e., the slope of the regres-
sion line in a log–log plot), OLS regression is generally inadequate especially
when the coefficient of correlation is small (Niklas 1994). In this case, reduced
major axis (RMA) regression is more appropriate (LaBarbera 1989, Niklas 1994)
because it treats the two variables in the allometric equation in the same way
(i.e., no “independent” variables in the regression equation and both variables
have an error term).

Brown et al. (2002) discussed three classes of power laws that describe a vari-
ety of biological and ecological phenomena. Power laws of the first class have
a rather limited range of variation in the scaling constant (Y0) and the scaling
exponent (b), and are mostly quarter-power laws (e.g., animal metabolic rates,
developmental time, life span, maximum rate of population growth, and other
organism-level allometric relations). The second class has a wide range of val-
ues of Y0 and b (e.g., population densities of different species). For the third
class of power laws (e.g., species-area relationship, species-time relationship,
and species-abundance distribution), not only are the scaling parameters not
well constrained, but also the power laws themselves do not hold up over many
orders of magnitude. Brown et al. (2002) asserted that the first class “apparently
reflects the fractal-like designs of resources distribution networks,” whereas
the third class “may not represent examples of self-similar behavior over a wide
range of scales.” In the past decade, there has been a resurgence of interest in
biological allometry which has generated much excitement and controversy
(e.g., Dodds et al. 2001, Bokma 2004, Brown et al. 2004, Cyr and Walker 2004,
Kozlowski and Konarzewsk 2004). More than 15 years ago, LaBarbera (1989)
commented, “Whether a power law reflects a basic biological truth, the under-
lying structure of the universe we are embedded in, or whether it is simply
fairly robust at approximating a variety of data relations is yet to be deter-
mined.” Alas, this statement still seems to hold true today.

Biological allometry is not always relevant to spatial scaling unless spa-
tial scale is incorporated into the allometric equation. Schneider (2001, 2002)
provided a number of examples of spatial allometry for lake ecosystems and
aquatic mesocosms in terms of the geometric attributes of the systems (e.g.,
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the volume, area, perimeter, and depth of lakes or mesocosms) and biological
properties (e.g., fish catch and primary production). Landscape-scale studies
using this approach have been increasing in recent years. For example, Hood
(2002) identified several allometric scaling relations between slough attributes
(e.g., area, outlet width, perimeter, and length) for rivers, and showed that
detrital insect flotsam density was also allometrically related to slough perime-
ter. Similarly, Belyea and Lancaster (2002) found that the area, depth, width,
and length of peatland bog pools were allometrically related. It is tempting
to jump from empirically derived power-law relations to ecological explana-
tions of underlying mechanisms by invoking the theory of self-similarity and
self-organization. But this is unwarranted, be it in vogue. Nonetheless, spatial
allometry provides a general method to summarize and extrapolate observed
patterns over a range of scales, and to suggest underlying processes (Wu 2004).

7.4.2 The MBS approach

Unlike the SBS approach in which similarity goes both ways, MBS meth-
ods for upscaling versus downscaling differ in terms of both general per-
spectives and detailed procedural steps (Fig. 7.2). Thus, they are discussed
separately here although both may be used interactively in a given scaling
project.

7.4.2.1 Upscaling methods
Upscaling with dynamic models typically consists of two major steps: char-
acterizing heterogeneity, and aggregating information by scaling up local (or
patch-level) models (Fig. 7.2). Characterizing heterogeneity usually involves
the classification and quantification of spatial patterns, which is a way of sim-
plifying the complexity of scaling by partitioning the heterogeneous land-
scape into a limited number of relatively homogeneous patches. The second
step is to aggregate information from the finer to the broader (target) scale
through manipulating the input and parameters or altering the formulation
of the local-scale model. Depending on the scaling context, this process may
correspond to one of two basic scaling operations: coarse-graining (increasing
grain size) or extrapolation (increasing extent). A number of upscaling meth-
ods have been developed in geophysical and biological sciences during the past
decades. King (1991) presented four methods: extrapolation by lumping (EL),
direct extrapolation (DE), extrapolation by expected value (EEV), and explicit
integration (EI). This list can be expanded to include additional methods, such
as extrapolation by effective parameters (EEP), spatially interactive modeling
(SIM), and the scaling ladder method (SL). Each method is described below.
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Extrapolation by lumping is to estimate the target-scale result by running
the local-scale model with the mean values of parameters and inputs averaged
across the entire landscape. The major procedural steps of this scaling method
can be depicted in a “scaling flow diagram” (see the upper panel of Fig. 7.2A).
EL does not deal explicitly with spatial heterogeneity; rather, it suppresses it
in average values of model arguments. EL is the simplest and most error-prone
upscaling method. In theory, it only works well when the local model is lin-
ear and still valid at the target scale, and when horizontal interactions between
patches are weak and symmetric.

Instead of averaging parameters and inputs before running the local model
as in EL, DE obtains the target-scale results by averaging the outputs of the local
model that is run, with spatially varying parameters and inputs, for all patches
of the entire landscape (King 1991). The scaling flow diagram of DE is in sharp
contrast with that of EL (see the lower panel of Fig. 7.2A). Averaging the outputs
rather than inputs of the local model can significantly reduce scaling errors due
to the nonlinearity in the model (Bierkens et al. 2000), and eliminates the need
to apply the local model directly at the landscape scale. DE treats spatial hetero-
geneity explicitly but not interactively, assuming that horizontal interactions
and feedbacks are negligible or at steady state. Typically, DE does not consider
any processes that operate at scales larger than the patch on which the local
model is developed. DE is data-demanding and computationally intensive, and
thus may not be feasible when the landscape is too large.

EEV obtains the target-scale results by deriving the expected value of the
outputs from the local model, which is run based on joint probability density
functions or a sampling approach (e.g., Monte Carlo simulation) to account for
spatial heterogeneity (King 1991, Rastetter et al. 1992). The scaling flow dia-
grams of EEV and DE are the same in terms of the general steps, but differ in
the specifics of how to go from one step to the next. EEV does not treat spa-
tial heterogeneity explicitly, but in statistical terms. By so doing, EEV allevi-
ates the problems of excessive computational and data demands that DE may
suffer, and is amenable to uncertainty analysis (Rastetter et al. 1992, Li and Wu
2005). As with DE, EEV neither explicitly considers the patch configuration nor
feedbacks and interactions among patches.

EI refers to directly integrating the local-scale model to the landscape scale
analytically or numerically based on explicit mathematical formulations (King
1991). In this case, the spatial heterogeneity of the landscape must be rep-
resented as mathematical functions of space in closed forms, and the indef-
inite integral of the local model with respect to space must be obtainable.
When all of its requirements are met, EI is the most elegant, efficient, and
accurate upscaling method. Unfortunately, this is rarely the case with real
landscapes.
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Similar to EL, EEP also assumes that the local model applies to the target
scale, but uses “effective” or “representative” parameters, instead of spatial
averages, to produce the target-scale estimates (Blöschl and Sivapalan 1995,
Bierkens et al. 2000). Because both methods run the local-scale model with
landscape-scale input and parameters, EEP and EL share the same scaling flow
diagram (Fig. 7.2A). EEP has been widely used in soil physics, hydrology, and
micrometeorology, and finding effective parameters can be quite difficult for
nonlinear models (Blöschl and Sivapalan 1995, Bierkens et al. 2000).

When horizontal or lateral interactions must be considered explicitly (e.g.,
metapopulation processes, disturbance spread, and land–water interactions),
spatially interactive modeling seems to be the only option (Judson 1994, Wu
and Levin 1997, Tenhunen and Kabat 1999, Rastetter et al. 2003, Peters et al.
2004). SIM is able to incorporate feedbacks, time delays, and new features on
larger scales. Spatially interactive models include variables, parameters, and
input at multiple scales. Thus, the scaling flow diagram of SIM would be dif-
ferent from those in Fig. 7.2A; rather it needs to reflect the multi-scaled nature
of the models themselves (e.g., Fig. 2 in Wu and Levin 1997). Such models
can easily become ecologically too complex and computationally overwhelm-
ing (Levin et al. 1997, Levin and Pacala 1997). This is particularly true when
the number of scales becomes more than just a few. In this case, a hierarchi-
cal scaling scheme is useful to simplify complexity and reduce aggregation
errors.

All the upscaling methods discussed above typically are of “short-range”
because the assumptions behind them are less likely to be satisfied over a broad
range of scales and because they become technically less feasible when multiple
scale breaks (or thresholds) are encountered. In these cases, the scaling ladder
method may be used (Wu 1999). SL is based on the hierarchical patch dynamics
(HPD) paradigm, which integrates hierarchy theory and patch dynamics (Wu
and Loucks 1995). The basic idea is to establish a spatial patch hierarchy con-
sisting of a series of nested scale domains, and then use it as a scaling ladder to
move information between two adjacent scales one step a time (Wu 1999, Wu
and David 2002). Thus, the short-range scaling methods discussed above can all
be used in a hierarchical scaling framework. Examples of patch hierarchies for
upscaling purposes include levels of biological organization (e.g., leaf–plant–

stand as in Reynolds et al. 1993) and different types of nested landscape units
(e.g., Reynolds and Wu 1999, Wu and David 2002, Hall et al. 2004).

7.4.2.2 Downscaling methods
Downscaling also consists of two general steps: disaggregating information
and singling out (Fig. 7.2). The goal of disaggregating coarse-grained infor-
mation is to derive the fine-scale pattern within a given areal unit (e.g., pixel
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or patch), a process also known as fine-graining (Blöschl and Sivapalan 1995,
Bierkens et al. 2000). Downscaling often uses stochastic or probabilistic meth-
ods with auxiliary information on the finer scale. Singling out is simply to
locate the site of interest in the disaggregated pattern. Much of the research
on downscaling in the past few decades has been done in the context of global
climate change, and the primary goal is to translate general circulation model
(GCM) output into regional-scale predictions for scientific research as well as
decision-making purposes. These methods are usually classified into two gen-
eral categories: empirically based statistical and process model-based down-
scaling approaches (Hewitson and Crane 1996, Wilby and Wigley 1997, Kidson
and Thompson 1998, Wilby et al. 1998, Murphy 1999, 2000).

The empirically based statistical downscaling approach aims to derive
regional climate conditions (e.g., temperature, precipitation, and wind veloc-
ity) from large-scale synoptic circulation features (e.g., upper-level winds,
geopotential heights, and sea-level pressure) predicted by GCMs. This is usu-
ally done through “transfer functions” which are obtained through multiple
linear regression, artificial neural networks, classification and regression trees,
or other statistical methods (Hewitson and Crane 1996, Wilby et al. 1998, Li and
Sailor 2000, Crane et al. 2002). The empirical downscaling approach works well
for temporally continuous variables such as temperature, but much less effec-
tively for temporally discontinuous and highly intermittent variables such as
precipitation (Li and Sailor 2000).

The process model-based downscaling approach, on the other hand, uses
nested dynamic models of different scales to disaggregate information down-
ward. For example, a higher-resolution regional climate model may be embed-
ded within a global GCM, so that the GCM output drives the regional model
which in turn produces downscaled results. The models are coupled either
through one-way or two-way nesting schemes. In a two-way nesting scheme,
GCM and the embedded regional climate model are run simultaneously and
interact with each other across scales (Hewitson and Crane 1996, Kidson and
Thompson 1998, Murphy 1999).

While the current literature on downscaling is dominated by meteorolog-
ical and climatologic studies, other methods exist in hydrological and soil
research that focus on regional down to local scales. These methods may also be
grouped into the two general downscaling approaches discussed above. Exam-
ples of disaggregating information on soil properties, hydrological time series,
and precipitation patterns are abundant (Blöschl and Sivapalan 1995, Bierkens
et al. 2000). Also, in the social sciences, as mentioned earlier in this chapter,
the methods of “ecological inferences,” including “ecological regression,” the
neighborhood model, and the EI model (Freedman et al. 1998, Freedman et al.
1999, King 1999), may also be used for ecological downscaling, particularly,
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when the research goal is to decipher the behavior of lower-level elements from
higher-level aggregate relationships.

In addition, the common problem of “pixel mixing” in remote sensing arises
from the fact that a single pixel is often a mixture of multiple spectrally unique
land cover types (i.e., the “endmembers”), which leads to errors in image clas-
sification. Remote-sensing scientists have developed a series of subpixel anal-
ysis methods to “unmix” individual pixels to estimate the relative areal pro-
portions of different land-cover types within a pixel. The most widely used has
been the linear spectral unmixing model, which assumes that the reflectance
spectrum of any pixel is the result of linear combinations of the spectra of all
constituent land-cover types within that pixel (Rosin 2001, Song 2005). The
relative abundance of each land-cover type within a pixel is obtained by solv-
ing a closed system of n linear equations where n is the number of bands in
an image. In recent years, a number of other methods have been developed
for pixel unmixing, including fuzzy membership functions (Foody 2000), the
least median of squares method (Rosin 2001), and wavelet and neural network-
based methods (e.g., Mertens et al. 2004). The potential of these pixel unmixing
methods for ecological downscaling studies is yet to be explored.

7.4.3 Uncertainty analysis

Scaling practices always come with uncertainties because of spatial het-
erogeneity, nonlinearity, data inadequacy, and problems with scaling tech-
niques. The main purposes of uncertainty analysis (or error propagation analy-
sis) are to identify the various sources of uncertainties and quantify their effects
on scaling results (Rastetter et al. 1992, Heuvelink 1998a, 1998b). Different
scaling methods are amenable to different uncertainty analysis techniques. For
example, many empirically based statistical scaling methods produce scaling
results with some relevant information on uncertainty (e.g., variance, confi-
dence intervals, and regression or correlation coefficients). Monte Carlo tech-
niques may be used with dynamic modeling methods, such as extrapolation
by expected value and other stochastic models, to estimate confidence inter-
vals. While uncertainty analysis can be quite challenging, a number of methods
have been developed in recent years (Rastetter et al. 1992, Heuvelink 1998a).

Li and Wu (2005) reviewed different aspects of uncertainty analysis, includ-
ing sources of uncertainty in scaling, evaluation of scaling algorithms, error
propagation from parameters and input data to scaling results, and presen-
tation of prediction accuracy and error partitioning. Several techniques for
uncertainty analysis have been used in ecology and environmental sciences,
including probability theory, Taylor series expansion, Monte Carlo simula-
tion, generalized likelihood uncertainty estimation, Bayesian statistics, and
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sequential partitioning. They recommended the following desirable outputs
of uncertainty analysis: (1) measures of model adequacy, (2) full probability dis-
tributions of model outputs (e.g., density function and probability-weighted
values), (3) reliability of model results (e.g., accuracy, confidence level, and
error), (4) relative contribution or importance of each factor as an error source to
total uncertainty, (5) the likelihood of different scenarios (probability or rank-
ing), and (6) identification of the least understood or critical components of the
model.

From the above discussion it is clear that uncertainty analysis should be
regarded as an essential part of the scaling process. But this has not been
the case in ecological studies. Given the increasing importance of cross-scale
studies in today’s scientific research and environmental decision-making, it is
crucial to properly quantify and report uncertainties with scaling results.

7.5 Discussion and conclusions

The increasing prominence of scale issues in ecology and other sciences
since the 1980s seems inevitable for several reasons. First, ecology as a sci-
ence has become progressively more explanatory, and mechanistic explana-
tions inevitably invoke multiple scales in space and time as well as multiple
levels of organization. Second, for the increasing need to understand and solve
broad-scale environmental problems, scientists have to translate information
across spatial and temporal scales or organizational hierarchies. Third, the
past two decades have witnessed significant advances in theory and method-
ology for tackling the complexity of spatially extended, heterogeneous sys-
tems such as landscapes. Important theories and methods for scaling include
hierarchy theory (Allen and Starr 1982, O’Neill et al. 1986), fractal geom-
etry (Mandelbrot 1982), phase transition and percolation theory (Gardner et al.
1987, Milne 1992), cellular automata (Wolfram 1984), self-organized critical-
ity (Bak 1996), and complex adaptive systems (Cowan et al. 1994, Levin 1999).
Fourth, recent advances in remote sensing, geographic information systems
(GIS), and computing technologies have equipped scientists with powerful
tools for dealing with issues of heterogeneity and scale. In addition, the rapid
development of landscape ecology since the 1980s has certainly contributed
to the widespread recognition of the importance of scale within ecology and
beyond.

Today, landscape ecologists are generally aware that scale may directly influ-
ence the results of a study whenever spatial heterogeneity cannot, or should
not, be assumed away. Heterogeneity makes no sense without the explicit con-
sideration of scale, and scale matters little without heterogeneity. There seems
to be a consensus among landscape ecologists today that, whenever possible, a
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multiple-scale or hierarchical approach is preferable to a single-scale approach.
Scaling, as the process of translating information across spatiotemporal scales
and organizational levels, has been increasingly emphasized in ecological stud-
ies. Indeed, scaling is the essence of understanding and prediction, and has a
central role in ecological theory and application (Levin 1992, Levin and Pacala
1997).

There are still numerous problems and challenges in dealing with scale and
scaling issues across disciplines. I conclude this chapter by highlighting several
of them as follows:

� First, scale and scaling are unifying concepts that cut across all disci-
plines in both natural and social sciences, and the diversity of connota-
tions presents both problems and opportunities. To avoid unnecessary
confusion, these terms should always be specified when they are used.
Beyond that, to take a leading role in developing a science of scale, land-
scape ecologists must familiarize themselves with the scale-related ter-
minology and methods developed in other fields, such as geography, soil
science, hydrology, and the social sciences.

� Second, while scale effects are pervasive in the study of heterogeneous
landscapes, we must move beyond simply reporting the occurrences of
scale effects, which would be an endless effort. Instead, the emphasis
should be placed on the search for scaling relations that can be used to
identify underlying processes and translate information across scales. A
straightforward and powerful approach is to construct empirical scalo-
grams in which variations of patterns, processes, and their relationships
are plotted directly against scale (Turner et al. 1989b, Ludwig et al. 2000,
Wu 2004). Such scalograms provide not only direct evidence to test scal-
ing theories, but also a simple yet reliable way of scaling up and down
information across landscapes.

� Third, the two general scaling approaches, similarity-based and
dynamic modeling, need to be better understood and integrated in
ecological studies. No matter how authentic it may sound, the classic
definition of scaling that hinges on power laws is not adequate; it only
covers part of what has actually taken place in ecological scaling. The
two scaling approaches are not contradictory, but complementary to
each other. Scale-invariance theory and hierarchy theory may seem at
odds, but they are simply different perspectives on the same multi-
scaled world. A hierarchical system is composed of a number of scale
domains within which scale-invariance may well exist. Similarly, a hier-
archical scaling scheme may include similarity-based methods. Future
scaling studies in landscape ecology should clearly recognize the pros
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and cons of both approaches, and emphasize the integration between
the two whenever necessary. Neither brutal forces with overwhelmingly
complex models nor scale-free power laws with elegantly simplistic
equations alone would be adequate for understanding and predicting
the dynamics of landscapes.

� Fourth, for both approaches it is important to properly identify scal-
ing thresholds at which scaling relations change abruptly. These thresh-
olds suggest fundamental shifts in underlying processes or controlling
factors (Gardner et al. 1989, Turner et al. 1989a, King et al. 1991, Wu
and Loucks 1995), and define the domains of applicability of the various
scaling methods.

� Fifth, one of the greatest challenges for scaling in real landscapes is to
integrate biophysical with socioeconomic processes. This is especially
true for human-dominated landscapes (e.g., agricultural and urban
landscapes) where natural and anthropogenic processes are intertwined
and often operate on different scales. The mechanics and rules of scaling
for different processes may also vary dramatically. When it comes to the
practice of scaling, universality is elegant, but more of utopia; idiosyn-
crasy is torturous, but more of reality. Complex interdisciplinary issues
call for a hierarchical, pluralistic scaling strategy that integrates both
empirical statistical and dynamic modeling methods.

� Finally, scaling without known accuracy is unreliable, and uncertainty
analysis needs to be an integral part of the scaling process. Ecological
scaling, especially with dynamic models, has rarely been done with rig-
orous accuracy assessment. While it is challenging, uncertainty analysis
should be emphasized in future scaling studies because it provides crit-
ical information about the accuracy of scaling results. This uncertainty
issue of scaling becomes particularly important when scaling results are
expected to be used for management and policy-making purposes.
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