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Abstract

Context Connections among ecosystems and their

components are critical to maintaining ecological

functions and benefits in human-modified landscapes,

including urban areas. However, the literature on

connectivity and ecosystem services has been limited

by inconsistent terminology and methods, and largely

omits human access to nature and its benefits as a form

of connectivity.

Objectives In this paper, we build upon previous

research and theory to define distinct categories of

connectivity, considering both ecological and social

dimensions, and identify ecosystem services that are

supported by them.

Methods We reviewed the literature to determine

socio–ecological benefits that depend on the cate-

gories of connectivity.

Results We identified four distinct but interrelated

categories of connectivity: landscape, habitat, geo-

physical, and eco-social connectivity. Each connec-

tivity category directly or indirectly supports many

ecosystem services. There are overlaps, conflicts, and

synergies among connectivity categories and their

associated services and disservices.

Conclusions Identifying the services that arise from

these four categories of connectivity, and how they

interact, can help build a common understanding of

the value of connectivity to maximize its benefits,

improve understanding of complex socio–ecological

systems across disciplines, and develop more holistic,

socially equitable decision-making processes, espe-

cially in urban landscapes.

Keywords Ecological connectivity � Environmental

benefits � Landscape connectivity � Landscape
sustainability � Socio–ecological systems � Urban and

regional planning

Introduction

Context: the importance of connectivity

Rapid, disruptive landscape change is one of the most

consequential phenomena of the Anthropocene (Crut-

zen 2002; Millennium Ecosystem Assessment 2005).

Processes such as urbanization, extractive land use,

agriculture, and road building continue to increase

rapidly alongside human population and development,

with both intensive and extensive impacts on the

landscape (DeFries et al. 2004). Indeed, the wide-

spread loss and fragmentation of ecosystems is a major

driver of species decline and extinction from the local
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to global scales (Pimm and Raven 2000; Millennium

Ecosystem Assessment 2005; Cardinale et al. 2012;

Zambrano et al. 2019). Fragmentation also disrupts

geophysical processes, potentially worsening the

impacts of natural disturbances, both abrupt (e.g.

storms, floods, wildfires) and progressive (e.g. heat

waves, droughts, sea-level rise) (Laurance and Wil-

liamson 2001; Li et al. 2017), and diminishes the

renewable economic and cultural resources in the

landscapes people inhabit (DeFries et al. 2004). All of

these outcomes, furthermore, are unevenly distributed

across demographics and geographies, generating or

worsening the systemic inequities experienced by

society’s most vulnerable and disadvantaged commu-

nities (Voelkel et al. 2018; Baró et al. 2019). This

fragmentation can be understood, to a large extent, as

the loss or degradation of functional connections

among landscape elements–which suggests that

restoring such connections may be able to mitigate

its negative and inequitable consequences (Crooks and

Sanjayan 2006; Hilty et al. 2006).

Sustainable landscape stewardship aimed at reduc-

ing and mitigating fragmentation requires a holistic

approach, including biotic, abiotic, and human ele-

ments in management, along with an explicit spatial

understanding of how these elements function and

interact (Wu 2013). Maintaining connections for

species, processes, and socio–ecological relationships

is critical to preserve ecological function in landscapes

where fragmentation is a given, such as within cities.

However, connectivity is not always considered, or

effectively implemented if included, in conservation

planning in these landscapes (Neeson et al. 2015).

Identifying how humans benefit directly and indirectly

from ecological connectivity could help increase

collaboration and support for efforts to enhance and

preserve existing connectivity. Our literature search

for these benefits found examples spanning many

disciplines and geographies yet also revealed many

inconsistencies and gaps in how connectivity and its

benefits are understood, discussed, and valued, par-

ticularly in the area of social equity and environmental

justice. This paper, a general theoretical synthesis

illustrated with examples from literature in the natural,

social, and applied sciences, is our effort to build a

common framework to advance work in these fields.

Landscape ecology strives to be a transdisciplinary

science (Bastian 2001; Opdam et al. 2013), which

requires collaboration across sectors. Developing

shared language and values empowers researchers,

practitioners, and community advocates to restore and

preserve ecological function and to bring the benefits

of functioning habitats to all people. In this paper we

seek to structure and further develop the array of

concepts around connectivity in landscape ecology, to

expand and clarify the related terminology, and to use

the ecosystem services (ES) framework to identify the

many interrelated, interacting benefits (and risks)

associated with connectivity in the landscapes we

inhabit. While broadly applicable, this paper is

particularly relevant to urbanized landscapes where

the intensity of fragmentation, the economic and

societal benefits of maintaining multifunctional con-

nectivity, and the opportunity costs of ecological

conservation are greatest (McDonald et al. 2009;

Kabisch et al. 2018). With this context in mind, many

of our examples are from urban settings, particularly

Portland, Oregon, USA.

Understanding connectivity

Connectivity has emerged as a key concept in

landscape ecology in recent years, particularly as the

discipline has increasingly turned its attention to the

novel ecosystems, altered geographies, and disrupted

human and environmental functions of complex

socio–ecological landscapes such as cities and agri-

cultural regions (Bennett 2003). However, there is

disagreement over what is meant by connectivity, as

well as how to measure it and its ecological functions

and benefits. As Fischer and Lindenmayer (2007)

point out, the word ‘‘connectivity’’ is used in different

disciplines to refer to different phenomena, ranging

from gene flows within a metapopulation to the

contiguity of protected greenspaces. These phenom-

ena are not always analogous and, in some situations,

can even conflict with each other. The confusion has

grown with the inconsistent use of associated adjec-

tives such as ‘‘ecological’’, ‘‘landscape’’, and ‘‘habi-

tat’’ (Fischer and Lindenmayer 2007).

In the broadest sense, we define ‘‘connectivity’’ as

the coherency of landscape components and processes

across three-dimensional space (Box 1). Connectivity

spans spatial and hierarchical scales (Spanowicz and

Jaeger 2019) and can also be dynamic over time, even

periodically appearing and disappearing, as with

ephemeral wetlands (Allen et al. 2020). It is both

possible and, we argue, necessary to include human
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needs within the definition of connectivity. Indeed,

landscape attributes and dynamics such as connectiv-

ity may be crucial to sustaining the benefits humans

receive, and require, from functional environments

(Wu 2013). A growing body of evidence supports the

direct and indirect benefits of human connection to

nature (Bratman et al. 2019; Shanahan et al. 2016; Van

der Bosch and Bird 2018), and reveals significant

inequities in how those benefits are distributed across

socioeconomic and demographic dimensions (Shana-

han et al. 2014; Rigolon 2016; Cole et al. 2017;

Haeffner et al. 2017). Connectivity mitigates the

disruptive effects of landscape change by maintaining

important processes, ecological resilience, and adap-

tive capacity, particularly when integrated into mul-

tifunctional, landscape-scale networks (Mastrangelo

et al. 2014; Beller et al. 2019). However, it can also

facilitate unwanted processes or changes, such as

biological invasions (Aronson et al. 2017). Perhaps

surprisingly, then, relatively little research has been

conducted into whether connectivity sustains the

social and economic benefits of landscapes in the face

of increasing fragmentation, climate change, and other

disruptions (Mitchell et al. 2015).

Connectivity is not exactly the antonym of frag-

mentation, as some kinds of fragmentation (e.g., gaps,

edge effects) cannot be properly described in terms of

connections, while some processes that disrupt con-

nectivity (e.g., river channelization, increased recre-

ational activity) do not quite fit within the general

concept of fragmentation. The term ‘‘fragmentation’’

typically applies to landscape patterns and biotic

populations, while ‘‘connectivity’’ can also include

abiotic and social processes, as well as teleconnections

such as long-distance migrations. However, connec-

tivity is mainly of interest in the context of anthro-

pogenic landscape alteration, as is reflected in much of

the theoretical literature discussing connectivity and

fragmentation (e.g., Fischer and Lindenmayer 2007;

Mitchell et al. 2015).

In their review of fragmentation and connectivity

literature, Fischer and Lindenmayer (2007) described

three distinct, though related and nonexclusive, cate-

gories of connectivity: habitat connectivity, ecological

connectivity, and landscape connectivity. Because

these categories do not capture the integral place of

humans in the landscape and the many social purposes

of landscape sustainability, we propose a fourth,

complementary category: eco-social connectivity.

Although we generally embrace maintaining estab-

lished terminology, we propose replacing the name

‘‘ecological connectivity’’ with the more precise term

‘‘geophysical connectivity’’ given that habitat, geo-

physical, and eco-social connectivity are all, in some

sense, ‘‘ecological’’.

Ecosystem services as a framework

For our discussion of the benefits people derive from

connectivity, we examined the four categories of

ecosystem services (ES) developed and popularized

by the United Nations’ Millennium Ecosystem

Assessment (2005): Provisioning, Regulating, Cul-

tural, and Supporting Services. Provisioning Services

include the material products obtained from ecosys-

tems such as food, fiber, and usable water. Benefits

from ecosystem processes such as climate or disease

regulation or water purification are Regulating Ser-

vices. Cultural Services capture non-material benefits

from ecosystems such as inspirational or spiritual

value, recreation, education, and cultural heritage.

Underlying all those services are Supporting Services,

such as soil formation, primary production, and

nutrient cycling, which are necessary for these direct

services to exist (Millennium Ecosystem Assessment

2005). Negative effects, or disservices, also exist for

each of these categories, and need to be accounted for

in any assessment (Lyytimaki and Sipila 2009).

While the ES framework is not without controversy

(Vira and Adams 2009; Dempsey and Robertson

2012), it can make ecology more visible in decision-

making, provide compelling arguments and incentives

for environmental protection, and provide data to

support efforts around environmental equity and

justice (Goldman and Tallis 2009; Costanza et al.

2014; Everard 2017). In addition to multiple economic

valuation methods for ES, it is possible to bring

ecosystem function into the ES framework using

societal values determined by stakeholders (e.g.,

Darvill and Lindo 2016). While useful in many cases,

strictly economic valuation of environmental benefits

can have numerous limitations and pitfalls (Vira and

Adams 2009; Büscher et al. 2012; Olander et al. 2018),

and is not accepted in many cultures. Therefore, we

advocate for a focus on societal values determined by

local communities. However quantified, ES implicitly

depend on the functionality, integrity, and resilience of

the ecosystems from which they arise. Many human
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activities can both directly and indirectly diminish the

functional integrity of ecosystems, with a correspond-

ing decline in ES from those ecosystems (Rapport

et al. 1998). Nevertheless, many ES can still exist, to a

surprisingly large extent, in novel ecosystems and

highly altered landscapes such as cities (Evers et al.

2018).

The literature on ES tends to examine individual

components of ecosystems and their associated ser-

vices in isolation (but see Mastrangelo et al. 2014).

Integrative socio–ecological processes (Liu et al.

2007), such as the spatial relationships of landscape

elements, complicate our understanding of ES in

important ways, particularly when considering multi-

ple ES, heterogeneous landscapes, and/or large spatial

extents (Field and Parrott 2017; Rieb and Bennett

2020). To address this issue, Termorshuizen and

Opdam (2009) proposed the term ‘‘landscape ser-

vices’’ as a more holistic, explicitly spatial alternative

or complement. Landscape services are evaluated and

categorized the same way as ES and the two are

generally interchangeable in valuation and decision

models (Bastian et al. 2014). While we embrace both

terms, and emphasize spatial and integrative consid-

erations, we use ‘‘ES’’ because it is more widely used

in the global ecological literature, and because our

focus is on conserving the natural components of

socio–ecological landscapes.

Categories and services of connectivity

In this section, we define each of the four categories of

connectivity, reviewing its theoretical foundations,

representations on the landscape, applications, and

relationships to ecosystem services.

Landscape connectivity

Landscape connectivity (sometimes referred to as

‘‘structural connectivity’’) is the spatial contiguity or

proximity of related landscape elements, which can

include human-defined features, such as ownership

parcels or management units, as well as natural

features. It is inferred from spatial patterns without

necessarily representing real-world ecological func-

tions (Bélisle 2005; Önal et al. 2016). Its origins are in

geographic information science (GIS), landscape

architecture, and land-use planning, and it has become

much more commonly used (and misused: see Kupfer

2012) as FRAGSTATS (McGarigal and Marks 1995),

graph-theory (Urban and Keitt 2001) and circuit

models (McRae 2008), and other GIS applications

have facilitated complex spatial pattern analyses

(Gustafson 1998). The term ‘‘landscape connectivity’’

is still sometimes used in the literature to refer to the

various types of functional connectivity discussed

below (e.g., VanAcker et al. 2019; Brodie et al. 2015;

Allen et al. 2020), but we follow the lead of Fischer

and Lindenmayer (2007) and recommend its exclusive

use for connectivity inferred from landscape pattern.

Landscape connectivity is often deductive, assessed

in the landscape using spatial statistical and modeling

methods (Goodwin 2003), but also can be inductive, in

the form of connectivity-oriented design, engineering,

and planning criteria (Nassauer and Opdam 2008).

The acquisition of adjacent greenspaces with the intent

of building regional trails (Jim and Chen 2003),

watershed-oriented conservation and restoration (Al-

lan 2005), the conservation of corridor and/or step-

ping-stone landscape features for wildlife movement

(Baum et al. 2004; Van Rossum and Triest 2012; Saura

et al. 2014) (but see Stewart et al. 2019), and

residential naturescaping initiatives (Rudd et al.

2002) are all applications of landscape connectivity,

since they typically rely on spatial location and pattern

rather than detailed measurement and analysis of

biotic, abiotic, and/or social processes to drive deci-

sion-making.

As landscape connectivity is pattern- rather than

process-based, it can only be linked indirectly, if at all,

to the ES arising from functional types of connectivity

(Forman 1991; Rieb et al. 2017). Landscape connec-

tivity can provide a convenient representation when

functional connectivity is difficult to measure, such as

in the case of urbanized floodplains (Mason et al.

2007). On the other hand, landscape connectivity can

miss cryptic processes, such as groundwater move-

ment or stepping-stone habitats, or teleconnections,

such as long-distance migrations (Bennett 2003).

Alternatively, it may create an exaggerated impression

of functional connectivity from map-apparent features

with little actual ecological functionality (Kubeš 1996;

Gippoliti and Battisti 2017; Laliberte and St-Laurent

2020). For landscape connectivity to be meaningful,

there must be a known, scale-appropriate relationship

between the observed landscape pattern and the

expected process (Tischendorf and Fahrig 2000;
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Goodwin 2003; Lynch 2019) or ES outcome (Syrbe

and Walz 2012; Duarte et al. 2019). A combination of

clear goals, evidence-based strategies, rigorous

research and monitoring, and adaptive management

can strengthen the effective relationship between

landscape and functional connectivity (Adams and

Dove 1989; Tischendorf and Fahrig 2000; Kadoya

2009; Beller et al. 2019).

Habitat connectivity

Habitat connectivity is the ability of organisms and/or

their genetic material to move among their populations

and potential habitats. Originating in the disciplines of

biogeography, natural history, and population ecol-

ogy, habitat connectivity has long been understood

intuitively but it was often not easily quantifiable until

the development of techniques such as radiotelemetry,

camera traps, and genetic analysis. The modern

definition of habitat connectivity was coined by

Merriam (1984).

Habitat connectivity is necessarily species-specific,

as each species has its own habitat requirements and

ability to disperse, although some studies seek to

aggregate the habitat connectivities of guilds or even

entire communities (Hilty et al. 2006). Habitat

connectivity is either measured directly by tracking

the movements of individual organisms or their

propagules or inferred from the genetic similarity of

potentially linked populations (Keogh et al. 2007).

This form of connectivity is particularly important in

metapopulation theory (Wiens 1997), and has led to

several approaches to modeling how organisms move

through heterogeneous landscapes (Kadoya 2009;

Wey et al. 2008; Jeltsch et al. 2013), although research

on the topic is still limited by taxonomic biases and

methodological issues (Laliberte and St-Laurent 2020;

LaPoint et al. 2015). Its applications include road

crossings for wildlife (Clevenger and Waltho 2000;

Bliss-Ketchum 2019), the geographical risk assess-

ment and containment of biological invasions (Sharov

et al. 2002; Epanchin-Niell and Wilen 2012), and land

conservation efforts focused on enabling species and

communities to shift their ranges in response to

climate change (Heller and Zavaleta 2009; Keeley

et al. 2018; Walsworth et al. 2019). It can be disrupted

by the anthropogenic fragmentation or degradation of

habitats, including the construction of barriers such as

roads and dams, increased exposure to environmental

hazards such as disease and predation, and wildlife

avoidance of human activity (Bennett 2003; Hilty

et al. 2006).

Habitat connectivity is most associated with biodi-

versity and the integrity of natural populations (Ben-

nett 2003; Jeltsch et al. 2013; Damschen et al. 2019).

While the extent to which biodiversity and ES are

correlated is not entirely clear (Brondizio et al. 2019;

Martı́nez-Jauregui et al. 2019), and probably subject to

both great variation and great measurement subjectiv-

ity (Ricketts et al. 2016), habitat connectivity has a

clear role in sustaining species, some of which provide

measurable benefits to people and the landscapes they

inhabit (Bennett 2003). Considering biodiversity and

ES in tandem when making conservation decisions

can optimize return on investment, as well (Watson

et al. 2020). Examples of ecosystem services and

disservices associated in the literature with habitat

connectivity are listed in Table 1. In addition, the

habitat connectivity of indicator species is sometimes

used, with caveats, as a proxy for other connectivity

processes (Simberloff and Cox 1987).

Geophysical connectivity

Geophysical connectivity describes the permeability

or resistance of the landscape to matter and energy

flows; it is the connectivity of natural processes and

the landscape features that regulate them. Its origins

are in the geosciences and physical geography,

particularly with hydrologic connectivity and the river

continuum concept (Vannote et al. 1980) and, more

recently, the integration of biogeochemical cycles

(Pataki et al. 2011) and geomorphology (Brierly et al.

2006;Wainwright et al. 2011) with landscape ecology.

However, it also encompasses energy fluxes, the

movement of pollutants, disturbance processes such as

wildfire, and atmospheric and ocean currents, among

other features. It even includes connectivity of biota

when viewed through a geophysical lens, as with the

regulation of environmental processes provided by

contiguous vegetation or biogeochemical transport via

migratory animals. As with habitat connectivity, the

permeability of the landscape to these flows can be

greatly affected by land use change and the built

environment, such as impermeable surfaces and above

and below ground (Frazer 2005). They can also be

altered by biological invasions (Donovan et al. 2013).
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Table 1 Representative ecosystem services and disservices of different landscape features representing habitat connectivity

Connectivity feature Service or disservice Examples and notes

Beneficial animal habitat

connected to croplands and

gardens

Pest regulation (R) (Mitchell et al. 2015) Larger and more complex fallow habitats

adjacent to croplands were associated with

increased parasitoid activity and reduced

damage from rape pollen beetles (Thies et al.

2003; Thies and Tscharntke 1999). Beneficial

spiders are more likely to move into cropland

surrounded by non-crop habitat (Schmidt and

Tscharntke 2005)

Pollination (R, S) (Kremen et al. 2007; Mitchell

et al. 2015)

Pollination services to agriculture from native

bees are much higher adjacent to natural areas

(Kremen et al. 2004)

Functional connectivity of

actual and potential habitats

across environmental

gradients

Climate adaptation and resilience by

facilitating range and community shifts (P, R,

C, S) (Heller and Zavaleta 2009; Keeley et al.

2018; Littlefield et al. 2019)

Habitat connectivity potentially increases

species’ capacity for rapid evolutionary

response to climate change vs. refugia-based

conservation (Walsworth et al. 2019). Keeley

et al. (2018) provide guidance for

incorporating climate assumptions into

assessments of habitat connectivity. See

Hodgson et al. (2009) for a critique of

focusing on connectivity (particularly when

defined as corridors or stepping-stones) as

opposed to reserve size and quality in this

context

Functionally connected habitats

in human- inhabited

landscapes (Adams and Dove

1989)

Ecological traps (S) Narrow corridors (Weldon 2006) and urban

yards accessible from natural habitats

(Demeyrier et al. 2016) can be ecological

traps for birds. Reconnected urban streams

attract spawning coho salmon, which

experience high mortality from toxic road

runoff (Feist et al. 2017)

Human-wildlife conflict (C) Wildlife corridors for potentially destructive

animals such as big cats can result in human-

wildlife conflict (Malviya and Ramesh 2015);

local mitigation can simply redirect these

conflicts elsewhere in the landscape (Osipova

et al. 2018)

Inspiration value of wild species where people

can see them (C)

Conserving pollinators and their habitats in an

urban landscape creates opportunities for city

dwellers, particularly in disadvantaged

communities, to connect with nature and

enjoy the health and social benefits of

greenspace (Bellamy et al. 2017), as well as

providing those services to urban agriculture

(Galhena et al. 2013). Aggregations of bird-

friendly yards support native bird biodiversity

(Belaire et al. 2014), which people enjoy

experiencing (Belaire et al. 2015)
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Table 1 continued

Connectivity feature Service or disservice Examples and notes

Habitat connectivity for species

with important (socio–

)ecological functions

Foundation, facilitating, and ecosystem

engineer species where beneficial (or
harmful) in landscape (S)

Cavity-creating birds need a certain amount of

canopy connectivity in urban landscapes to

access habitat patches (Fernández-Juricic

2000). Beavers, a critically important

ecosystem engineer in Northern Hemisphere

riparian landscapes, require riparian habitat

connectivity to naturally repopulate areas

from which they were extirpated (Pollock

et al. 2017)

Herbivory: regulation (or degradation) of
vegetation quality and quantity (R); nutrient

cycling (R); herbivore damage to crops and/
or ornamental landscaping (P, C)

Connectivity between mangrove and coral reef

habitats within marine reserves is associated

with increased fish grazing on algae, leading

to healthier, more resilient coral populations

(Olds et al. 2012b). Connectivity tends to

promote ES from herbivorous insects with

relatively stable populations, but increases the

destructive potential of outbreaking species

across the landscape (Maguire et al. 2015)

Nutrient subsidies from organisms and their

remains or wastes (R, S)

Brown bears, a highly fragmentation-sensitive

species, distribute substantial amounts of

salmon-derived nutrients into boreal forests

near streams, providing trees with 15%-18%

of their total nitrogen (Hildebrand et al. 1999)

Pollination of ecologically beneficial wild

plants; pollination of invasive plants (S)
Wild bee species richness and abundance are

highest at intermediate levels of functional

connectivity in heterogeneous landscapes

(Boscolo et al. 2017). Pollination of holly and

associated pollinator activity are much higher

in connected vs. isolated patches (Tewksbury

et al. 2002). Mitchell et al. (2015) summarize

the services of pollination from connectivity

Propagule dispersal of ecologically beneficial

wild plants; propagule dispersal of invasive
plants (S)

Abundance and diversity of native

hydrochorous plant seed dispersal along small

urban streams decrease as impervious area

increases and forest cover decreases in

streamside areas and watersheds (von Behren

2018). Dispersal of yaupon holly seeds by

birds was higher in connected patches than in

isolated patches of the same size (Tewksbury

et al. 2002), likely due to facilitation by

corridors (Levey et al. 2005a)

Viable and accessible populations of fish,

game, and forage species (P, C)

Anadromous salmonid spp. require both reach-

scale stream connectivity for access to side

channels and cold-water refugia (Ebersole

et al. 2003) and watershed-scale stream

connectivity to move between spawning and

feeding grounds (Yeakley et al. 2014);

removing in-stream barriers has been shown

to increase their population performance

(Sheer and Steel 2006). Connectivity between

mangrove and coral reef ecosystems within

reserves was associated with increased fish

populations in Australia (Olds et al. 2012a)

123

Landsc Ecol (2022) 37:1–29 7



Geophysical connectivity is assessed by measuring

matter and energy flows across space and time, using

methods ranging from point monitoring to remote

sensing analysis and computer modeling (Arnfield

2003; Mimikou et al. 2016). Its applications include

such diverse practices as green stormwater

infrastructure (Fahy 2018), wildfire management

(Wei et al. 2019), and the use of tree canopy to

mitigate the stresses of urban environments (Makido

et al. 2019).

Geophysical connectivity underlies many regulat-

ing and supporting services, among others (Table 2).

Table 1 continued

Connectivity feature Service or disservice Examples and notes

Habitat connectivity for

undesirable organisms

Facilitated spread of invasive or undesirable
species (S) (Aronson et al. 2017)

Human- and wildlife-vectored dispersal of the

invasive grass Brachypodium sylvaticum was

found to occur primarily along riparian

corridors in a suburban landscape (Arredondo

2018). Connected patches had more invasive

fire ants and lower native ant diversity than

unconnected patches (Resasco et al. 2014)

Spread of disease organisms and their vectors
(R); regulation of disease organisms and

vectors (R)

Areas of high habitat connectivity displayed

increased tick abundance vs. sites with low

habitat connectivity (Estrada-Peña 2003),

likely due to increased dispersal of vector

animals (Watts et al. 2018). Habitat

connectivity for predators such as

mesocarnivores can significantly regulate tick

abundance (Hofmeester et al. 2017)

Increased or novel connectivity

of historically isolated

populations

Exposure of isolation-protected populations to
introduced or novel hazards (S)

Endangered Oregon chub persist in isolated

side channels where nonnative predators are

absent; reconnecting these waterways to the

river system could imperil the species

(Scheerer 2002)

Genetic homogenization and loss of localized
diversity (S) (Rhymer and Simberloff 1996)

Displacement and hybridization of spotted owls

by barred owls due to the latter’s range

expansion into western North America

(Hamer et al. 1994); genetic contamination of

nearby wild tree populations by intensively

bred or genetically-modified forestry stock

(Brunner et al. 2007)

Multi-species and multi-

functional group habitat

connectivity (Marczak et al.

2007)

Functional, resilient food webs (S) (Pillai et al.

2011); stability of biological communities

and metacommunities (S) (Brodie et al. 2016)

Increased habitat connectivity can decrease

food web stability of high trophic levels but

increase stability of lower trophic levels

(LeCraw et al. 2014). Multi-species corridors

appear to be more effective when tailored to

guilds of functionally similar species vs. a

more general approach (Brodie et al. 2015).

Coherent habitat in road verges supports

substantial urban invertebrate biodiversity

and associated ES (O’Sullivan et al. 2017)

Increased biodiversity over time by facilitating

colonization (S)

Corridor-connected ecosystem fragments in an

experimental forest increased in floristic

biodiversity faster than isolated fragments in

a long-term study (Damschen et al. 2019)

Disservices are listed in italics

The category of each service/disservice is listed as follows: P provisioning, R regulating, C cultural, S supporting. Services/

disservices are illustrated and elaborated upon with examples from literature
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Table 2 Representative ecosystem services and disservices of different landscape features representing geophysical connectivity

Connectivity feature Service or disservice Examples and notes

Contiguity of wildfire fuel

loads with built

environments

Spread of wildfire into populated areas (R) (Ager et al. 2017) Rapid expansion of cities and exurbs into fire-prone landscapes

connects fuel loads with housing and makes fuel load

management a high priority for land stewards (Lafortezza

et al. 2015). Strategic planting arrangements (MacLeod et al.

2019) and defensible space such as firebreaks and

waterbodies (Penman et al. 2019), coupled with compact

development (Braziunas et al. 2021), are effective strategies

for mitigating this fire risk while maintaining the benefits of

vegetation

Contiguous patches/strips of

vegetation retained in

erosion-prone landforms

Soil retention and geological stability (R) Large areas of disturbed soils (e.g., from wildfires) increase

runoff and erosion on hillslopes (Williams et al. 2016).

Connectivity of soil conservation measures can mitigate this

erosion: continuous woody riparian vegetation[ 5 m tall

has been shown to substantially reduce riverbank erosion

during flood events (McMahon et al. 2020)

Functional coastal buffers,

floodplains, windrows

Landscape-scale physical protection against major

disturbances and disasters (R, S)

Functioning (i.e., minimally fragmented) floodplains provide

direct ES from reduced loss of life and property damage

(Watson et al. 2016) and indirect ES from diverse ecosystem

functions (Ward and Stanford 1995)

Hydrologic connectivity Biological and geological filtration of water (R, S) (Brauman

et al. 2007; McMillan & Noe 2017)

The spatial scale of hydrologic connectivity matters: models

suggest that green stormwater infrastructure is far more

effective in urban watersheds when more, smaller

installations are hydrologically connected to more, smaller

drainage areas, rather than fewer, larger installations

hydrologically connected to fewer, larger drainage areas

(Fahy 2018). The effectiveness of urban floodplains in

capturing sediments and nutrients tends to increase over time

following hydrologic reconnection as the systems mature

(McMillan and Noe 2017)

Groundwater recharge and recycling (S) Complex, braided river systems have more connections to the

surrounding landscape and thus greater and more extensive

groundwater recharge than channelized streams (Rodgers

et al. 2004). Hyporheic discharge into streams tends to buffer

short-term fluctuations in water temperature (Arrigoni et al.

2008)

Mosaics of aquatic and riparian habitats supporting high

biodiversity (S) (Ward et al. 1999)

Complex hydrologic connectivity in floodplains creates

spatiotemporal diversity of aquatic, terrestrial, and

transitional niches and ecotones facilitating biologically and

structurally diverse vegetation (Amoros and Bornette 1999;

Leyer 2006). Conversely, some aquatic habitats (e.g., ponds,

impoundments) can have greater wildlife value with

artificially restricted hydrologic connectivity in highly

modified river or wetland systems (Jackson and Pringle

2010)

Release and dispersal of pollutants from point and nonpoint
sources (R) (Jackson and Pringle 2010)

Urban catchments with numerous stormwater outfalls show

considerable and unpredictably distributed heavy metal

contamination (Chang et al. 2019)

Reliability of fresh water quantity and supply (P) (Brauman

et al. 2007)

Intact upland forest ecosystems can play a critical role in fresh

water provisioning by intercepting, retaining, and recycling

precipitation (Brauman et al. 2007)

Sediment discharge into and through stream systems (R)
(Jackson and Pringle 2010; Liu et al. 2020)

Features of continuous stream systems functionally connected

to floodplains, such as riparian vegetation (Gurnell 2014),

beaver dams (Pollock et al. 2017), and coarse woody debris

(Seixas et al. 2020; Stevens 1997), can trap suspended

sediments. By contrast, anthropogenic features which

disconnect stream systems from floodplains, such as road

and rail grades, culverts, and ditches, can increase erosion

effects and amplify sediment loads (Boardman et al. 2019)

Transportation routes and water trails (C) (Kondolf and Pinto

2017)

Ferries along water routes serve as important, sometimes

development-driving public transit in cities in several

countries (Burke et al. 2020; Tanko et al. 2018)
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Eco-social connectivity

Research on anthropogenic landscape change often

focuses on impacts to biodiversity and natural systems

(Fischer and Lindenmayer 2007), and frames man-

agement decisions through that lens (Newbold et al.

2015), overlooking the integral interrelationship of

humans with the landscapes they use and inhabit. Eco-

social connectivity [partially introduced as ‘‘social

connectivity’’ in Kondolf and Pinto (2017)] captures

how the spatial features and properties, both natural

and built, of landscapes facilitate people’s access to

nature and its benefits. While such access has been

well-studied in numerous disciplines (e.g., ecopsy-

chology, environmental sociology, environmental

economics, environmental medicine, human geogra-

phy, environmental education) (Thompson 2011), and

although landscape sustainability science (Wu 2013)

emphasizes the need to study access to nature in a

geographical/landscape context (e.g., Weber and

Table 2 continued

Connectivity feature Service or disservice Examples and notes

Urban tree canopy Air filtration (R) (Escobedo et al. 2011); decreased local air
quality from VOC or pollen release (R) (Leung et al. 2011)

Dense aggregations of trees near pollution sources such as

busy roads may reduce the dispersion of air pollutants,

concentrating them on-site (Tong et al. 2015). Taxonomic

and structural diversity may increase the air-quality benefits

of urban trees (Manes et al. 2012)

Interception of stormwater, resulting in decreased surface

runoff and pollution into streams (R)

While it is evident that urban tree canopy is important for

stormwater interception and infiltration (Xiao & McPherson

2002), a network of trees is likely even more important.

However, the role of connectivity of the urban tree canopy is

a research gap for stormwater (Kuehler et al. 2017)

Positive and negative impacts of trees to built infrastructure

(R, C, S)

Street trees can damage sidewalks with their root systems, and

be damaged by pavement replacement (North et al. 2017),

but also protect paved surfaces from solar damage

(McPherson & Muchnick 2005). Appropriate species

selection (North et al. 2017) and design approaches (Dupey

et al. 2019) can proactively reduce conflict between trees and

infrastructure

Positive and negative outcomes in regulation of

biogeochemical processes (R)

Tree cover over pervious surfaces typically results in nutrients

being retained by soils and plants, whereas tree cover over

impervious surfaces is more likely to increase nutrient loads

in waterways through stormwater runoff (Decina et al. 2018)

Zones of cooling around canopy areas (R) (Vieira et al. 2018) Greater vegetation structural complexity (Vieira et al. 2018)

and areal coverage (Deilami et al. 2018) increase the extent

and magnitude of local climate regulation effects

Vegetated riparian buffer

areas

Ecological values (habitat structure, productivity,

biogeochemical cycling, biodiversity) of increased coarse

woody debris (Stevens 1997) and leafy material (Marcarelli

et al. 2011) in streams (S)

These processes are often deficient and overwhelmed by

hydrologic disruptions in urbanized watersheds (Imberger

et al. 2011). The importance of woody debris in riparian

systems is still under-recognized in many regions after

decades of intentional removal for purported ecological

benefit (Wohl 2019)

Interception and filtration of potential water contaminants (R) Contiguous vegetated buffers as narrow as 1 m between

livestock pastures and waterways can greatly reduce in-

stream fecal coliform bacteria concentrations (Sullivan et al.

2007)

Mitigation of sediment and nutrient runoff into streams

(R) (Barling and Moore 1994; Hill 1996)

Spatial gaps in riparian vegetation create points of failure in

this protection (Weller et al. 1998)

Seasonal temperature regulation of waterways by canopy

shade (R) (Blann et al. 2002)

Riparian revegetation has been used in a local ES market to

offset thermal pollution from municipal wastewater

discharge (Smith and Ory 2005). Vegetated riparian areas

are expected to be more resilient to future temperature

increases than surrounding upland habitats in many

landscapes (Keeley et al. 2018)

Disservices are listed in italics

The category of each service/disservice is listed as follows: P provisioning, R regulating, C cultural, S supporting. Services/

disservices are illustrated and elaborated upon with examples from literature
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Sultana 2013), the literature rarely frames such access

as a form of ‘‘connectivity’’ (Kondolf and Pinto 2017).

Social connectivity has mostly been used for human-

to-human connections, and has been defined as the

communication and movement of people, goods,

ideas, and culture (Kondolf and Pinto 2017). The

study and modeling of social networks (Scott 1988)

has made social connectivity, linking humans to

humans, a widespread concept in the social sciences,

but one not often explored in ecology. In addition, the

concept of social connectivity does not fully capture

the magnitude and importance of human access to

nature’s benefits and the interrelationship between

landscape and society. Thus, eco-social connectivity

bridges the gap between ecological and social

connectivity.

Eco-social connectivity overlaps with a number of

other current ideas in landscape sustainability, such as

inclusive (Imrie and Hall 2001) and biophilic (Beatley

2011) design philosophies, political ecology (Turner

and Robbins 2008), nature-based learning (Jordan and

Chawla 2019), and recreation ecology (Monz et al.

2010). As eco-social connectivity is fundamentally

human-centered, it is best assessed by active stake-

holder engagement, such as through surveys, inter-

views, workshops, and public participation/process

equity in planning and implementation (Matsuoka and

Kaplan 2008; Stringer et al. 2006; Rall et al. 2019).

Passive measurements typically do not provide valu-

able data on eco-social connectivity, although some

methods, such as trail counts, can (Reynolds et al.

2007). Eco-social connectivity is closely tied to

environmental equity and justice. There is strong and

growing evidence linking access to nature with human

wellbeing (Van der Bosch and Bird 2018). In many

landscapes, particularly urban areas where total

greenspace is relatively scarce, profound disparities

in this access reflect deeply embedded social inequi-

ties along lines such as race, ethnicity, ability, and

socioeconomic class (Shanahan et al. 2014; Kowarik

2018; Nesbitt et al. 2019). Efforts to increase eco-

social connectivity in disadvantaged communities can

backfire, however, if increased access to natural

amenities fuels gentrification, helping to displace the

communities it is meant to serve (Dooling 2009; Cole

et al. 2017). Planning for eco-social connectivity thus

needs to occur alongside policies and practices to

address the underlying causes of gentrification, and to

integrate strong community input throughout the

process (Wolch et al. 2014).

Eco-social connectivity can be disrupted by lack of

natural resources integrated into communities, insuf-

ficient quantity and quality of reachable greenspace,

inadequate accessibility infrastructure, and cultural

barriers such as safety concerns and discrimination in

parks (Gobster 2002; Williams et al. 2020). Discrim-

inatory policies and practices such as red-lining have

created enduring unequal access to quality natural

resources and greenspace (Shanahan et al. 2014;

Nesbitt et al. 2019). These policies have perpetuated

localized disparities in green infrastructure benefits

such as shade trees and stormwater management

(Hoffman et al. 2020), and even have evolutionary and

ecological implications (Schell et al. 2020). Applica-

tions of eco-social connectivity are diverse and

widespread, ranging from biocultural restoration

(Morishige et al. 2018) to inclusive design in outdoor

recreational areas (Doick et al. 2013), community

gardens (Glover et al. 2005), and tree-planting initia-

tives in under-resourced neighborhoods (Stone et al.

2015).

Eco-social connectivity is particularly associated

with provisioning and cultural services (Table 3).

Discussion

Overlaps and interactions

The four types of connectivity are not mutually

exclusive. Fully connected watersheds that allow

stream passage for anadromous salmonids, for

instance, represents habitat (the movement of organ-

isms among feeding, transitional, and spawning

waters), geophysical (the delivery of nutrient subsidies

from the ocean to headwater streams), eco-social

(access to fishing and associated cultural and eco-

nomic activities), and landscape (planning and design

practices to remove or mitigate barriers) connectivities

(Smith 1994; Yeakley et al. 2014). Another example is

extensive urban tree canopy, which makes the urban

matrix more permeable to wildlife (habitat) (Baum

et al. 2004); regulates stormwater, air quality, and

local climate (geophysical) (Escobedo et al. 2011;

Nyelele et al. 2019); increases the value and vibrancy

of local communities (eco-social) (Bolitzer and

Netusil 2000; Stone et al. 2015); and requires spatial
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Table 3 Representative ecosystem services and disservices of different landscape features representing eco-social connectivity

Connectivity feature Service or disservice Examples and notes

Accessible greenspaces in human-

inhabited landscapes

Educational outcomes (C); awareness of and

concern for the environment (C) (Wells and

Lekies 2006)

Individuals who were more involved in nature as children tend to

become more active in environmental advocacy as adults

(Wells and Lekies 2006), particularly regarding wildlife (Zhang

et al. 2014). Childhood access to biophilic experiences is

significantly lower in urban vs. rural schools in much of the

world (Zhang et al. 2014)

Formation and cohesion of communities around

nature and greenspaces (C) (Dinnie et al. 2013;

Jennings and Bamkole 2019)

The interpersonal aspects of access to nature and biophilic

experiences have received relatively little study (Dinnie et al.

2013). Social interaction with peers has been cited as important

to community scientists participating in wildlife monitoring (Ng

et al. 2018)

Human health benefits from time spent in nature (R,

C) (Mao et al. 2012; Shanahan et al. 2016)

Human health and wellbeing benefits of urban forest patches are

amplified when forests are relatively undisturbed and well-

connected to exurban natural areas (Pirnat and Hladnik 2018).

Wildlife sightings, street trees, and viewsheds have been

identified as particularly relevant to human mental health within

urban spaces (McEwan et al. 2020), as has biodiversity of

vegetation and birds (Fuller et al. 2007; Luck et al. 2011),

though the latter depends on people’s ecological literacy

(Dallimer et al. 2012)

Increased human exposure to pathogens and their

vectors (R)

Human exposure risk to Lyme disease in urban landscapes may be

higher than previously thought due to extensive interfaces

between built environments and fragmented greenspaces

(VanAcker et al. 2019)

Restoration/enhancement of populated ecosystems

as economic, social, and ecological stimulus

(C) (Standish et al. 2012)

The U.S. ‘‘restoration economy’’ is estimated to directly support

126,000 jobs and $9.6 billion in output, and indirectly support

an additional 95,000 jobs and $15 billion in output (BenDor

et al. 2015), though primarily in rural areas (Nielsen-Pincus and

Moseley 2013). Ecological restoration in urban landscapes has

potential to reconnect communities with nature and provide

highly accessible cultural, educational, and economic amenities

to residents (Standish et al. 2012)

Retention and transmission of local and/or

traditional

ecological knowledge (C) (Berkes et al. 2000)

Some public urban gardens (Waldroupe 2018) and natural areas

(Eldridge 2018) are managed for

‘‘first foods’’ and associated Indigenous cultural practices in the

Portland, OR metro area, sometimes with limited access to

protect cultural resources

Social resilience during times of crisis (C) Accessible public spaces, including parks and greenspaces,

provide critical infrastructure for maintaining community ties

during disaster recovery (Caughman 2017) and facilitating

political engagement through civil protest (Schwartzstein 2020)

Accessible greenspaces in

socioeconomically disadvantaged

urban areas (Rigolon 2016)

Gentrification and economic displacement (C)

(Dooling 2009; Wolch et al. 2014)

The causal relationships between accessible greenspace and

gentrification are complex and likely context-specific (Cole

et al. 2017). While creating access to greenspace without

addressing underlying socioeconomic inequities can undercut

intended outcomes (Cole et al. 2017), responsive, scale-flexible

governance systems, based on a recognition of social capital,

have the potential to help ensure environmental and economic

justice in connectivity planning (Brondizio et al. 2009)

Increased community vibrance and value (C) (Stone

et al. 2015)

A strong inverse relationship was found between crime and tree

canopy or other vegetation in Philadelphia (Wolfe and Mennis

2012) and most parts of Baltimore (Troy et al. 2012)

Access to resource gathering areas Opportunities for food and materials gathering (P,

C)

Huckleberry picking in the Cascades (Richards and Alexander

2006); urban food foraging (Fischer and Kowarik 2020;

Sardeshpande and Shackleton 2020)
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Table 3 continued

Connectivity feature Service or disservice Examples and notes

Aesthetic values of intact

greenspace and natural resources

(Barendse et al. 2016)

Aesthetic preferences incompatible with biodiversity

and/or ecosystem function (C)

Many residents of urban settings, particularly in lower-income

neighborhoods, have negative perceptions of some types of

natural vegetation and wildlife (Rega-Brodsky et al. 2018). By

contrast, many visitors to South Africa’s Cape Floristic Region

appreciate the aesthetic qualities of invasive trees in the

landscape, despite their negative impacts to the region’s

biodiversity and ecological function, which may be unknown to

visitors (Barendse et al. 2016)

Increased community vibrance and value (C) (Stone

et al. 2015)

Real estate values are higher in locations overlooking a natural

viewshed even in urban or peri-urban landscapes (Joly et al.

2009)

Noise mitigation by vegetation (R) Individuals who reside in homes that have a ‘‘quiet’’ side due to

natural landscape elements had lower physiological stress than

those who live in homes without a ‘‘quiet’’ side (Gildof-

Gunnarsson and Ohrstrom 2007)

Sense of place (C) (Hausmann et al. 2016) Access was a key factor in community members developing place

attachment to and helping to restore shoreline areas in Puget

Sound, WA (Poe et al. 2016)

Human access to natural waterways Conflict between aesthetic and ecological values of

accessible waterways (C)

People view downed trees and logs in waterways as undesirable,

even though they provide important ecological functions in

waterways (Wantzen et al. 2016; Wohl 2019)

Recreation, sense of place, relaxing environment (C) Residents were more likely to use and appreciate urban

waterways when public access points were near their

neighborhoods (Haeffner et al. 2017)

Social health benefits of river access (C) Increased access to culturally and socially important natural river

areas decreases social stress and conflict (Wantzen et al. 2016)

Waterways as avenues for communication and

commerce (C)

Many of the large and historically important cities in the US built

before the modern era were situated near waterways due to

transportation and resource availability, which enabled

commerce and communication via ships (Kondolf and Pinto

2017)

Human access to wildlife habitat Fragmentation of wildlife habitat and movement

corridors by trails and other infrastructure (S)

Recreational uses of trails in natural areas result in a variety of

ecological impacts, including stress effects on wildlife and

degradation of wildlife habitat (Hennings 2017)

Humans as vectors for invasive species, pollutants,

and litter (R, S)

Both formal and informal trails are associated with the dispersal

of invasive plants in urban forests (Van Winkle 2014)

Human-wildlife conflict (P, R, C, S) (Soulsbury and

White 2015)

Off-leash dogs are a particular hazard to both wildlife and human

visitors in natural areas (Wilson et al. 2018)

Inspiration value of wildlife viewing (C) (Miller

2005)

Urban wildlife spectacles such as the Congress Avenue Bridge

free-tailed bat colony in Austin, TX (Murphy 2020) or the

Chapman School Vaux’s swift roost in Portland, OR (Houck

2011) have become major community attractions and even

tourist draws

Regional greenspace trail systems Opportunities for exercise, social engagement, and

other healthy activity (C) (Schultz et al. 2016)

Children who live within 0.5 mile of a trail system were found to

have lower BMI than those who do not (Kim et al. 2020)

Transportation alternatives reducing deleterious

effects of automobile traffic (R)

Aesthetically pleasing cycling routes separated from motor traffic

are safer than on-road routes in terms of injury rates (Lusk et al.

2011), increase commuter usage (Hirsch et al. 2017), and are

important to cyclists (Winters et al. 2011). The regional trail

system in Portland, OR, is estimated to save commuters $1.1

billion/year in transportation costs (Spurlock 2016)
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analysis, modeling, and planning standards to be

effective and equitable (landscape) (Gatrell and

Jensen 2008; Ordonez and Duinker 2013).

Such overlaps frequently interact, resulting in both

synergies and tradeoffs. These interactions can vary by

location, time, and scale (Termorshuizen and Opdam

2009). The field of recreation ecology, for instance, is

concerned with quantifying the many impacts human

visitors have on natural areas and weighing them

against the social benefits and conservation incentives

of human access to nature (Monz et al. 2010). Here,

the roads and trails that support eco-social connectiv-

ity can fragment habitats, deter wildlife, and impact

watersheds, but at broader scales can justify and

incentivize the protection of large, well-connected

natural landscapes. Such overlaps and synergies,

commonly termed ‘‘ecosystem multifunctionality’’

(Manning et al. 2018), provide opportunities to

optimize landscape-scale conservation and planning

efforts and maximize their return on investment

(Conrad et al. 2012; Önal et al. 2016).

Using connectivity services in planning

We include Tables 1, 2, 3 with the intent that

articulating the ES of these categories of ecological

connectivity will help managers and communities gain

support for connectivity projects. In Table 4 below, we

illustrate the relationships between management

actions, connectivity features, and socio–ecological

outcomes. However, harnessing the synergies among

the different connectivity categories and their services,

Table 3 continued

Connectivity feature Service or disservice Examples and notes

Urban gardens as accessible

greenspace

Access to biophilic and eusocial experiences in

disadvantaged communities (C) (Glover et al.

2005)

Space for small-scale polycultural gardens, at or a short walk from

home, in both urban and rural areas provides multiple cultural

services (Galhena et al. 2013)

Decreased food insecurity and malnutrition,

increased economic opportunity from micro-

agriculture (P)

Space for small-scale polycultural gardens, at or a short walk from

home, in both urban and rural areas leads to nutritional security,

health benefits, an uplift to women’s status, and economic

growth (Galhena et al. 2013)

Environmental health and pollution hazards of

gardens (R)

In some areas public use of urban gardens increases exposure to

insect-borne and/or fecal-related diseases, while still bringing

many societal benefits (Hamilton et al. 2014). Urban agriculture

can be a locally significant source of nutrient pollution from

excessive use of fertilizer, compost, and irrigation (Harada et al.

2018; Nelson 2018; Wielemaker et al. 2019)

Urban tree canopy Cognitive, psychological, and eusocial benefits to

urban residents (R, C) (Bratman et al. 2019)

A study of elementary school students in California found a strong

positive influence of neighborhood-scale urban tree canopy on

test scores, when controlled for common demographic variables

(Tallis et al. 2018). Increased tree canopy in urban

neighborhoods in Baltimore was a strong predictor of increased

social capital among residents (Holtan et al. 2016)

Facilitation of public use of outdoor spaces (C) A study of urban areas in Wisconsin found a strong positive

correlation between street tree cover and active transportation

activity, whereas other kinds of vegetation cover had neutral or

negative effects (Tsai et al. 2019)

Provision of air quality and climate regulation

services to underserved communities (R) (Baró

et al. 2019)

Landscape-scale urban heat island assessment during a 2014 heat

wave in Portland, OR found that the most vulnerable

socioeconomic and demographic groups were most exposed to

extreme heat, in part due to lack of continuous, functional tree

canopy in their neighborhoods (Voelkel et al. 2018). Excessive

urban heat has broad negative effects on physical and mental

wellbeing, ranging from morbidity and mortality (Kravchenko

et al. 2013) to diminished learning outcomes (Park et al. 2020;

Zivin et al. 2020)

Disservices are listed in italics

The category of each service/disservice is listed as follows: P provisioning, R regulating, C cultural, S supporting. Services/

disservices are illustrated and elaborated upon with examples from literature
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Table 4 Links between management actions, functional connectivity features, and outcomes providing ecosystem services and

disservices

Management actions Connectivity features (proxy

for)

Management outcomes

(services, disservices)
Examples and notes

Acquire greenspaces and

rights-of-way for regional

trails (Jim and Chen 2003),

and use accessible trail

design and construction

Regional greenspace trail

systems (E)

Exercise and recreation (C);

alternative transportation

(C); sense of place and

community (C); higher

property values (C); cost of
land acquisition and
construction (C) (Hammons

2015; Spurlock 2016)

A caveat: trail systems are not

guaranteed to be used by local

populations (Evenson et al.

2005). Trail system use can

depend on spatial design

principles such as viewshed

aesthetics and segment lengths

(Lindsey et al. 2008)

Analyze the geographical

accessibility of greenspaces

to local communities and

build infrastructure to

address gaps

Accessible greenspaces in

human-inhabited landscapes

(E)

Mental and physical health

benefits of time spent in

nature (P, C); recreation
impacts to biodiversity and
natural resources (S) (Monz

et al. 2010)

The Trust for Public Land’s

ParkServe database and analysis

tool models the population

percentage of each US census

block within a 10 min walk of a

public park or natural area

(Trust for Public Land 2017)

Designate no-take or limited-

take areas within or adjacent

to important fisheries;

reroute shipping lanes

around sensitive habitats

Habitat connectivity for

species with important

(socio–)ecological functions

(H)

Productive and sustainable

fisheries (P, C); biodiversity

(S); localized economic
displacement (C) (Stewart
and Possingham 2005)

Marine reserves are more

effective at conserving fish

when they protect contiguous

feeding and rearing areas (Olds

et al. 2012a)

Empower Indigenous

ecological land management

where possible (Winter et al.

2020)

Accessible greenspaces in

human-inhabited landscapes

(E); access to resource

gathering areas (E);

beneficial animal habitat

connected to croplands and

gardens (H); functionally

connected habitats in

human- inhabited

landscapes (H); multi-

species and multi-functional

group habitat connectivity

(H)

Access to biophilic and

eusocial experiences in

disadvantaged communities

(C); awareness of and

concern for the environment

(C); decreased food

insecurity and malnutrition,

increased economic

opportunity from micro-

agriculture (P); formation

and cohesion of

communities around nature

and greenspaces (C);

functional, resilient food

webs (S); landscape-scale

physical protection against

major disturbances and

disasters (R, S); mosaics of

aquatic and riparian habitats

supporting high biodiversity

(S); opportunities for food

and materials gathering (P,

C); retention and

transmission of local and/or

traditional ecological

knowledge (C); sense of

place (C); viable and

accessible populations of

fish, game, and forage

species (P, C); human-
wildlife conflict (C)

Winter et al. (2020) review a suite

of Indigenous ‘‘ecomimicry’’

strategies which maintain

biodiversity and maximize

synergistic ES in extensive

socio–ecological landscapes
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Table 4 continued

Management actions Connectivity features (proxy

for)

Management outcomes

(services, disservices)
Examples and notes

Identify and mitigate or

remove hydrologic barriers

such as dams or culverts

Habitat connectivity for

species with important

(socio–)ecological functions

(H); hydrologic connectivity

(G)

Increased fish populations (P,

S); water quality and

quantity (P, R); cost of
remediation (C); loss of
infrastructure functions such
as hydropower or flood
regulation (P, R, S);
disturbance impact of
removal process (S)
(Whitelaw and MacMullen

2003)

Long-term research at the former

Elwha River dam sites in

Olympic National Park is

adding to knowledge about

ecological and hydrological

recovery after dam removal

(Duda et al. 2011)

Implement control and/or

mitigation features for

transmissible hazards

Contiguity of wildfire fuel

loads with built

environments (G);

functional coastal buffers,

floodplains, windrows (G);

habitat connectivity for

undesirable organisms (H);

urban tree canopy (G, E)

More effective hazard

management and lower loss

of life, wellbeing, and

property across scales (R, C,

S)

Identification of potential control

points and risk corridors for

wildfires using remote sensing

data (Wei et al. 2019); habitat

connectivity modeling for

invasive species to support more

effective management strategies

(Drake et al. 2017)

Implement ecological

enhancement and

management of vegetated

buffers along road and

highway verges (Säumel

et al. 2016; O’Sullivan et al.

2017)

Accessible greenspaces in

human-inhabited landscapes

(E); contiguous patches/

strips of vegetation retained

in erosion-prone landforms

(G); functionally connected

habitats in human-inhabited

landscapes (H)

Local mitigation of climate,

pollution, and aesthetic

impacts (R, C, S);

biodiversity (S); cost of
upkeep (C); ecological traps
(S); fuel loading in fire-
prone landscapes (R, S)

Road and highway verges

represent one of the largest

stocks of open space in many

cities (O’Sullivan et al. 2017)

Implement strategic land

acquisition and conservation

within and between core

natural areas at local to

continental scales

Functional connectivity of

actual and potential habitats

across environmental

gradients (H); habitat

connectivity for species with

important (socio–

)ecological functions (H);

functional coastal buffers,

floodplains, windrows (G);

hydrologic connectivity (G);

regional greenspace trail

systems

(E)

Ecosystem functions,

biodiversity, and landscape

resilience (S) (Opdam and

Wascher 2004)

Yellowstone-to- Yukon

Conservation Initiative

(continental) (Levesque 2001);

Territorial System of Ecological

Stability (regional) (Kubeš

1996); Resilient Silicon Valley

project (local) (Beller et al.

2019)

Increase quality, quantity, and

connectivity of naturescaped

yards (Rudd et al. 2002;

Dearborn and Kark 2010)

and agricultural habitat

enhancements (Donald and

Evans 2006)

Accessible greenspaces in

human-inhabited landscapes

(E); functionally connected

habitats in human-inhabited

landscapes (H); urban

gardens as accessible

greenspace (E)

Wildlife viewing (C);

pollination and pest

regulation (R, S); local

climate regulation (R);

neighborhood character and

property values (C);

economic displacement (C);
maintenance costs (C)

Residential yards provide 65% of

the total urban tree canopy

cover in Boston, MA, but this

coverage is unequally

distributed and more

fragmented than in protected

greenspaces (Ossola et al. 2019)

Integrate cover crops, fallow

strips, wind- and hedgerows,

and organic farming

techniques into agricultural

settings (Holzschuh et al.

2010)

Beneficial animal habitat

connected to croplands and

gardens (H)

Increased pollination and

predation services (P, R, S)

(Holzschuh et al. 2010);

increased impacts from
some herbivores and
pathogens (P, R, S)

‘‘Beetle banks’’ (patches of

unmowed perennial grasses)

incorporated into farmlands

support predatory ground

beetles (MacLeod et al. 2004)
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Table 4 continued

Management actions Connectivity features (proxy

for)

Management outcomes

(services, disservices)
Examples and notes

Integrate infrastructural

greenery into buildings and

the built environment

Accessible greenspaces in

human-inhabited landscapes

(E); aesthetic values of

intact greenspace and

natural resources (E); urban

tree canopy (G, E)

Air filtration (R); ecological

traps (S); foundation,

facilitating, and ecosystem

engineer species where

beneficial (or harmful) in
landscape (S); local climate

regulation (R);

neighborhood character and

property values (C);

economic displacement (C);
maintenance costs (C); fuel
loading in fire-prone
landscapes (R, S)

A primary benefit of urban

vegetation is mitigation of the

heat-island effect; the

effectiveness of different

greening strategies for local

climate regulation depends a lot

on site context (Deilami et al.

2018; Makido et al. 2019)

Integrate multiple contiguous

habitat types within and

across landscapes into

conservation and restoration

plans

Functional connectivity of

actual and potential habitats

across environmental

gradients (H); habitat

connectivity for species with

important (socio–

)ecological functions (H);

functional coastal buffers,

floodplains, windrows (G)

Ecosystem

functions,biodiversity, and

landscape resilience (S)

The Resilient Silicon Valley

project aims to reconnect oak

and estuarine habitats across the

urban landscape (Beller et al.

2019)

Maintain and expand

contiguous urban tree

canopy, particularly in tree-

deficient areas

Functionally connected

habitats in human-inhabited

landscapes (H); urban tree

canopy (G, E)

Local mitigation of climate,

pollution, and aesthetic

impacts (R, C, S);

biodiversity (S); cost of
upkeep (C); nuisance effects
of some trees (R, C, S)

Important elements of urban

forest plans include geographic

and socioeconomic equity,

genetic and taxonomic diversity,

climate resilience, and

collaborative governance

(Portland Parks and Recreation

2004). Ensuring tree survival is

crucial: as little as 7% mortality

can negate the local benefits of

tree-planting efforts over time

(Widney et al. 2016). When

supported by effective training,

institutional knowledge, and

mission alignment, community-

driven stewardship can help

ensure the long-term success of

neighborhood afforestation

(Jack-Scott et al. 2013)

Preserve visually important

areas

Aesthetic values of intact

greenspace and natural

resources (E)

Sense of place and community

(C); property values (C);

regulatory burden on
growth and development
(C); economic displacement
(C)

Deeply considered viewshed

design and management in

Yosemite National Park help

build a sense of identity, buy-in,

and public attention to an iconic

landscape

(National Park Service 2012).

Research on how to value and

manage for landscape aesthetics

tends to lag behind planning

emphasis on this topic

(Barendse et al. 2016)
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and minimizing the disservices that also arise from

connectivity, requires a decision framework that can

integrate and leverage them together. The basic

elements are those proposed by Termorshuizen and

Opdam (2009): features linked to functions linked to

values. While this suggests a simple, linear chain, real

examples exist in a web of interrelated features,

multiple function-value combinations, and even feed-

backs from supporting ES. Connectivity may function

differently at different scales of space, time, or

systems organization, as well. Effective frameworks

incorporate these complexities; we will propose such

an approach in a future paper.

Using this kind of assessment requires appropriate

scope, effective goal-setting, accessible high-quality

data (both baseline and monitoring), broad multi-

sector collaboration both among and between deci-

sion-makers and community stakeholders, and the

capacity to adapt to unexpected outcomes or changing

circumstances (Rieb et al. 2017). Indeed, the com-

plexity and situational uniqueness of socio–ecological

landscapes demand an approach that is experimental,

adaptive, scale-aware, and inclusive (Cumming et al.

2013). Naturally, it is generally simplest and least

expensive to conserve existing connectivity first, and

to take advantage of existing landscape elements to

Table 4 continued

Management actions Connectivity features (proxy

for)

Management outcomes

(services, disservices)
Examples and notes

Remove or mitigate barriers;

plan habitat corridors to

reduce human-wildlife

conflict (Haddad 1999)

Functional connectivity of

actual and potential habitats

across environmental

gradients (H); habitat

connectivity for species with

important (socio–

)ecological functions (H)

Wildlife viewing (C);

functional ecosystems (R,

S); reduced vehicle- wildlife

collisions (C, S);

biodiversity (S); human-
wildlife conflict from range
expansion (P, R, C, S);
ecological traps (S)

Research from Banff National

Park finds that wildlife use of

road-crossing structures by large

mammals varies depending on

both structure design and

landscape context (Clevenger

and Waltho 2000, 2005),

suggesting the need for a variety

of approaches in a given setting

Remove or mitigate water

control structures and

vulnerable infrastructure in

floodplain areas (Ward and

Stanford 1995); use

protective acquisition or

development restriction of

land parcels in floodplains

(Johnson et al., 2020)

Habitat connectivity for

species with important

(socio–)ecological functions

(H); functional floodplains

(G); hydrologic connectivity

(G)

Mitigation of flood hazards

(R); increased water

quantity and quality (P, R);

habitat creation (S); disease
risk (R); human
displacement (C); loss of
developable land (P, C)

Strategic land acquisition in

100-year floodplains in the US,

particularly focused on large

contiguous areas, is estimated to

produce up to a 5:1 return on

investment in avoided costs

from flooding disasters, which

are predicted to increase in

coming decades (Johnson et al.

2020)

Restore suitable habitat in

gaps between artificially

isolated populations

(Bennett 2003)

Habitat connectivity for

species with important

(socio–)ecological functions

(H)

Increased population

resilience of valuable

species (S); spread of
undesirable species (S)

Afforestation and reforestation in

landscape gaps in the Eastern

Usambara Mountains, Tanzania

(Bennett 2003); habitat

restoration in vacant lots along

potential urban greenspace

corridors (Newman et al. 2017)

Disservices are listed in italics

The category of each service/disservice associated with a management outcome is listed as follows: P provisioning, R regulating,

C cultural, S supporting. The category of each related connectivity feature, referring to the corresponding table, is listed as follows:

H habitat, G geophysical, E eco-social. Actions and outcomes are illustrated and elaborated upon with examples from literature
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restore or enhance what has been diminished (Roni

et al. 2002). The socio–ecological perspective is

essential, as the conservation of ecological connectiv-

ity without regard to the social, economic, and

political concerns of those living in its path can result

in the displacement and fragmentation of human

communities (Rantalla et al. 2013), in much the same

way that the infrastructure of human connectivity can

displace and fragment ecosystems.

Future directions

Several aspects of connectivity and ES are under-

researched. The literature on habitat connectivity, for

example, displays strong taxonomic biases towards

charismatic organisms such as birds, pollinators, and

megafauna (Mitchell et al. 2015). Though invasive

species are frequently considered a risk in habitat

connectivity, overall evidence for this risk is incon-

clusive, in many cases perhaps more related to edge

vulnerability in narrow corridors (Haddad et al. 2014).

Some invasive species, too, can have offsetting

benefits such as food, timber, and erosion control

(e.g., Dickie et al. 2014), and, in the absence of a

specific invasion threat, the benefit of spreading

desirable species generally appears to outweigh the

risk of spreading undesirable species (Levey et al.

2005b). Geophysical connectivity of soils and the

ecological features that regulate them seems to have

been studied much less than other areas such as

hydrology or biogeochemistry (Liu et al. 2020). Also,

while there is much research on the air quality benefits

of trees in a landscape context, these studies are often

based on empirically limited modeling assumptions

(Escobedo et al. 2011). Research on eco-social

connectivity to date has been infrequent and, prior to

Kondolf and Pinto (2017), we found no framework

proposed to bring together ideas scattered across

several disciplines; developing the concept of eco-

social connectivity is a key motivation and contribu-

tion of our work.

We briefly review the translation of connectivity

and ES into principles for environmental stewardship

in Table 4. Nevertheless, there remains much work to

be done in evaluating and improving modeling

methodologies, planning strategies, design standards,

and best management practices–i.e., bridging the gap

between functional and landscape connectivity (Gip-

politi and Battisti 2017). Progress here will require

intentional collaboration at local to regional scales

between researchers, practitioners, and community

stakeholders in an iterative, adaptive-management

approach, in which research, application, and

equitable public inclusion each inform and support

each other (Opdam et al. 2013).

Successful collaboration on connectivity and ES

depends on having information which is plentiful,

rigorous, diverse, and accessible. The long-term

ecological research (LTER) framework (National

Science Foundation 2018) provides a powerful, inte-

grative approach to understanding landscapes across

space and time, and has been applied to explicitly

socio–ecological settings such as the Gwynns Falls

Watershed in Baltimore, Maryland. Similarly, the

‘‘smart cities’’ movement, with its integrated networks

of local and remote sensors collecting and sharing

diverse types of data in built environments (Batty et al.

2012), has immense, if largely untapped, potential to

support ecological research and natural resource

valuation in inhabited landscapes (Gatrell and Jensen

2008; Colding and Barthel 2017). An equally neces-

sary component is the cultural knowledge of commu-

nities, including traditional ecological knowledge

(Berkes et al. 2000; Charnley et al. 2007), community

science (Balazs and Morello-Frosch 2013), and pub-

lic-participation mapping (Rall et al. 2019), which

both challenges and complements quantitative scien-

tific approaches. Local knowledge is crucial to bridg-

ing gaps between researchers, practitioners, and the

public, and empowers responsive, equitable outcomes

(Brondizio et al. 2009). The efficacy of these data, in

turn, depends on having open access, open standards,

and appropriate precautions or restrictions for sensi-

tive information (Zuiderwijk and Janssen 2014). And,

of course, landscape data can only attain their greatest

value when effectively visualized and communicated,

particularly to the public (Vervoort et al. 2012).

The final challenge is to develop innovative valu-

ation and financing approaches to effectively prioritize

and support connectivity conservation and to incor-

porate connectivity into conservation planning. We

will discuss this in detail in a future paper.

Conclusions

Connectivity is the spatial glue that holds the elements

of landscapes together, allowing them to interact,
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move, renew themselves, and adapt to changes over

space and time. The ecosystem services concept

provides a general framework for assigning values to

the many benefits and costs of maintaining connec-

tivity, including those of the greatest direct interest to

the human communities within landscapes. These two

concepts are typically viewed through separate lenses

but are integrated, which presents a need to expand

established definitions of ecological connectivity to

include connectivity between people and their envi-

ronment. Indeed, highlighting categories of connec-

tivity, and the distinctions and relationships between

them, can help broaden thinking about connectivity

and remind ecologists and planners of the importance

of including people as part of connectivity planning

and research. Moreover, such approaches can help

center equity and thus lead to more equitable out-

comes. In identifying the four categories of connec-

tivity we also aim to improve consistency of

terminology for these different species-specific, pro-

cess-specific, and pattern-specific concepts. Impor-

tantly, the many benefits of all categories of

connectivity, highlighted by this discussion on ecosys-

tem services, can be used to garner support for

connectivity projects, identify synergies and tradeoffs

among connectivity-related goals, and promote holis-

tic thinking. With the shared language proposed in this

paper, we aim to enable coordination and collabora-

tion across goals, institutions, and communities. The

ES framework creates an opportunity to incorporate

connectivity of all kinds more effectively into plan-

ning, decision-making, and management of socio–

ecological landscapes. Using ES to make connectiv-

ity-related decisions, however, requires effective,

informed evaluation of landscape elements, connec-

tivity goals, and their benefits and risks. A framework

for such an evaluation process is the subject of a future

paper.
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Baró F, Calderón-Argelich A, Langemeyer J, Connolly JJT

(2019) Under one canopy? Assessing the distributional

environmental justice implications of street tree benefits in

Barcelona. Environ Sci Policy 102:54–64

Bastian O (2001) Landscape ecology—toward a unified disci-

pline? Landsc Ecol 16:757–766

Bastian O, Grunewald K, Syrbe RU, Walz U, Wende W (2014)

Landscape services: the concept and its practical relevance.

Landsc Ecol 29:1463–1479

Batty M, Axhausen KW, Giannotti F, Pozdnoukhov A, Bazzani

A, Wachowicz M, Ouzounis G, Portugali Y (2012) Smart

cities of the future. Eur Phys J Spec Top 214:481–518

Baum KA, Haynes KJ, Dillemuth FP, Cronin JT (2004) The

matrix enhances the effectiveness of corridors and stepping

stones. Ecology 85:2671–2676

Beatley T (2011) Biophilic cities: integrating nature into urban

design. Island Press, Washington

Belaire JA, Whelan CJ, Minor ES (2014) Having our yards and

sharing them too: the collective effects of yards on native

bird species in an urban landscape. Ecol Appl

24:2132–2143

Belaire JA, Westphal LM, Whelan CJ, Minor ES (2015) Urban

residents’ perceptions of birds in the neighborhood: bio-

diversity, cultural ecosystem services, and disservices.

Condor 117:192–202

Bélisle M (2005) Measuring landscape connectivity: the chal-

lenge of behavioral landscape ecology. Ecology

86:1242–1252

Bellamy CC, van der Jagt APN, Barbour S, SmithM,Moseley D

(2017) A spatial framework for targeting urban planning

for pollinators and people with local stakeholders: a route

to healthy, blossoming communities? Environ Res

158:255–268

Beller EE, Spotswood EN, Robinson AH, Anderson MG, Higgs

ES, Hobbs RJ, Suding KN, Zavaleta ES, Grenier JL,

Grossinger RM (2019) Building ecological resilience in

highly modified landscapes. Bioscience 69:80–92

BenDor T, Lester TW, Livengood A, Davis A, Yonavjak L

(2015) Estimating the size and impact of the ecological

restoration economy. PLoS ONE 10:e0128339

Bennett AF (2003) Linkages in the landscape. The role of cor-

ridors and connectivity in wildlife conservation. Conserv-

ing Forest Ecosystem Series No. 1, IUCN Forest

Conservation Programme

Berkes F, Colding J, Folke C (2000) Rediscovery of traditional

ecological knowledge as adaptive management. Ecol Appl

10:1251–1262

Blann K, Frost Nerbonne J, Vondracek B (2002) Relationship of

riparian buffer type to water temperature in the driftless

area ecoregion of Minnesota. N Am J Fish Manag

22:441–451

Bliss-Ketchum LL (2019) The Impact of Infrastructure on

Habitat Connectivity for Wildlife. Dissertation, Portland

State University. https://doi.org/10.15760/etd.6708

Boardman J, Vandaele K, Evans R, Foster IDL (2019) Off-site

impacts of soil erosion and runoff: Why connectivity is

more important than erosion rates. Soil Use Manag

35:245–256

Bolitzer B, Netusil NR (2000) The impact of open spaces on

property values in Portland, Oregon. J Environ Manag

59:185–193

Boscolo D, Tokumoto PM, Ferreira PA, Ribeiro JW, dos Santos

JS (2017) Positive responses of flower visiting bees to

landscape heterogeneity depend on functional connectivity

levels. Persp Ecol Conserv 15:18–24

Bratman GN, Anderson C, Berman MG, Cochran B, de Vries S,

Flanders J, Folke C, Frumkin H, Gross JJ, Hartig T, Kahn

PH, Kuo M, Lawler JJ, Levin PS, Lindahl T, Meyer-Lin-

denberg A, Mitchell R, Ouyang Z, Roe J, Scarlett L, Smith

JR, van den Bosch M, Wheeler BW, White MP, Zheng H,

Daily GC (2019) Nature and mental health: an ecosystem

service perspective. Sci Adv 5:eaax0903

Brauman KA, Daily GC, Duarte TK, Mooney HA (2007) The

nature and value of ecosystem services: an overview

highlighting hydrologic services. Annu Rev Environ

Resour 32:67–68

Braziunas KH, Seidl R, Rammer W, Turner MG (2021) Can we

manage a future with more fire? Effectiveness of defensible

space treatment depends on housing amount and configu-

ration. Landsc Ecol 36:309–330

Brierly G, Fryirs K, Jain V (2006) Landscape connectivity: the

geographic basis of geomorphic applications. Area

38:165–174

Brodie JF, Giordano AJ, Dickson BG, Hebblewhite M, Bernard

H, Mohd-Azlan J, Anderson J, Ambu L (2015) Evaluating

multispecies landscape connectivity in a threatened tropi-

cal mammal community. Cons Biol 29:122–132

Brodie JF, Mohd-Azlan J, Schnell JK (2016) How individual

links affect network stability in a large-scale, heteroge-

neous metacommunity. Ecology 97:1658–1667

Brondizio ES, Ostrom E, Young OR (2009) Connectivity and

the governance of multilevel social-ecological systems: the

role of social capital. Annu Rev Environ Resour

34:253–278

Brondizio ES, Settele J, Dı́az S, Ngo HT (eds) (2019) Global

assessment report on biodiversity and ecosystem services

of the Intergovernmental Science-Policy Platform on

Biodiversity and Ecosystem Services. IPBES. IPBES

Secretariat, Bonn

Brunner AM, Li JY, DiFazio SP et al (2007) Genetic contain-

ment of forest plantations. Tree Genet Genomes 3:75–100
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Önal H, Wang Y, Dissanayake STM, Westervelt JW (2016)

Optimal design of compact and functionally contiguous

conservation management areas. Eur J Oper Res

251:957–968

Opdam P, Nassauer JI, Wang ZF, Albert C, Bentrup G, Castella

JC, McAlpine C, Liu JG, Sheppard S, Swaffield S (2013)

Science for action at the local landscape scale. Landsc Ecol

28:1439–1445

Opdam P, Wascher D (2004) Climate change meets habitat

fragmentation: linking landscape and biogeographical

scale levels in research and conservation. Biol Conserv

117:285–297

Ordonez C, Duinker PN (2013) An analysis of urban forest

management plans in Canada: implications for urban forest

management. Landsc Urban Plan 116:36–47

Osipova L, Okello MM, Njumbi SJ, Ngene S, Western D,

HaywardMW, Balkenhol N (2018) Fencing solves human-

wildlife conflict locally but shifts problems elsewhere: a

case study using functional connectivity modelling of the

African elephant. J Appl Ecol 55:2673–2684

Ossola A, Locke D, Lin B, Minor EM (2019) Yards increase

forest connectivity in urban landscapes. Landsc Ecol

34:2935–2948

O’Sullivan OS, Holt AR, Warren PH, Evans KL (2017) Opti-

mising UK urban road verge contributions to biodiversity

and ecosystem services with cost-effective management.

J Environ Manag 19:162–171

Park RJ, Goodman J, Hurwitz M, Smith J (2020) Heat and

learning. Am Econ J Econ Policy 12:306–339

Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V,

Pincetl S, Pouyat RV, Whitlow TH, Zipperer WC (2011)

Coupling biogeochemical cycles in urban environments:

ecosystem services, green solutions, and misconceptions.

Front Ecol Environ 9:27–36

Penman SH, Price OF, Penman TD, Bradstock RA (2019) The

role of defensible space on the likelihood of house impact

from wildfires in forested landscapes of south eastern

Australia. Int J Wildland Fire 28:4–14

Pillai P, Gonzalez A, Loreau M (2011) Metacommunity theory

explains the emergence of food web complexity. Proc Nat

Acad Sci USA 108:19293–19298

Pimm SL, Raven P (2000) Biodiversity—extinction by num-

bers. Nature 403:843–845

Pirnat J, Hladnik D (2018) The concept of landscape structure,

forest continuum and connectivity as a support in urban

forest management and landscape planning. Forests 9:584

Poe MR, Donatuto J, Satterfield T (2016) ‘‘Sense of Place’’:

human wellbeing considerations for ecological restoration

in puget sound. Coastal Manag 44:409–426

PollockMM, Lewallen GM,Woodruff K, Jordan CE, Castro JM

(eds) (2017) The Beaver restoration guidebook: working

with Beaver to restore streams, wetlands, and floodplains,

ver. 2.0. United States Fish and Wildlife Service, Portland

123

26 Landsc Ecol (2022) 37:1–29

https://www.batcon.org/article/the-bats-at-the-bridge/
https://www.batcon.org/article/the-bats-at-the-bridge/
https://lternet.edu/how-we-work/


Portland Parks & Recreation (2004) Portland Urban Forestry

Management Plan 2004. https://www.portland.gov/sites/

default/files/2020/ufmp2004_0.pdf. Accessed 30 Oct 2020

Rall E, Hansen R, Pauleit S (2019) The added value of public

participation GIS (PPGIS) for urban green infrastructure

planning. Urban For Urban Green 40:264–274
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