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Abstract 
Context  In highly fragmented landscapes, arboreal 
mammals are limited by their ability to move and dis-
perse between core habitats. Connectivity modelling 
for multiple species allows scientists to identify the 
most efficient movement and/or dispersal pathway(s) 
to prioritise for conservation efforts.
Objectives  In this study, we evaluated the most 
cost-effective corridor pathway for eight species of 
arboreal mammals, with particular emphasis on an 
endangered population of greater gliders (Petauroides 
volans).
Methods  We use species distribution modelling and 
circuit theory to calculate connectivity in the land-
scape for each species. An all-species corridor was 
then modelled using a least cost path analysis. The 
final corridor was evaluated for all species through 
ground-truthing accessible segments.

Results  We identified that some segments of the 
corridor had low suitability for highly specialised spe-
cies, and those with tree hollow requirements for den-
ning. The all-species corridor also utilised an artificial 
crossing structure over a highway, and monitoring of 
this rope bridge found only two species (sugar glid-
ers; Petaurus breviceps and ringtail possums; Pseu-
docheirus peregrinus) used the structure on occasion. 
Thus, the modelled corridor pathway was not suitable 
for all species, rather it was found to be more suitable 
for generalist species such as sugar gliders, ringtail 
possums, brown antechinus; Antechinus stuartii and 
brushtail possums; Trichosurus vulpecula.
Conclusions  Our study exemplifies the importance 
of ground-truthing in connectivity conservation stud-
ies to ensure conservation outcomes are realised. Fur-
thermore, we provide detailed recommendations for 
relevant conservation managers, to improve the usage 
of these existing habitat corridors by arboreal species.

Keywords  Species distribution model · Threatened 
species · Arboreal · Tree-dwelling · Road corridor · 
Road habitat · Wildlife corridor

Introduction

Habitat loss and fragmentation are the most important 
threatening processes for mammalian species in the 
Anthropocene (Powers and Jetz 2019). Globally, 27% 
of mammal species are threatened with extinction 
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because of habitat loss and decline in habitat quality 
(Schipper et  al. 2008). Habitat fragmentation is the 
reduction in continuous habitat into smaller, disjunct 
patches within a dissimilar matrix (Haddad et  al. 
2015; Wilson et  al. 2016). Remnant fragments are 
often too small and isolated to maintain viable popu-
lations of some species, and through environmental, 
demographic and genetic changes, a vortex of extinc-
tion can form (Gilpin and Soule 1986).

The effects of habitat fragmentation are particu-
larly pronounced for arboreal species; particularly 
obligate canopy dependent species such as greater 
gliders. Obligate arboreal mammals have limited 
dispersal potential in a cleared matrix and are there-
fore most sensitive to habitat fragmentation (Keinath 
et al. 2017). Some of the consequence of reduced or 
limited population connectivity for arboreal mam-
mals includes lowered effective population size and 
potential for genetic drift (Lancaster et  al. 2011; 
Malekian et  al. 2015). Morphological changes have 
been observed, such as reductions in body size due 
to the limited amount of habitat and resources avail-
able (Fietz and Weis-Dootz 2012). Ecologically, the 
abundance and distribution of an arboreal species 
can be reduced within a fragmented landscape as it is 
unable to facilitate movement and connectivity when 
the matrix contains no trees (Koprowski 2005; Isaac 
et al. 2014).

Wildlife corridor implementation is considered 
an important strategy to reconnect habitat patches 
in a fragmented landscape (Beier and Noss 1998; 
Mackey et  al. 2010; Hilty et  al. 2012). For arboreal 
species, there are examples where corridors are vital 
for their conservation acting to reconnect once iso-
lated populations (Wilson et  al. 2007; Soanes et  al. 
2017b; Jackson et al. 2020). There are nine published 
landscape corridors that have either been evaluated 
for use by arboreal species, or specifically created 
for arboreal species (Laurance and Laurance 1999; 
Williams-Guillén et  al. 2006; Lees and Peres 2008; 
Haslem et  al. 2012; Anitha et  al. 2013; Taylor and 
Goldingay 2013; Taylor and Rohweder 2013; Teixeira 
et  al. 2013; Soanes et  al. 2017b). At smaller scales, 
artificial corridors have been installed, such as under-
passes and overpasses for arboreal species (Taylor 
and Goldingay 2009; Weston et al. 2011; Goldingay 
et  al. 2013, 2018; Teixeira et  al. 2013; Yokochi and 
Bencini 2015; Chan et al. 2020; Garcia et al. 2022). 
Given the significance of connectivity for arboreal 

species in fragmented systems disturbed by agricul-
ture and urban development, further investigation into 
identifying and evaluating the usage of different types 
of corridors is needed.

Maintaining and restoring landscape connectivity 
is one conservation strategy to mitigate the impacts 
of agricultural practices and urbanisation (Crooks and 
Sanjayan 2006). Using wildlife occurrence data, met-
rics of landscape connectivity can be derived from 
spatial models, and these modelling approaches pro-
vide a quantitative basis to identify potential corridors 
in fragmented landscapes (Pe’er et al. 2011; Pliscoff 
et  al. 2020). Spatially explicit models such as spe-
cies distribution models (Elith et al. 2011), least-cost 
path mapping (Sawyer et al. 2011a), models based on 
electric circuit theory (McRae et al. 2008), and vari-
ous toolkits for GIS (Correa Ayram et al. 2016), are 
increasingly applied in designing regional scale cor-
ridors for various taxa and ecosystems (Braaker et al. 
2014; Naidoo et al. 2018; Pliscoff et al. 2020). Read-
ily available data such as topographic data (elevation, 
aspect, slope), soil and vegetation type, can be used to 
model habitat suitability and a matrix of habitat suit-
ability for multiple species can then be combined to 
predict a corridor pathway that benefits multiple spe-
cies (Elith et al. 2011; Brodie et al. 2015; Petsas et al. 
2020; Pliscoff et al. 2020; Miranda et al. 2021).

Despite the prolific use of numerical modelling to 
identify corridor connectivity networks at regional 
scales, these corridor network models are rarely vali-
dated for their actual use by the target species (Kil-
bane et  al. 2019). Landscape connectivity requires 
ground-truthing because of the limitations associated 
with ecological modelling. Some limitations include 
accounting for threatening processes and the presence 
of key resources that cannot be provided in continu-
ous spatial layers. This is particularly relevant for spe-
cies with obligate habitat requirements, such as tree 
hollow availability. Thus, on-ground assessments of 
habitat suitability of modelled corridors are essen-
tial  for conservation managers, so as to effectively 
manage and prioritise their management actions.

In this study, a fragmented landscape impacted by 
agriculture and urbanisation, we used a multiple-spe-
cies methodological framework (Pliscoff et al. 2020) 
to identify the most cost effective corridor pathway 
for targeted conservation activities. This study used 
species distribution modelling, electric circuit-based 
modelling, and a consensus of suitability, to quantify 
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the functional connectivity of eight semi-arboreal and 
arboreal species. The central focus of the corridor 
was to connect an endangered species and isolated 
population of greater gliders (Petauroides volans) 
with contiguous landscape across nine kilometres of 
fragmented habitat. Evaluation of the modelled cor-
ridor was performed via ground-truthing the habitat 
suitability for all eight species and monitoring artifi-
cial crossing structures over and underneath the high-
way. This assessment of the corridor meant that data 
driven recommendations could be made for strategic 
conservation management purposes.

Materials and methods

Study site

Our study area focused on the fragmented agricultural 
landscape surrounding the township of Berry, in New 
South Wales (NSW), located 111  km south of Syd-
ney, Australia (Fig. 1). This area is the location of a 
Great Eastern Ranges (GER) wildlife corridor project 
called the ‘Berry Bush Links’ (GER 2021). The Berry 
wildlife corridor aims to create additional habitat and 
connect the fragmented Seven Mile Beach National 
Park (SMBNP) with contiguous habitat 9 km to the 
west of the park (known as the ‘Illawarra Escarp-
ment’). The area is characterised by mostly cattle 
and dairy farming, and low density rural residential 
properties. A major highway (up to 80 m wide) runs 
between the Illawarra Escarpment and Seven Mile 
Beach National Park (Fig.  1). The species identified 
as a priority for the corridor’s creation is the endan-
gered  greater glider. The population of greater glid-
ers at Seven Mile Beach National Park (Fig.  1) was 
listed as an endangered population, primarily due to 
its isolation from other populations found locally and 
regionally (NSW Scientific Committee 2016). The 
geographical boundaries used in this study was the 
natural barrier of the Shoalhaven River (see southern 
end of map in Fig. 1), and the furthest northern end of 
Seven Mile Beach National Park (Fig. 1).

Connectivity model parameters

Our study used five key steps in producing an all-spe-
cies corridor for the study landscape (Fig. 2). Using 

occurrence and environmental data, species distribu-
tions were first created. The probability of a species 
presence was then used to calculate a resistance sur-
face, used in modelling connectivity models. A con-
sensus map for connectivity for all species was then 
analysed using a least cost path to produce a final all 
species corridor (Fig. 2).

Species data

This study focused on a group of eight native, arbo-
real marsupials (Table  1). The species ranged from 
those heavily reliant on trees and canopy for move-
ment (gliding species) to more generalist species such 
as brown antechinus, ringtail possums, brushtail pos-
sums and southern bobucks (Table 1). Presence data 
was obtained using three different methods.

Firstly, empirical data was collected and primar-
ily targeted small mammals (Gracanin et  al. 2022). 
This involved live trapping and camera trapping at 
164 sites, between August to November 2019, for a 
total of 4592 camera trap nights and 1148 live trap-
nights (Gracanin et  al. 2022). Further data was uti-
lised from a long-term camera trap study in the land-
scape as well, that spanned over one year (November 
2019–November 2020) and added up to 6517 camera 
trap nights (Gracanin and Mikac 2022a, b).

Secondly, spotlighting surveys were conducted 
for ringtail possums, brushtail possums, southern 
bobucks, greater gliders, feathertail gliders and 
eastern pygmy possums (Davey 1990; Wintle et al. 
2006; Vinson et  al. 2020a). This involved walking 
100–500  m transects, depending on site size and 
private property limitations, with an AceBeam H30 
4000 lm head torch. Spotlighting surveys were con-
ducted by one observer (A.G.), walking at a speed 
of 5  min per 100  m, scanning for eyeshine in the 
canopy, mid-storey, and understorey. A pair of 
8 × 40 pair of binoculars (Avalon 10 × 42 PRO HD) 
were used to aid in identifying species. The GPS 
coordinates of the animal were recorded by stand-
ing beneath where the animal was first sighted. All 
spotlighting surveys commenced one hour after last 
light. As feathertail gliders and eastern pygmy pos-
sums are often difficult to detect in dense forests 
such as rainforests, water stations were placed in 
trees (n = 8) for over a year to aid in detecting their 
presence (Mella et  al. 2019). Water was used as 
“bait” for these species as they are rarely attracted 
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to traditional small mammal baits of peanut but-
ter, honey and oats (Huang et al. 1987; Tasker and 
Dickman 2001). The third method used for obtain-
ing species occurrence data was through download-
ing records from the online database BioNet (NSW 
Government 2022). BioNet are validated records of 
species from qualified observers and uploaded to a 
central database as per NSW Scientific Licensing 
requirements. Data was downloaded from this data-
base for all eight species, from 1980 to 2021.

Species distribution models

We used a multivariate approach, maximum entropy 
(Maxent), to correlate species presence and envi-
ronmental variables to predict the distribution of 
species across the landscape (Elith et al. 2011). The 
distribution of all eight species were modelled with 
maximum entropy algorithm (Maxent) with the R 
package: ‘maxnet’ (Phillips et  al. 2017). A ‘block’ 
partition scheme (k = 4) was selected for all analy-
ses. The regularisation multiplier was set to between 
1 and 5 (with steps of 0.5), and all feature classes 
(L, LQ, H, LQH, LQHP; L = linear, Q = Quadratic, 
H = hinge, and P = product) were selected. In total, 
45 different models were built, run, and tested for 
each species. The model selection was based on the 
lowest delta corrected Akaike information crite-
rion (AICc) (Supplementary 1). Occurrences were 
partitioned for training (70% of the total) and test-
ing (30%) and pseudoabsences (10,000 background 
points) were randomly distributed across the study 
area. Five environmental variables were used in the 
modelling: elevation, slope, aspect (DCS Spatial 
Services 2022), soil (DPIE NSW 2020) and vegeta-
tion type (DPIE NSW 2013). Vegetation type was 
manually updated by comparing it to recent satellite 
imagery, and relevant habitat was added (with vege-
tation type validated in the field) or removed (where 
development had occurred). The spatial layer for 
vegetation type also included categories for agricul-
tural land and urban land. All environmental layers 
were at a spatial resolution of 25 m.

Connectivity models

We employed circuit theory to identify potential cor-
ridors linking core areas within the landscape, using 
the software Circuitscape 4.0.5 (McRae and Shah 
2009). Circuit theory links populations through mul-
tiple pathways, with connectivity potential increasing 
according to the density of pathways (McRae et  al. 
2008). The models produced from Maxent were con-
verted by inverting the values of habitat suitability 
so that each pixel represented a resistant value rang-
ing from 0 to 1 (higher values indicating more resist-
ance). Using expert opinion, literature reviews, and 
field data (Zeller et  al. 2012), the resistant values 
for rope bridges, underpasses, highways, and rivers, 
were manually changed to better reflect their impact 
as barriers (Supplementary 2). Values for highways 
and rivers wider than 25 m, were manually changed 
to better represent the barrier they pose for each spe-
cies. For each species, the wildlife underpasses and 
rope bridges along the highway were assigned a 
resistant value that was calculated using the average 
resistance values from urban areas. This was because 
urban areas represent the closest surface type in simi-
larity (e.g. concrete surfaces, wooden poles, street 
lights), and thus reflect a more appropriate value than 
using a value based on expert opinion alone (Zeller 
et al. 2012). Core habitat (nodes) were selected based 
on fragment size (> 50Ha) and the conservation sta-
tus of the habitat. We selected core habitat that was 
either a large patch within the landscape, or sections 
representing a larger continuous landscape. Seven 
nodes were selected, and each were protected by gov-
ernment (NSW National Parks and Wildlife Service 
estate or local council reserves) or were private prop-
erties with conservation agreements. These nodes 
also represented the goal of the Berry Wildlife Corri-
dor to connect the larger continuous landscape of the 
Illawarra Escarpment and surrounds, with the isolated 
Seven Mile Beach National Park. A graph-based con-
nectivity metric, the Index of Integral Connectivity 
(IIC), was calculated for each model using Conefor 
Sensinode 2.6 (Saura and Torné 2009) to compare 
connectivity between species.

All species corridor

A consensus current map was created by averaging 
the eight normalised current maps for each species 

Fig. 1   The study landscape near the township of Berry, NSW. 
The blue outline is the focus area of the Berry Bush Links pro-
ject for the Berry wildlife corridor (GER 2021)

◂
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from Circuitscape (Monsimet et al. 2020; Petsas et al. 
2020; Miranda et al. 2021). A least cost path analysis 
was performed on the all-species conductance map 
using Linkage Mapper (McRae and Kavanagh 2022).

Evaluation of proposed corridor

The final corridor network produced was evaluated 
by ground-truthing key habitat requirements for all 
eight species. Key habitat variables measured were: 
(1) feed tree composition; (2) noxious weed coverage; 
and (3) hollow availability for size classes < 5  cm, 
5-10 cm and > 10 cm. Habitat surveys were performed 
at points along the final corridor network, that were 
spaced on average, 100 m apart. Each variable had a 

weighted value in terms of its relative importance for 
each species, so that the sum of values equated to a 
final index of suitability that ranged from zero (not 
suitable) to 1 (highly suitable) (Supplementary 3). 
We gave variables a higher weight if expert opinion, 
literature reviews, and field data were in agreement 
that the variable was highly influential in determining 
habitat value. Variables thought to be less important 
by experts or indicated by field data we gave a lower 
weight. From this, weighted habitat rankings for the 
segments of the final corridor for each species were 
calculated to indicate its value as both habitat and as 
movement corridors.

The monitoring of two rope bridges (between 
18/4/2020 and 18/4/2022) and two underpasses 

Fig. 2   Key methodologi-
cal steps used in the study 
to estimate the movement 
corridors for each of the 
eight species. Methodologi-
cal framework was adapted 
from (Pliscoff et al. 2020)

Table 1   Summary of arboreal marsupial species found in the study’s landscape

Species Weight (g) Movement methods Conservation listing

Feathertail glider
(Acrobates pygmaeus)

12 Gliding, climbing Not listed

Brown antechinus
(Antechinus stuartii)

28 Climbing, moving on ground Not listed

Eastern pygmy possum
(Cercartetus nanus)

40 Climbing, moving on ground Vulnerable in NSW

Sugar glider
(Petaurus breviceps)

130 Gliding, climbing, sometimes on ground Not listed

Common ringtail possum
(Pseudocheirus peregrinus)

860 Climbing, moving on ground Not listed

Greater glider
(Petauroides volans)

1300 Gliding, climbing Endangered in 
NSW and Nation-
ally

Common brushtail possum
(Trichosurus vulpecula)

2400 Climbing, moving on ground Not listed

Southern bobuck
(Trichosurus caninus)

3100 Climbing, moving on ground Not listed
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(between 16/6/20 and 19/8/21) was also undertaken 
using motion sensor cameras (Fig. 3). Qualified tree 
climbers accessed rope bridges found over the high-
way and installed motion sensor cameras at each end 
(Spypoint Link S Cellular Solar Trail Camera). These 
cameras were solar powered (charging an internal 
lithium battery) and cameras uploaded photos daily to 
a server. This ensured continued, uninterrupted moni-
toring of two rope bridges. In the two underpasses, 
cameras (Browning Tail Cameras BTC-7-4  K) were 
positioned on the ceiling on either end of the passages 
and left to record the underpass floors for over one 
year. Additional cameras were positioned on wooden 
poles to face wooden bridges inside the underpasses 
(Fig. 3).

Results

Species distribution models

More generalist species had a greater and consist-
ent coverage of habitat suitability, compared to more 
specialist species such as the greater glider, eastern 
pygmy possum and feathertail glider (Fig.  4). Both 

eastern pygmy possums and feather tail gliders had 
greater suitability at high elevations in more topo-
graphically diverse terrain, particularly favouring 
Illawarra Subtropical Rainforest. Ringtail possums, 
brushtail possums, antechinus, and sugar gliders, all 
had medium to high suitability values for most of the 
vegetation throughout the landscape. The southern 
bobuck showed a distinct preference for higher eleva-
tion habitat, and the greater glider had moderate to 
low suitability in available vegetation with most suita-
ble habitat occurring along the Illawarra Escarpment.

Potential connectivity models

For each species, connectivity models differed in the 
amount of area in the potential connectivity network 
(Fig.  5). Feathertail gliders and eastern pygmy pos-
sums were restricted to movements along and within 
the Illawarra Escarpment and surrounding national 
parks. Whereas ringtail possums, brushtail possums, 
antechinus, and sugar gliders, all had high levels of 
connectivity, with higher values in the IIC index. The 
greater glider had the least amount of connectivity of 
all the species.

Fig. 3   Motion sen-
sor cameras (A) used to 
monitor usage of the rope 
bridges (B) to cross over the 
Princes Highway. Cam-
eras were also installed to 
monitor underpass tunnels 
and wooden bridges inside 
(C, D)
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All species corridor

The final corridor as defined through least cost path 
analyses, focused on connecting all species between 

Seven Mile Beach National Park (SMBNP) and the 
Illawarra Escarpment (Fig.  6). The impact of the 
highway and river as strong barriers to movement 
were evident. The corridor identified did not utilise 

Fig. 4   MaxEnt species 
distribution maps for A 
Feathertail glider Acro-
bates pygmaeus; B Eastern 
pygmy possum Cercartetus 
nanus; C Brown antechi-
nus Antechinus stuartii; 
D Sugar glider Petaurus 
breviceps; E Ringtail pos-
sum Pseudocheirus peregri-
nus; F Brushtail possum 
Trichosurus vulpecula; G 
Southern bobuck Trichosu-
rus cunninghami; H Greater 
glider Petauroides volans 
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steppingstone fragments of habitat, instead riparian 
corridors and roadside habitat were selected. Sections 
of these thin linear corridors, and the rope bridges 
and underpasses, were identified as pinch points 
(Supplementary 4).

Rope bridge and underpass usage

Of the two underpasses only cameras from one under-
pass were not stolen, and this underpass recorded 

arboreal mammal species utilising the underpass. 
Trichosurus species was recorded crossing on 24 
occasions in this underpass, however distinguishing 
features were difficult to discern on cameras. Based 
on nearby observations (less than 100  m away), T. 
vulpecula and T. cunninghami have been recorded 
in the area, thus the possums recorded on camera 
using the underpass are likely to be both species. 
Each possum record was of it using the floor, and not 
the wooden bridge installed inside the underpass for 

Fig. 5   Potential connec-
tivity analysis for wildlife 
species within the study’s 
fragmented landscape, as 
based on circuit theory 
corridor implemented using 
Circuitscape. Focal frag-
ments are shown in black, 
with yellow (low flow) and 
red (high flow) showing 
corridor flow intensity. A 
Feathertail glider Acro-
bates pygmaeus; B Eastern 
pygmy possum Cercartetus 
nanus; C Brown antechi-
nus Antechinus stuartii; 
D Sugar glider Petaurus 
breviceps; E Ringtail pos-
sum Pseudocheirus peregri-
nus; F Brushtail possum 
Trichosurus vulpecula; G 
Southern bobuck Tricho-
surus cunninghami; H 
Greater glider Petauroides 
volans. Upper left corner 
values show Integral Index 
of Connectivity (IIC) from 
Conefor Sensinode 2.6
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arboreal species. On two occasions, brown antechinus 
were recorded using the underpass tunnels.

Of the two rope bridges only two arboreal mam-
mal species were recorded using the bridges (Fig. 7). 
Bridge one recorded one occasion where a sugar 
glider used the bridge. The second bridge recorded 68 
sugar glider crossing events and one ringtail possum 
crossing.

Evaluation of proposed corridor network

Ground-truthing the final modelled corridor path-
ways was performed for approximately 35% of the 

corridor network. Permission to access some of 
the pathways was limited due to private proper-
ties or terrain access. Upon evaluation, the species 
that had the most suitability across all corridor seg-
ments was the ringtail possum, followed closely by 
the sugar glider (Table 2). The least amount of suit-
ability was found for the greater glider, feathertail 
glider and pygmy possum (Table  2). The segment 
that performed best in terms of corridor and habitat 
suitability for all species was segment four, along 
Woodhill Mountain Road, followed closely by seg-
ment one, Beach Road.

Fig. 6   Final corridor for all species based on a least cost path analysis connecting Seven Mile Beach National Park with the Illa-
warra Escarpment. Segments highlighted in white (1–4) were ground-truthed for their suitability for all eight species
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Discussion

Our results show a clear trend where generalist spe-
cies (brown antechinus, sugar gliders, ringtail pos-
sums, brushtail possums) had greater connectiv-
ity than more specialist species (feathertail gliders, 
pygmy possums, southern bobucks, and greater glid-
ers). Despite the few species presence records in the 
fragmented landscape for these specialist species, we 
have identified areas that with further habitat resto-
ration, are more likely to facilitate the movement of 
these species.

Species distribution models

Species resistant to human disturbance and consid-
ered more generalist, had a greater distribution across 
the study landscape. Common brushtail possums, 
ringtail possums, sugar gliders and brown antechinus, 
all had presence observations spread throughout the 
entire landscape in both small fragments of habitat 
and in all the reserves. These species are known to 
occupy and utilise such habitat despite threats posed 
in the matrix of cleared land (Laurance and Laurance 

1999; van der Ree 2000; Marchesan and Carthew 
2008; Malekian et  al. 2015; Gracanin et  al. 2019; 
Gracanin and Mikac 2022a). Recent genetic analy-
ses confirmed the ability of sugar gliders to move 
effectively in our study’s fragmented landscape as 
they had high gene flow and limited genetic structure 
(Gracanin et al. 2023). Additionally, we have shown 
in our other work that sugar gliders are highly mobile 
(Gracanin and Mikac 2022a) and able to move on the 
ground (Gracanin et al. 2019).

For more specialist species, predicted distribution 
was more restricted as observations were limited east 
of the highway. The southern bobuck was predicted 
to have higher probability of presence along the Illa-
warra Escarpment, at higher elevations in forested 
habitat. Observations of the southern bobuck in this 
study were restricted to the west of the highway. 
Despite being highly forest-dependent, other stud-
ies have detected bobuck populations in linear road-
side remnant vegetation (Martin et  al. 2007). Long 
term monitoring in the study landscape did not detect 
bobucks in areas west of the highway (Gracanin and 
Mikac 2022b). However, monitoring of underpass 
tunnels indicates the possibility of bobucks using the 

Fig. 7   Sugar glider (Petau-
rus breviceps) (left) and 
ringtail possum (Pseudo-
cheirus peregrinus) (right) 
recorded using rope bridges 
to cross the highway

Table 2   Weighted habitat 
rankings (0–1) from ground 
truthing segments of the all-
species corridor modelled

Species Segment 1 Segment 2 Segment 3 Segment 4 Total

Feathertail glider 0.36 0.24 0.14 0.36 1.10
Pygmy possum 0.36 0.24 0.14 0.36 1.10
Antechinus 0.44 0.44 0.24 0.44 1.57
Sugar glider 0.64 0.47 0.17 0.47 1.74
Ringtail possum 0.64 0.18 0.06 0.88 1.76
Brushtail possum 0.53 0.11 0.01 0.70 1.35
Bobuck 0.53 0.11 0.01 0.70 1.35
Greater glider 0.52 0.06 0.01 0.52 1.10
Total 4.04 1.84 0.76 4.43
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tunnels to cross the highway, and that the species may 
be present east of the highway. Only two observa-
tions were found east of the highway for the eastern 
pygmy possum and feathertail glider, both at David 
Berry Memorial Hospital. At this site, the habitat is 
comprised of Illawarra Lowland Subtropical Rainfor-
est, a critically endangered ecological community. 
This remnant forest likely represents the type of forest 
that was historically widespread across most of the 
study landscape, and that these species are possibly 
restricted to this site and other wet sclerophyll forest 
nearby.

Potential connectivity pathways

Dispersal is an important consideration for popula-
tion dynamics and to maintain viability over time 
(Doak et al. 1992; Stow et al. 2001; Schtickzelle et al. 
2006; Fletcher et al. 2018). Our study found connec-
tivity pathways were numerous and highly conducive 
to more generalist species, which included the com-
mon brushtail possum, ringtail possum, sugar glider 
and brown antechinus, as these species not only 
readily move through remnant linear fragments but 
are also known to reside permanently in such habi-
tat (van der Ree 2000; Wilson et  al. 2007; Marche-
san and Carthew 2008; Taylor and Rohweder 2013; 
Molloy and Davis 2017; Gracanin and Mikac 2022a). 
More specialised and cryptic species, including the 
feathertail glider, eastern pygmy possum, and greater 
glider, all had limited connected pathways between 
focal nodes as both cleared habitat and unsuitable 
habitat limited the intensity or existence of conduct-
ance pathways. It is important to note the limitations 
of the final models as the friction values manually 
changed are based on a combination of expert opin-
ion and literature, and  thus conductance at barriers 
(highways and rivers) and linkages (underpasses and 
rope bridges) may not accurately represent a species 
capacity for movement at these areas. However, many 
studies utilise this approach and to overcome these 
limitations is to conduct field-validation which this 
study performed on rope bridges and underpasses, as 
well as conducting habitat assessments of pathways 
(Sawyer et al. 2011b).

All species corridor

In other studies, the utilisation of an umbrella species, 
often a threatened species, have priority for conser-
vation planning purposes (Roberge and Angelstam 
2004; Mortelliti et  al. 2009; Thornton et  al. 2016). 
There were several different pathways for more com-
mon, generalist species in our landscape (Fig.  5), 
however, the all-species corridor created through a 
least cost path analysis was then constrained by the 
highly specialised greater glider. This pathway start-
ing from SMBNP, follows medium and  large Euca-
lyptus dominated roadside habitat before utilising 
less suitable habitat along riparian corridors and a 
rope bridge for crossing the highway. By using exist-
ing connected pathways, and the shortest distance of 
resistance to movement, targeted restoration efforts 
can take effect following ground-truthing. One other 
study into habitat connectivity for greater gliders at 
SMBNP failed to consider Beach Road (Segment 1; 
Fig. 6) as a corridor (Vinson et al. 2020b). The study 
was more hypothetical in their approach by drawing 
potential corridors, and they recommended the instal-
lation of glider poles within the large Coomonderry 
Swamp as well as reforestation efforts along the 
boundary of this swamp (Vinson et al. 2020b). How-
ever, there are logistical challenges, such as that the 
swamp and surrounding swamp edge, is subject to 
regular intense flooding. Furthermore, greater gliders 
have high site fidelity and dispersal appears to be lim-
ited (Suckling 1982; Taylor et al. 2007), and thus are 
unlikely to use glider poles compared to other, more 
mobile species (Taylor and Goldingay 2013; Taylor 
and Rohweder 2020).

Highways present significant barriers for arboreal 
species, including common, generalist species (Rus-
sell et  al. 2009, 2013; Soanes et  al. 2016; McCall 
et al. 2017). The all-species corridor modelled iden-
tifies one of the rope bridges acting as a pinch point 
for movement, and through the data collected at 
these rope bridges, they may provide limited con-
nectivity for all species. Similar to other studies, the 
sugar glider was readily able to utilise the rope bridge 
crossing (Goldingay et  al. 2013; Soanes et  al. 2015, 
2017a; Goldingay and Taylor 2017). These studies 
have also recorded extensive use of these bridges by 
ringtail possums, brushtail possums and feathertail 
gliders. There is some evidence of rope bridge usage 
by a species of pygmy possum, Cercartetus caudatus, 
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however this was for smaller roads and not highways 
(Weston et al. 2011). There have been no records of 
greater gliders using rope bridges, though other large 
gliding species such as the yellow-bellied glider read-
ily use glider poles as steppingstone movement path-
ways across highways (Taylor and Rohweder 2020).

The greater glider is generally considered a rela-
tively poor disperser, with high site fidelity and has 
a low reproductive rate (Maloney and Harris 2008). 
Thus, the species is vulnerable to barriers to move-
ment, however a population viability analysis found 
that even low dispersal rates could prevent extinctions 
of populations separated by roads (Taylor and Gold-
ingay 2009). Therefore, through habitat restoration 
(further discussed below), it is possible that greater 
gliders could overcome the barrier posed by the high-
way dissecting the study location.

Management recommendations

Through ground-truthing surveys, limitations in cor-
ridors to act as habitat and facilitate movement of 
species were identified. For all segments surveyed 
and their surrounding habitat, an increase in hollows 
is recommended for all species though in particular 
for the greater glider. This is through both artificial 
carving of existing hollows in their early stages of 
formation and nest box installation. A widening of 
the corridors is needed, through planting a diversity 
of Eucalyptus sp., though in particular E. pilularis a 
preferred feed and habitat tree of the greater glider 
population at Seven Mile Beach National Park (Vin-
son et al. 2020b). Additional feed trees include Aca-
cia, Banksia and Callistemon species (Lindenmayer 
2002). At segment three, a large density of Lantana 
camara posed a large issue for arboreal mammal 
usage of the habitat. Removal of weeds in this ripar-
ian area is needed, as well as subsequent revegetation 
with preferred trees.

For all common species, connectivity was appar-
ent, and the least cost path corridor identified the 
shortest area to target revegetation and habitat res-
toration efforts. This pathway also utilised a rope 
bridge over the highway. Though not detected 
using rope bridges in this study, feathertail glid-
ers have been recorded using artificial structures to 
cross highways in other areas of Australia (Goldin-
gay et al. 2013, 2018). For the eastern pygmy pos-
sums and brown antechinus, further revegetation at 

underpasses may improve the species propensity to 
use them, especially for smaller, narrower drainage 
culverts (between 50 and 100  cm wide) that were 
not monitored in this study (Yanes et al. 1995; Chen 
et al. 2021). Unfortunately, of the two underpasses 
monitored for over a year, cameras from one of the 
underpasses were stolen. This is a limitation for our 
interpretations about the usage of the underpasses 
in this area along the Princes Highway, as other spe-
cies besides Trichosurus species and brown antechi-
nus, may have used this other underpass.

The endangered population of greater glid-
ers at SMBNP, the focus of the corridor connec-
tivity efforts, is very limited in terms of obtain-
ing functional connectivity in the landscape and is 
significantly genetically differentiated from other 
populations (Knipler et  al. 2023). A least cost path 
analysis identifies the shortest, and least costly path, 
for a wildlife corridor, so that conservation managers 
can be cost effective with limited funding. For greater 
gliders, intense reforestation efforts are required 
to widen linear corridors to at least 100  m wide. If 
the recommended reforestation efforts and habitat 
improvements are made along the modelled corri-
dor, the final issue of the highway remains a signifi-
cant barrier. The gliding threshold for the species is 
limited by the highway width and the limited ability 
of greater gliders to use artificial crossing structures 
(Taylor and Goldingay 2009). However, three scenar-
ios are available to help the greater gliders persist at 
SMBNP. Firstly, a habitat bridge (wildlife-dedicated 
land or green bridges; (Plaschke et  al. 2021; Corla-
tti et  al. 2009; Taylor and Goldingay 2010; Gužvica 
et al. 2014) would be the long-term effective solution 
for overcoming the barrier of the Princes Highway, 
although the most expensive. Secondly, increasing 
available habitat accessible to greater gliders east 
of the highway would allow for the population to 
increase and be more resilient to stochastic changes 
(Lande et al. 2003; Reed 2004; Frankham et al. 2010; 
Ovaskainen and Meerson 2010). In this scenario, seg-
ment one of the modelled corridors (Beach Road) 
presents the best opportunity to allow gliders to dis-
perse into larger fragments of habitat at Hartley Hill 
Reserve and Moeyan Hill Reserve. Thus, efforts 
should focus on thickening the habitat on this road 
and increasing the number of appropriate hollows for 
the species (Hofman et al. 2022). A third scenario is 
to translocate greater gliders individuals to SMBNP, 
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to increase genetic diversity of the isolated population 
(Knipler et al. 2023). However, this requires detailed 
assessment of genetic data from nearby populations 
to determine how a program would operate to ensure 
success (Batson et al. 2015; Weeks et al. 2015; Kni-
pler et al. 2023).

Conclusions

Through a multiple species methodological frame-
work, we identified networks of connected habitat 
for each species before identifying a final corridor 
for all species. Spatial models are limited in their 
ability to capture ecological data, such as hollow 
availability. Hollow availability was critical for 
seven of the eight species in this study, as they are 
reliant on them for denning and for raising young. 
We found that ground-truthing the all-species corri-
dor was critical to identify actions needed to restore 
habitat. In addition, artificial structures meant to 
improve the movement of arboreal mammals over 
the highway, were found to be limited. Our study 
exemplifies the importance of ground-truthing in 
connectivity conservation studies to ensure conser-
vation outcomes are realised.
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