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SUMMARY

The large number of components, nonlinear
interactions, time delays and feedbacks, and
spatial heterogeneity together often make
ecological systems overwhelmingly complex.
This complexity must be effectively dealt with
for understanding and scaling.  Hierarchy
theory suggests that ecological systems are
nearly completely decomposable (or nearly
decomposable) systems because of their loose
vertical and horizontal coupling in structure
and function.  Such systems can thus be sim-
plified based on the principle of time-space
decomposition.  Patch dynamics provides a
powerful way of dealing explicitly with spatial
heterogeneity, and has emerged as a unifying
concept across different fields of earth sci-
ences.  The integration between hierarchy
theory and patch dynamics has led to the
emergence of the hierarchical patch dynamics
paradigm (HPDP).  In this paper, I shall dis-
cuss some major elements of ecological com-
plexity, hierarchy theory, and hierarchical
patch dynamics, and then present a hierarchi-
cal scaling strategy.  The strategy consists of
three stages, each of which may involve a
number of steps and methods: (1) identifying
appropriate patch hierarchies, (2) making ob-
servations and developing models of patterns
and processes around focal levels, and (3) ex-
trapolation across the domains of scale using
a hierarchy of models.  Identifying and tak-
ing advantage of the hierarchical structure
and near-decomposability of complex eco-
logical systems are essential to understanding
and prediction because a hierarchical ap-
proach can greatly facilitate simplification
and scaling.  It is hardly justifiable theoreti-
cally and overwhelmingly difficult technically
to translate information directly between two
distant levels (or corresponding scales), when
ignoring intervening levels that are relevant to
the phenomenon under study.  Although it
may be possible to scale up from the cell to
globe, or vice versa, successful approaches
most likely have to be hierarchical.  In this
paper I shall describe one of such approaches
in which patch hierarchies are used as “scal-
ing ladders”.  This scaling ladder approach

can help simplify the complexity of systems
under study, enhance ecological understand-
ing, and, in the same time, minimize the dan-
ger of intolerable error propagation in trans-
lating information across multiple scales.  
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RÉSUMÉ

La complexité des systèmes écologiques est
due à la combinaison du grand nombre de
composantes, des interactions non linéaires
entre elles, de délais temporels ainsi que de
phénomènes de rétroactions et de
l’hétérogénéité spatiale. Afin de comprendre
les systèmes écologiques et comment on peut
passer d’une échelle d’observation à une
autre, on se doit de tenir compte de cette com-
plexité. La théorie de la hiérarchie suggère
que les systèmes écologiques sont en fait des
systèmes presque décomposables à cause du
couplage vertical et horizontal non serré de
leur structure et de leur fonctionnement. Ces
systèmes peuvent donc être simplifiés en se
basant sur les principes de décomposition spa-
tio-temporelle. Le concept unificateur de plu-
sieurs disciplines en sciences de la terre qu’est
celui de la dynamique des parcelles est une des
meilleures approches pour tenir compte effi-
cacement de l’hétérogénéité spatiale.
L’intégration de la théorie de la hiérarchie et
du concept de la dynamique des parcelles a
mené à l’émergence du paradigme de la dy-
namique des parcelles hiérarchiques. Dans cet
article, je discute des notions qui se rattachent
à la complexité écologique, de la théorie de la
hiérarchie et de la dynamique des parcelles
hiérarchiques, puis je présente une stratégie
hiérarchique de changement d’échelles. Cette
stratégie comporte trois étapes: (1) identifier
les parcelles hiérarchiques appropriées, (2)
faire des observations et développer des
modèles des structures et des processus autour
des niveaux choisis, et (3) extrapoler d’une
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échelle d’observation à l’autre en employant
des modèles hiérarchiques. Identifier et pren-
dre en compte la structure hiérarchique ainsi
que la quasi-décomposition des systèmes
écologiques complexes sont essentiels à la
compréhension et la prédiction en écologie car
l’approche hiérarchique facilite grandement la
simplification des systèmes et le passage de
l’information d’une échelle d’observation à
une autre. Il est difficilement justifiable
théoriquement et très difficile techniquement
de traduire l’information directement entre les
deux niveaux distants lorsque l’on ignore les
autres niveaux pertinents au phénomème étu-
dié. Malgré qu’il soit possible de passer de la
cellule au globe, et vice-versa, pour que cette
démarche soit valable, elle se doit d’être
hiérarchique. Le présent article décrit une telle
approche, soit celle de parcelles hiérarchiques,
qui est employée comme “échelle de
changements d’échelles d’observation”.
Cette approche peut aider à simplifier la com-
plexité des systèmes étudiés et par le fait même
aider à la compréhension écologique et ce tout
en minimisant le danger de propagation
d’erreurs lors du passage de l’information
d’une échelle d’observation à une autre.
__________________________

“The world is both richly strange and
deeply simple.  That is the truth
spelled out in the graininess of reality;
that is the consequence of modularity.
Neither gods nor men mold clay
freely; rather they form bricks.”  

 From Philip Morrison (1966)

INTRODUCTION

Traditionally, most empirical and theoretical
studies in ecology have been conducted over
small areas and short time periods and poorly
replicated.  For example, Kareiva and Ander-
son (1986) reported that 50% of ecological
experiments published in the journal, Ecol-
ogy, between 1980 and 1987 were conducted
on plots less than 1m in diameter.  In a similar
survey, Tilman (1989) found that only 7% of
experiments he examined were conducted on
a time scale greater than five years, while 40%
lasted less than 1 year (typically a single field
season).  Up to now, only a few whole eco-
systems have been subjected to experimental
manipulation and usually not replicable or
controlled (Carpenter et al. 1995).  As a re-
sult, patterns and processes of ecological sys-
tems that occur on broad spatial (e.g., the

human landscape and above) and temporal
(e.g., decades and longer) scales are poorly
understood.  However, the recent literature in
ecology and related fields of earth sciences
clearly indicates an increasing emphasis on
studies at coarse scales and over multiple
scales.  This shift in research emphasis in
ecology seems inevitable for at least two rea-
sons.  The first is that most if not all environ-
mental and resource management problems
can only be dealt effectively with at broad
scales on which they typically occur.  The
second and more profound reason is that
ecologists are now acutely aware that, in order
to understand how nature works, they must
consider broad-scale pattern and process and
relate them to those at fine scales with which
they are most familiar.  In both cases, trans-
lating or extrapolating information from one
scale to another, i.e., scaling, is indispensable.
Accordingly, the process of translating or ex-
trapolating information from fine to coarse
scales is usually referred to as scaling-up, and
the process in the reverse direction as scaling-
down.  Clearly, there is an urgent need to
conduct large-scale studies for capturing the
patterns and processes that are not evident in
fine-scale observations, and to develop strate-
gies for translating information from local to
regional and global scales.  Indeed, the issues
of scale and scaling have taken a prominent
position in ecology (Levin, 1992; Peterson
and Parker, 1998).  Not surprisingly, these re-
cent studies have shown that scaling is usually
complex, with problems and obstacles arising
from a variety of situations.

Why is scaling a complex matter?
First, studies in landscape ecology, hydrology,
meteorology, and other related earth sciences
have shown that different controls and proc-
esses tend to dominate in distinctive, charac-
teristic domains of scale in time and space.
Thus, observations made on a single scale can,
at best, capture only those patterns and proc-
esses pertinent to that scale of observation.
Yet, complexity arises almost inevitably when
a description or explanation simultaneously
invokes multiple levels of organization or
domains of scale (Simon, 1962; Allen and
Starr, 1982).  Second, nonlinear relationships
and feedbacks among components at the
same and different scales are quite common
in ecological systems.  Strong nonlinearities
often lead to instability and unpredictability
in large complex systems.  Third, spatial het-
erogeneity is ubiquitous and varies at differ-
ent scales, further complicating the scaling
process.  For example, while landscapes can
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be perceived as hierarchical mosaics of
patches, at each level patches may interact in a
variety of ways and form different patterns.
Patchiness and gradients usually interweave
and result in spatial or structural nonlinearity
in landscapes.  Thus, patch dynamics within a
landscape usually are complex due to the
functional and spatial nonlinearities.  These
scale-dependent processes and nonlinearities
explain why emergent properties are fre-
quently encountered when we move across
organizational levels and spatiotemporal
scales.  Thus, a successful scaling strategy
must be able to effectively tackle these com-
plex aspects of ecological systems.  While the
issue of scaling has been widely recognized
essential in both basic and applied research, a
general theory of scaling is still elusive.  

Given that ecological systems com-
prise multi-leveled or multi-scaled patterns
and processes, are there general rules for
scaling up or down?  How do the number of
scales (or hierarchical levels), nonlinearity,
and patchiness affect the feasibility and accu-
racy of scaling?  How much detail needs to be
incorporated (or discarded) for a given scal-
ing purpose?  Is it possible or necessary to
scale from the cell up to the biosphere?  More
to the point, how?  The main purpose of this
paper is, therefore, to address some of these
questions by presenting a hierarchical patch
dynamics scaling strategy.

COMPLEXITY OF ECOLOGICAL
SYSTEMS AND HIERARCHY THEORY

Complexity of Ecological Systems

Complexity of a system is usually related to
the number of components, their relation-
ships, and various factors associated with the
observer.  Although complex systems tend to
have a great number of components, it is the
complex interactions among components that
make them difficult to deal with.  A compre-
hensive concept of complexity must include
both inherent system properties and the per-
ceptions, interests, and capabilities of the ob-
server (Figure 1).  The complexity of eco-
logical systems, viewed from a scaling per-
spective, comprises the multiplicity of spatial
patterns and ecological processes, nonlinear
interactions among numerous components,
and heterogeneity in space and time.  Again,
it is important to note that whether or not a
particular ecological system is complex may
depend on the way it is described and the ob-
jective of an investigation.  For example, if
one needs only to predict (rather than ex-
plain) how the productivity of a given eco-
system is related to precipitation in the grow-
ing season, a simple regression equation based
on enough historical data often does an ade-
quate job (at least over a short period of
time).  In this case, the observer basically sees
the system as a “black box” and is interested
primarily in the relationship between its input
and output.   

COMPLEXITY

People

Thing
- number of elements
- number of relations }

- non-linearity
- broken symmetry
- non-holonomic constraints{

- values and beliefs
- interests
- capabilities
- notions and perceptions

{

{

Figure 1. Components of system complexity: The number of components, their relations, and human factors may
all contribute to the complexity of a system under study (Adapted from Flood, 1987).  Holonomic constraints are
constraints of laws of wholes, whereas nonholonomic constraints begin to operate when parts of the system are
temporarily out of central control and exhibit their own behavior that is difficult to predict based on knowledge of
the system.    

Weaver (1948) identified three ranges
of complexity in terms of the properties of
system structure: organized simplicity, orga-
nized complexity, and disorganized complex-

ity, which correspond to Weinberg’s (1975)
small-number, middle-number, and large-
number systems, respectively.  Organized
simplicity, characterizing systems which have
a smaller number of significant components
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that interact deterministically, can be dealt
with readily by analytical mathematics.  A
system involving many factors may always
appear complex at the first glance, but it is not
so if only a limited number of them are actu-
ally significant with respect to the question
being addressed.  Disorganized complexity
occurs when a system has a large number of
significant components that exhibit a high
degree of random behavior, and thus can be
dealt with effectively by using statistical
methods.  However, most systems we have to
deal with in ecology and environmental sci-
ence are middle-number systems which are
characterized by organized complexity (Allen
and Starr, 1982; O’Neill et al., 1986; Flood,
1987).  On the one hand, these systems have
more components than analytical mathematics
can handle; on the other hand, the use of tra-
ditional statistical methods can not be justified
because of the inadequate number, and non-
random behavior, of components.  As a result,
quantitative methods are lacking for effec-
tively untangling organized complexity.
Consequently, we must either somehow con-
vert middle-number systems into small-
number systems whenever possible, or de-
velop new methods that differ fundamentally
from the well-established mathematical and
statistical procedures.  Systems science was
developed in particular to cope with these
challenges (Weinberg, 1975; Flood and Car-
son, 1993).  With its emphasis on processes
and dynamics, systems approaches have been
rather powerful and successful in dealing with
complex feedbacks and nonlinear interactions
in engineering, social, economic, and ecologi-
cal systems, but they often become inadequate
once spatial heterogeneity needs to be consid-
ered explicitly.  

Simon (1996) identified three bursts
of interest in complexity and complex sys-
tems in the 20 th century.  The first burst
started after World War I, signified by the
terms of “holism”, “Gestalts”, and “creative
evolution”, which had a strong anti-
reductionist flavor.  The second one, charac-
terized by such terms as “general systems”,
“information”, “cybernetics”, and “feed-
back”, embarked after World War II, and fo-
cused primarily on the roles of feedback and
homeostasis in maintaining system stability.
The current eruption has focused mainly on
mechanisms that create and sustain complex-
ity and on methods that can effectively de-
scribe and analyze complexity.  As a result,
alternative views  on complexity have been
emerging, which can be identified with terms

“chaos”, “catastrophe”, “fractals”, “cellu-
lar automata”, “genetic algorithms”, and
“hierarchy”.  These views emphasize differ-
ent aspects of complexity and can be per-
ceived as both alternatives and complements
to hierarchy theory (Simon, 1996).  While all
of them are useful to understanding cross-
scale phenomena, I argue that hierarchy the-
ory can provide a much needed conceptual
framework for developing successful scaling
theories and approaches.

Hierarchy Theory

Hierarchy theory emerged in the need for
dealing with complexity from studies across a
variety of disciplines, including management
science, economics, psychology, biology,
ecology, and systems science (Simon, 1962,
1973; Koestler, 1967; Whyte et al., 1969; Me-
sarovic et al., 1970; Weiss, 1971; Pattee, 1973;
Miller, 1978; Allen and Starr, 1982; Salthe,
1985; O’Neill et al., 1986; Ahl and Allen,
1996).  A hierarchy can broadly be defined
as “a  partial ordering” of entities (Simon,
1973).  In his seminal paper on the architec-
ture of complexity, Simon (1962) most in-
sightfully noted that complexity frequently
takes the form of hierarchy, whereby a com-
plex system consists of interrelated subsys-
tems that are in turn composed of their own
subsystems, and so on, until the level of ele-
mentary or “primitive” components is
reached.  The choice of the lowest level in a
given system is dependent not only on the
nature of the system, but also on the research
question.  

In the literature of hierarchy theory,
the subsystems that comprise a level are usu-
ally called “holons” (from the Greek word
holos = whole and the suffix on  = part or
particle as in proton or neutron; coined by
Koestler, 1967).  The word holon has been
widely adopted mainly because it conveys the
idea that subsystems at each level within a hi-
erarchy are “Janus-faced”: they act as
“wholes” when facing downwards and as
“parts” when facing upwards.  It is important
to note that the levels in the traditional hierar-
chy of ecological organization (i.e., individ-
ual-population-community-ecosystem-
landscape-biome-biosphere) are definitional
and do not necessarily meet scalar (i.e., scale-
related, albeit spatial or temporal) criteria (see
Allen and Hoekstra, 1992; Ahl and Allen,
1996; O’Neill and King, 1998).  However, the
concepts and principles of hierarchy theory
usually apply only to scalar,  not prescribed
or definitional, hierarchies.
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A hierarchical system has both vertical
structure that is composed of levels and hori-
zontal structure that consists of holons (Fig-
ure 2).  Hierarchical levels are separated, fun-
damentally, by characteristically different
process rates (e.g., behavioral frequencies, re-
laxation time, cycle time, or response time).
The boundaries between levels and holons are
termed surfaces (Allen and Starr, 1982),
which in space are the places exhibiting the
highest variability in the strength of interac-
tions (Allen et al., 1984).  Surfaces filter the
flows of matter, energy, and information
crossing them, and thus can also be perceived
as filters (Ahl and Allen, 1996).  In hierarchi-
cal systems, higher levels are characterized by
slower and larger entities (or low-frequency
events) whereas lower levels by faster and
smaller entities (or high-frequency events).
The relationship between two adjacent levels is
asymmetric: the upper level exerts constraints
(e.g., as boundary conditions) to the lower

level, whereas the lower provides initiating
conditions to the upper.  On the other hand,
the relationship between subsystems (holons)
at each level are symmetric, and can be distin-
guished by the degree of interactions among
components.  That is, components interact
more strongly or more frequently within than
between subsystems or surfaces.  For example,
the strength of interactions between subatomic
components is stronger than that between at-
oms which is in turn stronger than that be-
tween molecules.  The same can be said about
an ecological hierarchy such as the nested hi-
erarchy of individual-local population-
metapopulation or leaf-canopy-stand-
landscape.  Therefore, it is the variability in
the strength of interactions between levels and
among holons that defines the locations of
surfaces, and it is the relatively high degree of
interactions among components that gives rise
to the apparent identity and integrity of
holons as well as systems.   
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Symmetric relations    Loose horizontal coupling
Varying strengths of interactions between components

                        Some Key Concepts
Levels/Holons       Nesting/Non-nesting
Surfaces/Filters Loose coupling
Near-decomposability   Time-space separability 

Context
Constraints
Control
Containment (nested)
Boundary conditions

Components
Mechanisms
Initiating conditions

Focal Level

Higher Level

Lower Level

Level +1

Level -1

Level 0

Fig. 2. Illustration of hierarchy theory with its major concepts (based on various diagrams and concepts in Simon,
1962, 1973; Koestler, 1967; Allen and Starr, 1982; O’Neill et al., 1986).

These characteristics of hierarchical
structure can be explained by virtue of “loose
vertical coupling”, permitting the distinction
between levels, and “loose horizontal cou-
pling”, allowing the separation between sub-
systems (holons) at each level (Simon, 1973).

The existence of vertical and horizontal loose
couplings is exactly the basis of the
decomposability of complex systems (i.e., the
feasibility of a system being disassembled into
levels and holons without a significant loss of
information).  Decomposability and decom-
position (i.e., the process of separating and



Canadian Journal of Remote Sensing Vol. 25, No. 4, 1999, pp. 367-380

6

ordering system components according to
their temporal or spatial scales or both) repre-
sent one of the most essential tenets of hierar-
chy theory.  While the word “loose” suggests
“decomposable”, the word “coupling” im-
plies resistance to decomposition.  Strictly
speaking, complete decomposability only oc-
curs when coupling between components be-
comes zero, which seems a trivial case be-
cause, by definition, a system is composed of
interacting parts.  Thus, hierarchical complex
systems are only nearly completely
decomposable or nearly decomposable
(Simon, 1962, 1973).  

The concept of near-decomposability
can be defined precisely in mathematical
terms for dynamic systems (Simon and Ando,
1961; Overton, 1975a).  Ando and Fisher
(1963) provided a mathematical definition as
follows: “A completely decomposable matrix
is a square matrix such that an identical rear-
rangement of rows and columns leaves a set
of square submatrices on the principal diago-
nal and zeros everywhere else. … A
decomposable matrix (as opposed to a com-
pletely decomposable one) is a square matrix
such that an identical rearrangement of rows
and columns leaves a set of square submatri-
ces on the principal diagonal with zeros eve-
rywhere below (but not necessarily also above
such matrices). … Near-decomposability and
near-complete-decomposability are defined
by replacing the zeros in the above definitions
by small nonzero numbers.”  Both conceptu-
ally and mathematically, the problem of de-
composition is closely related to the one of
aggregation for which various analytical
methods have been developed for ecological
systems (see Cale and Odell, 1979; O’Neill
and Rust, 1979; Schaffer, 1981; Gardner et
al., 1982; Iwasa et al., 1987, 1989; Bartell et
al., 1988; Heuvelink et al., 1989; King et al.,
1991; Rastetter et al., 1992; Hiebeler, 1997).  

According to the principle of decom-
position, for a given study that is focused on a
particular level, constraints from higher levels
are expressed as constants or boundary con-
ditions whereas the rapid dynamics at lower
levels are filtered (smoothed out) and only
manifest as averages or equilibrium values.
One of the most important implications of de-
composition is that the short-term dynamics
of subsystems can be effectively and justifia-
bly studied in isolation by ignoring the be-
tween-subsystem interactions that operate over
significantly longer time scales.  On the other
hand, the long-term dynamics of the entire

system is predominantly determined by the
slow processes.  The principle of near-
decomposability has been demonstrated
mathematically for both linear and nonlinear
dynamic systems in economics (e.g., Simon
and Ando, 1961; Ando and Fisher, 1963;
Fisher, 1963) and ecology (e.g., Cale and Od-
ell, 1979; O’Neill and Rust, 1979; Gardner et
al., 1982; Iwasa et al., 1987, 1989; Bartell et
al., 1988).  For a specific problem it is not
only possible, but also wise to “scale off”
(sensu Simon, 1973) relevant levels from
those above and below, thus achieving a
greater simplification and better understand-
ing.

Therefore, it is the near-
decomposability, as defined in hierarchy the-
ory, that makes it possible to transform a
middle-number system into a small-number
system or, at least, to reduce the magnitude of
complexity to a more manageable level.  In
other words, the nearly decomposable nature
of complex systems provides a key to its sim-
plification and manageability.  For example,
hydraulic and aerodynamic systems are full
of turbulence and thus chaotic and unpredict-
able (or “unmanageable”) in any detail, but
they become “manageable” when they are
dealt with as aggregate phenomena (Simon,
1996).  The first-, second-, and third-order
closure methods in micrometeorological
models can be viewed as distinct ways of de-
composing the complex vegetation-
atmosphere system with increasing details in
representing turbulent flows (Paw U et al.,
1985; Wu, 1990).  Although the degree of
decomposability is more than likely to vary
between systems or even between processes
within the same system, near-decomposability
appears to be rather common in nature
(Whyte et al., 1969; Weiss, 1971; Pattee, 1973;
Courtois, 1985; Klir, 1985; Kolasa, 1989;
Holling, 1992).  Indeed, near-
decomposability seems to underline the plau-
sibility and success of seemingly independent
and partial studies of nature crossing different
hierarchical levels ranging from elementary
particles to the cosmos and focusing on dif-
ferent phenomena ranging from physical to
social sciences (Courtois, 1985).  Apparently,
the wisdom reflected in the statement, “Eve-
rything is connected to everything else”, of-
ten encountered in ecological literature, is af-
ter all not helpful or even misleading for un-
derstanding complex systems or developing
scaling theories.  Evidently, for any given
phenomenon in this world, some things are
more connected than others, and most things
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are only negligibly interrelated with each
other (Simon, 1973).  However, we must also
keep in mind that it is the weak interactions
that do, but only, affect the long-term system
dynamics beyond the time frame that is tai-
lored by the nature of particular phenomena
and the objective of a study.

Hierarchy theory suggests that when
one studies a phenomenon at a particular hi-
erarchical level (the focal level, often denoted
as Level 0), the mechanistic understanding
comes from the next lower level (Level -1),
whereas the significance of that phenomenon
can only be revealed at the next higher level
(Level +1).  Interestingly, Baldocchi (1993)
called the three adjacent scales the reduction-
ist (Level –1), operational (Level 0), and
macro (Level +1) scales, respectively.  This
three-level structure is sometimes referred to
as the Triadic structure of hierarchy (O’Neill,
1989).  Thus,  three adjacent levels or scales
usually are necessary and adequate for under-
standing most of the behavior of ecological
systems (O’Neill, 1988, 1989; Salthe, 1991)
although occasional exceptions to this general
rule may occur when certain effects penetrate
through several levels above or below (so-
called perturbing transitivities by Salthe,
1991; see O’Neill et al., 1991 for specific ex-
amples).  Simon (1973) clearly stated: “The
fact that nature is hierarchic does not mean
that phenomena at several levels cannot, even
in the Mendelian view, have common mecha-
nisms.  Relativistic quantum mechanics has
had spectacular success in dealing with phe-

nomena ranging all the way from the level of
the atomic nucleus to the level of tertiary
structure in organic molecules.  …  Scientific
knowledge is organized in levels, not because
reduction in principle is impossible, but be-
cause nature is organized in levels, and the
pattern at each level is most clearly discerned
by abstracting from the detail of the levels far
below.”

How to derive the hierarchical struc-
ture of complex systems?  Different ordering
principles result in different hierarchies.  It is
perceivable that hierarchies with different
structure and properties can be derived to de-
scribe the same system using alternative or-
dering criteria.  Two types of hierarchies, in
particular, should be recognized: nested and
non-nested hierarchies (Allen and Starr, 1982;
Ahl and Allen, 1996).  Nested hierarchies are
the special case in which the components
(holons) of one level contain, or are com-
posed of, the components (also holons) of the
next level down (e.g., taxonomic or land
cover classification systems).  However, con-
tainment is not a part of the ordering criteria
for non-nested hierarchies (e.g., hierarchies of
trophic levels).  Although both of them com-
ply with the general concepts and principles
of hierarchy theory, but do behave differently
in several ways (see Table 1).  

Table 1. Comparison between non-nested and
nested hierarchies (based on discussions in Ahl
and Allen, 1996).

Non-nested hierarchies Nested hierarchies

Not suitable for exploration

Same criteria (or measurement units) pressing
across all levels

Comparison between hierarchies is more feasible

System-level understanding can not be obtained
by knowledge of parts

Suitable for exploration

Different criteria (or measurement units) at
different levels

Comparison between hierarchies is less feasible

System-level understanding can be obtained
by knowledge of parts

Why do complex systems like eco-
systems possess hierarchical structures?  The
well-known parable of watchmakers (Simon
1962) seems more than just heuristic (Figure
3).  Two fine watchmakers arrived at two en-
tirely different destinations only because of
the difference in the watch-building strategy.
The hierarchical or modular approach led one
to success, whereas the extreme bottom-up,
reductionistic approach led the other to fail-

ure (see Figure 3 for more details).  There-
fore, Simon (1962) concluded that “hierar-
chies will evolve much more rapidly from
elementary constituents than will non-
hierarchic systems containing the same num-
ber of elements.”  For example, mathematical
calculations based on known biological facts
and probability theory suggest that the level
of complexity in today’s biological world
would not be possible to achieve through
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evolution if the biological complexity were
not hierarchically structured (see Simon,
1962, 1973).

What implications does this parable
have for understanding complexity, hierarchy,
and scaling?  It provides enlightening, al-
though heuristic, insight into understanding
the complexity of nature and the nature of
complexity.  Biological and ecological sys-
tems usually are hierarchically structured be-
cause such an architecture tends to evolve
faster, allow for more stability, and thus is fa-
vored by natural selection (Simon, 1962;
Whyte et al., 1969; Pattee, 1973; Salthe 1985;
O’Neill et al. 1986).  The parable also re-
minds us of many successful methods and
approaches associated with the concept
“modularity” from biology to computer sci-
ences, which apparently is a derivative of hier-
archy.  Although not all hierarchical systems
are stable, the construction of a complex sys-
tem using a hierarchical approach is more
likely to be successful than otherwise.  For
example, to build complex, yet stable and ef-
ficient software, computer scientists have de-
veloped the object-oriented paradigm, which
in many ways reflects the principles of hierar-
chy theory (Booch, 1994).  In general, suc-
cessful human problem-solving procedures
are hierarchical (Newell and Simon 1972).
As discussed earlier in the context of
decomposability, a very important utility of
hierarchy theory is to simplify complexity.
According to Miller (1956; cited in Simon
1973), the maximum number of chunks of
information an individual can simultaneously
comprehend is on the order of seven, plus or
minus two, while it takes the mind about five
seconds to accept a new chunk of informa-
tion.  Thus, a non-hierarchical complex sys-
tem can not be fully described, and even if it
could, it would be incomprehensible.

From the above review it becomes ap-
parent that the major developments in hierar-
chy theory are relatively recent, although the
concepts of “levels” of organization and
“hierarchy” date back to ancient times (see
Wilson, 1969 for a historical review).  Wilby
(1994) pointed out that “hierarchy theory
has been deemed successful in the systems
field” and “it is necessary and appropriate to
critique the development and application of
hierarchy theory”.  She went on identifying
several difficulties with hierarchy theory, in-
cluding: (1) the lack of a single, coherent set
of definitions and principles for all variants of
the theory, (2) the lack of a specific, system-

atic methodology for the application of the
theory, and (3) the lack of a precise and ca-
pable mathematical framework for the theory

1,000

100

10

1

... more

... more

Number of Units

Hora

S

Tempus c

Figure 3.  The watchmaker parable (based on the de-
scription by Simon, 1962).  Two watchmakers, Hora
and Tempus, were making equally fine watches, each
consisting of 1,000 parts.  Both were frequently in-
terrupted by customers’ phone calls, at which time
they had to stop working, thus the unfinished watch
at hand fell apart.  Hora took a hierarchical approach
by having his watch built with modules that were
further composed of submodules, while Tempus as-
sembled his watch directly from the parts.  Eventu-
ally, Hora became a rich man, but Tempus went
bankrupt.  Simple probability calculations reveal
that, suppose the probability of an interruption oc-
curring while a part is being added to an assembly is
0.01, Hora makes 111 times as many complete as-
semblies per watch as Tempus.

(also see O’Neill, 1989).  While these criti-
cisms are all relevant, as many have argued
(e.g., Overton, 1975b; Turner et al., 1989;
Caldwell et al., 1993; Reynolds et al., 1993;
Giampietro, 1994; Wu and Loucks, 1995;
O’Neill, 1996; Reynolds and Wu, 1999), hier-
archy theory can be used to facilitate under-
standing the ecological complexity and de-
veloping scaling rules.  In the following sec-
tion, I shall discuss how hierarchy theory can
be integrated with the theory of spatial het-
erogeneity, patch dynamics, to achieve such a
goal.
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HIERARCHICAL PATCH DYNAMICS
(HPD)

Ecological systems are hierarchical patch mo-
saics.  On different scales, a patch may be de-
fined as a continent surrounded by oceans, a
forest stand surrounded by agricultural lands
and urban areas, a fire-burned area or a tree
gap within a forest, or a stomata on a leaf.
Patches can be characterized by their size,
shape, content, duration, structural complex-
ity, and boundary characteristics.  The theory
of patch dynamics indicates that the structure,
function, and dynamics of such patches are
important to understanding the systems they
comprise, be they populations, communities,
ecosystems, or landscapes (see Levin and
Paine, 1974; Pickett and White, 1985; Wu and
Loucks, 1995; Pickett et al., 1999).  Since the
1970s, patch dynamics has become one of the
most central perspectives in ecology.  The hi-
erarchical patch dynamics paradigm (HPDP;
Wu and Loucks, 1995) integrates the theory
of patch dynamics with hierarchy theory by
expressing the relationship among pattern,
process, and scale explicitly in the context of
a landscape.  The main points of HPDP in-
clude:

(1) Ecological systems can be per-
ceived and studied as spatially nested patch
hierarchies, in which larger patches are made
of smaller, functioning patches.  The levels in
these hierarchical patch systems are charac-
terized by distinct characteristic scales or do-
mains of scale, where patches at each level
may correspond to holons (mosaics of smaller
patches).  The spatial structure of patch hier-
archies are, in general, nearly decomposable.
This suggests that patch boundaries at any
scale may variably overlap with each other
(Gosz, 1993; Fortin, 1994; Fortin and
Drapeau, 1995).   The significance of estab-
lishing such a patch hierarchy lies in the
premise that spatial and temporal scales are
fundamentally linked to each other, and that
complex systems can be decomposed in time
and space simultaneously (Simon and Ando,
1961; Courtois, 1985; Salthe, 1991; Giampie-
tro, 1994).  This is supported empirically by
the fact that many physical and ecological
phenomena arrange themselves, by and large,
along the 45˚ line in a space-time scale dia-
gram ( (Figure 4; also see Stommel, 1963;
Delcourt and Delcourt, 1983, 1988; Clark,
1985; Urban et al., 1987; Walker and Walker,
1991; Innes, 1998).

The hierarchical patch structure is a
manifestation of the spatial pattern of eco-
logical systems at different scales, and because
it is tangible, it facilitates considerations of
how pattern interacts with process across these
scales.  For example, Kolasa (1989; also see
Kolasa and Waltho, 1998) developed a gen-
eral conceptual model in which the structure
of an environment, viewed as a nested hierar-
chy of habitat units, significantly determines
the structure of biotic communities across
scales.  Based on statistical analysis of empiri-
cal data from eight different communities
(e.g., flatworms, aquatic insects, foraminifer-
ans, rodents, and birds), Kolasa (1989) was
able to show the clusters, or “scale breaks”,
in community structure in terms of species
abundance which corresponded nicely to the
hierarchical habitat structure.  Similarly, Kot-
liar and Wiens (1990) proposed a hierarchical
patch model of habitat that emphasizes the
perception and responses of organisms to
spatial patchiness.  Indeed, such a spatial
patch hierarchy-based approach is successful
in a variety of fields, including geography
and soil science (e.g., Haigh, 1987; de Boer
and Campbell, 1989), geomorphology (e.g.,
Phillips, 1995), remote sensing (e.g., Wood-
cock and Harward, 1992), and ecology (e.g.,
Urban et al., 1987; Smith and Urban, 1988;
Wu and Levin, 1994, 1997).

Because different organisms and
ecological processes respond to patchiness at
different scales, different patch hierarchies for
them may be perceived even within the same
landscape.  In other words, there is no single
correct patch hierarchy for all phenomena.
Conceivably, only when most processes of
interest respond to the structure at corre-
sponding discrete levels is a patch hierarchy
robust and effective for relating pattern to
process and for scaling.  In nature, the
boundary-surfaces of different properties of-
ten tend to coincide with each other because
many surfaces are mutually-reinforcing (Platt,
1969).

(2) Dynamics of a given ecological
system can be derived from the dynamics of
interacting patches at adjacent hierarchical
levels.  Patches at higher levels impose top-
down constraints to those at lower levels by
having slower, or less frequent, processes,
while lower levels provide initiating conditions
and mechanistic explanations for, and give
apparent identity and integrity to, higher lev-
els through interactions among components
or holons (here patches).  Distinctive charac-
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teristic time scales of patches at lower vs.
higher levels are the fundamental reason for
the near-decomposability of ecological sys-
tems.  The structural decomposition can pro-
vide useful clues for the decomposition of
processes or dynamics here, and the result of
the latter should be used to refine and validate
the former.  Hierarchy theory indicates that,
in general, the strength and frequency of in-
teractions between levels decrease with dis-
tance.  This means that, for a given phenome-
non, a complex system with a large number of
patches over a wide range of scales can be,
and should be, reduced to a much simplified
system with only a small number of discrete
levels that are adjacent to each other.  For hi-

erarchical systems, an appropriate decompo-
sition should only allow some, but an insig-
nificant, amount of information loss.  How
much exactly?  Aggregating a large number
of components, or decomposing a complex
system, into a smaller number of levels to
study system dynamics is, in a way, similar to
approximating the solutions of differential
equations using a truncated Taylor series.
The magnitude of the “truncation” errors
depends not only on the method itself, but
also on the nature of the processes (e.g., non-
linear interactions, feedbacks, time delays),
spatial heterogeneity, and the scale of meas-
urement or observation.

Global 
weather 
systems

Synoptic
weather
systems

Carbon dioxide
    variations

Atmospheric
composition

    Origin of 
earth and life

Climate Plate tectonics

El Niño
Glacial
periods

Mantle convection

Upper
ocean
mixing

Ocean circulation Mountain building

Extinction events
      Soil
development

    Soil
moisture
variations

Earthquake
    cycle

 Seasonal
vegetation
   cycles

   Soil
erosion

Metallogenesis

Volcanic eruption Nutrient
 cycles

Atmospheric
  convection

Atmospheric
 turbulence

Global

104

103

102

101

100

Local
Second Minute Day

Temporal Scale (Year)

100 yr 102 yr 104 yr 106 yr 109 yr

S
p
at

ia
l S

ca
le

 (
km

2
)

Figure 4.  Physical and ecological phenomena tend to line up, approximately, along the diagonal direction in the
space-time scale diagram although variations may sometimes be large (Redrawn from NASA, 1988; cited in Innes,
1998).

From hierarchy theory, three con-
secutive levels in the patch hierarchy should
be considered to describe an ecological phe-
nomenon for both comprehensiveness and
conciseness: the focal patch level and the ones
immediately above and below it.  Thus, if we
write equations to describe the dynamics of

the focal level, which corresponds to the char-
acteristic scale of the phenomenon of interest,
the level below it provides initiating condi-
tions (or parameters as statistical averages),
whereas the level above sets the boundary
conditions (constants).  Such a system de-
scription is not only most parsimonious, but
also avoids the problems resulting from hav-
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ing too much detail in models: error aggrega-
tion, instability, enormous computational de-
mands, and diminishing comprehensibility.
These problems can be ameliorated to some
extent by employing, for example, the object-
oriented technology (Booch, 1994) when sev-
eral levels are necessary to be considered si-
multaneously, but may never be completely
eliminated.

(3) Pattern and process have compo-
nents that are reciprocally related, and both
pattern and process, as well as their relation-
ship, change with scale.  Different patterns
and processes usually differ in the character-
istic scales at which they operate.  Again, this
relates to the near-decomposability of eco-
logical systems, and explains why they can be,
and have been, studied at a variety of scales.
To link patterns with processes at the same
scale, or to translate them across scales, do-
mains of scale (usually corresponding to hier-
archical levels) need to be identified correctly.
Establishing appropriate patch hierarchies fa-
cilitates understanding pattern and process
and their relationships across scales.  

(4) Nonequilibrium and stochastic
processes are common in ecological systems.
In general, small-scale processes tend to be
more stochastic and less predictable.  How-
ever, nonequilibrium and stochastic processes
do not necessarily work against stability.
They usually constitute mechanisms that un-
derlie the apparent stability of ecological sys-
tems at a different scale (e.g., Urban et al.,
1987; Turner et al., 1993; Wu and Levin,
1994).  Thus, equilibrium and non-
equilibrium are not absolute and context-free,
but relative and scale-dependent.  Further-
more, while high predictability and regulari-
ties can often be obtained within a single do-
main of scale in which similar processes
dominate, one may speculate that unpredict-
ability and irregularities will rise in the transi-
tional zones between domains of scale (Wiens,
1989).

(5) Homeostatic stability is rarely ob-
served in nature except for individual organ-
isms, and persistent ecological systems usually
exhibit metastability (homeorhetic, quasi-
equilibrium states).  An important mechanism
for achieving this metastability in hierarchical
systems is incorporation, whereby nonequilib-
rium patch processes at one level translate to
patterns and processes in a quasi-equilibrium
state at a higher level (O’Neill et al., 1986;
Turner et al., 1993; Wu and Levin, 1994).
The concepts of incorporation and metasta-

bility emphasize multiple-scale processes and
the consequences of heterogeneity.

A HIERARCHICAL PATCH DYNAMICS
SCALING STRATEGY

Hierarchy theory suggests that complex sys-
tems have a high degree of redundancy, and
description and understanding of them can be
facilitated by simplifying them through de-
composition into a limited number of sub-
systems.  Plant life forms and functional
groups (Smith et al., 1997) are examples of
aggregation (or decomposition) that makes
use of redundancy in ecological systems to
achieve simple descriptions and better under-
standing.  Developing a hierarchy of land-
scape structural and functional units provides
another example (Reynolds and Wu, 1999).
Different simplifying schemes like those
mentioned above can be used jointly with the
HPD scaling strategy described below.  For
example, one highly sensible and powerful
modeling and scaling scheme is the hierarchi-
cal ecosystem functional type (HEFT) ap-
proach that explicitly integrates hierarchical
patch dynamics with the concept of ecosystem
functional types (EFTs; see Reynolds et al.,
1997; Reynolds and Wu, 1999).  Because the
EFT concept emphasizes ecosystem attributes
and processes (e.g., primary productivity,
biogeochemical cycling, gas fluxes, hydrol-
ogy), it provides concrete meanings to patches
and thus reinforces the less tangible, but
equally important, process aspect of the hier-
archical patch dynamics paradigm.

In general, the hierarchical patch dy-
namics scaling strategy can be implemented
in three stages, each of which may involve a
number of steps and methods:

(1) Identifying appropriate patch hierarchies

To identify patch hierarchies is to de-
compose complex spatial systems.  In general,
decomposing a complex system may invoke a
top-down (partitioning) or bottom-up  (ag-
gregation) scheme or both.  A top-down ap-
proach identifies levels and holons by pro-
gressively partitioning the entire system
downscale, whereas a bottom-up scheme in-
volves successively aggregating or grouping
similar entities upscale.  Note that the differ-
ence between observational (scalar) and defi-
nitional (often non-scalar) hierarchies is not
trivial (Ahl and Allen, 1996) because much of
the power of hierarchy theory resides with the
former.  Therefore, although prescribed patch
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hierarchies, when corroborated empirically
(e.g., Overton, 1975b; Reynolds et al., 1993;
Jarvis, 1995), can still be useful, quantitative
methods, such as hierarchical partitioning
(Chevan and Sutherland, 1991; MacNally,
1996), scale variance (Mollering and Tobler,
1972), multivariate statistical analyses, and
spatial statistics, should be preferred for iden-
tifying patch hierarchies.  For example, vari-
ability usually increases abruptly as transitions
are approached between two neighboring
domains of scale across a heterogeneous land-
scape, thus exhibiting “breaking points” or
“spikes” in a scale analysis.  These scale
breaks, when verified, may characterize hier-
archical levels.  Since the upsurge of land-
scape ecology in North America in the 1980s,
numerous methods of pattern analysis and
spatial statistics have been developed to detect
ecological scales (Turner et al., 1991; Rossi et
al., 1992; Fortin and Drapeau, 1995; Gardner,
1998; Gustafson, 1998).  For geographically
large systems, remote sensing and geographic
information systems are indispensable.

Besides pattern analysis and statistical
methods mentioned above, cross-scale meas-
urements or process modeling approaches can
also be used to delineate patch boundaries.
One example is illustrated by the following
simple equation:

dS

dt
=− DhFh + P − kS ,

where dS/dt is the rate of change in a state
variable S (e.g., nutrients, soil moisture, or bi-
ota) with respect to time, F

h
 is the horizontal

flux of S, D
h
F

h
 is the divergence of the hori-

zontal flux F
h
, and P and kS are the source

and sink terms, respectively (Menzel et al.,
1999).  When the study area increases succes-
sively, the horizontal flux divergence term
may become rather large as compared to the
other terms in the equation, indicating that
lateral flows become significant.  In this case,
schemes of averaging over the land area may
well result in considerable errors.  Abrupt
changes in the divergence term or dS/dt can
thus be used to delineate patch boundaries.
Raupach et al. (1999) developed a similar
formulation for tackling the problem of spa-
tial complexity in modeling the interactions
between vegetation and the atmosphere.  They
suggested that when the horizontal flux diver-
gence term is significantly large, land-air ex-
change models can no longer consider just
vertical fluxes or assume that the landscape

under study is spatially homogeneous.  In
other words, at this time multiple patches must
be explicitly considered due to nonlinear in-
ter-patch interactions and feedbacks (i.e., spa-
tial heterogeneity matters!).  An excellent elu-
cidation of when and how spatial patchiness
affects ecophysiological and meteorological
processes can be found in Baldocchi (1993)
and Jarvis (1995).

As mentioned earlier, different phe-
nomena, objectives, or criteria may result in
different patch hierarchies in terms of both
the number of hierarchical levels and their
characteristic spatiotemporal scales.  The cri-
teria for identifying patch hierarchies should
consider both structural and process charac-
teristics pertinent to the phenomenon under
study, although establishing a structural patch
hierarchy is a logical first step.  These tangi-
ble structural hierarchies should be modified
and refined based on further analysis of rele-
vant processes because they only become
meaningful and powerful “scaling ladders”
when the spatial and temporal scales of
patches of each hierarchical level largely cor-
respond to each other.  

 (2) Making observations and developing
models of patterns and processes around focal
levels

 Once an appropriate patch hierarchy
is established, patterns and processes can be
studied at their characteristic scales or do-
mains of scale, i.e., focal levels, by properly
choosing grain and extent.  The choice of
grain and extent is critically important be-
cause they determine what can be observed
(Allen et al., 1984).  There are always many
factors existing in ecological systems no mat-
ter what phenomena are to be studied, but not
all of them deserve consideration.  For exam-
ple, soil evaporation and heat storage in soil
and vegetation significantly affect the energy
balance of a canopy, but not that of a leaf
(Baldocchi, 1993).  Simon (1973) gave a
simple, but enlightening, example: if the total
time span (extent) is set to T, and time interval
(grain) to τ, for observing behavior of a given
level, high frequency (much greater than 1/τ)
dynamics can be seen only as statistical aver-
ages, while low frequency (much less than
1/T) dynamics will not be observed and thus
will be treated as constants.  Accordingly,
mathematical models, involving only three
adjacent levels and with relatively modest
complexity, can be developed for addressing
questions relevant to each domain of scale.
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These points seem to be equally valid when
spatial grain and extent are considered.  In-
formation from scale analysis in identifying
patch hierarchies can help choose appropriate
grain and extent for each domain.   

(3) Extrapolation across the domains of scale
hierarchically

Now it is time to extrapolate informa-
tion across domains of scale (or levels) along
a patch hierarchy.  This can be accomplished
by changing grain, extent, or both (Figure 5).
Specifically, scaling-up entails increasing ex-
tent or grain, or more commonly both,
whereas scaling-down involves decreasing
extent, grain, or more commonly both (Allen
et al., 1984; King, 1991).  In either case,
scaling requires multiple observation sets
(sensu Allen et al., 1984) made at different
domains of scale.  Based on the principles of
loose vertical and horizontal coupling and
near-decomposability, hierarchy theory sug-
gests scaling with both grain and extent
changed simultaneously and accordingly.
This is very similar to the way human eyes
work when moving away from an object
(scaling up) or approaching it (scaling down).
An interesting and profound message here is
that to gain new information at a higher level,
one needs to “hide” or suppress information
at the lower levels.  Again, one sees the im-
portance of establishing patch hierarchies
pertinent to the variables to be scaled.  A
properly identified spatial patch hierarchy
serves as a “ladder” for scaling up or down
(Figures 5 and 6).  Such patch hierarchies
should ideally emerge from analyses of ob-
servational data on both pattern and process.
As pointed out earlier, prescribed hierarchies
based on general empirical experience (e.g.,
individual-population-community; tree-stand-
landscape-region) may also work for particu-
lar processes.  However, we must bear in mind
that prescribed hierarchies, though conven-
ient, may prove to be inadequate or inappro-
priate for many processes or purposes.  

Numerous methods exist for extrapo-
lating information across adjacent scales in
different fields of earth sciences (e.g., Iwasa et
al., 1987, 1989; Ehleringer and Field, 1993;
Stewart et al., 1996; van Gardingen et al.,
1997; Kunin, 1998).  Particularly relevant here
are those discussed by King (1991) and Jarvis
(1995).  Jarvis (1995) identified three ap-
proaches to scaling up experimental measure-
ments: direct summation, averaging, and ag-
gregation.  The direct summation is simply the

addition of measurements of ecological vari-
ables for all component patches in the study
area.  In most ecological systems, the structural
and functional properties of patches vary
among themselves and with scale.  If we were
able to measure these attributes for all patches
simultaneously, simply adding them up would
provide an accurate estimate for the entire
landscape.  However, this is apparently im-
practical for large, complex landscapes. The
averaging scheme is to derive estimates at
larger scales based on appropriately calculated
averages of relevant parameters that have been
measured or estimated at a smaller scale.
While both the summation and averaging
methods treat the driving variables as inde-
pendent variables, the aggregation approach
takes into account the interactions between
patches, feedbacks among components, and
hierarchical linkages across scales, which can
be facilitated by the HPD scaling strategy.

King (1991) identified four general
methods for scaling up ecological models: (1)
lumping, (2) direct extrapolation, (3) extrapo-
lation by expected value, and (4) explicit inte-
gration.  The first method, lumping, is the
simplest method for scaling up ecological
models by which coarse-scale mean values are
derived from averaging fine-scale variables or
parameters as both the model grain and extent
usually are increased in the same time.
Lumping assumes that the mathematical for-
mulation of processes in smaller-scale models
remains valid at larger scales, or that larger-
scale systems behave in the same, or a similar,
way as the average fine-scale system.  Scaling
up can also be accomplished by increasing the
model extent only while holding the model
grain constant (see Allen et al., 1984), and the
second and third method discussed by King
(1991) follow such an scheme.  Direct ex-
trapolation, the second method, is to apply the
same local small-scale model to each patch in
the landscape for which the model is appropri-
ate and then to compute the (area-weighted)
summation of the output from all the patches
as the estimate for the entire landscape.  This is
essentially the approach used in many spatially
explicit regional ecosystem or landscape mod-
els.  Direct extrapolation is subject to spatial
aggregation errors and may suffer when the
small-scale model is computationally intensive
or the number of patches in the landscape is
huge.  

The third method is extrapolation by
expected value in which large-scale estimates
are obtained from multiplying the landscape
area by the expected value of the output from
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the small-scale models applied across a spa-
tially heterogeneous area.  In this case, model
arguments (state variables, parameters, and
driving variables) that vary spatially are treated
as random variables.  That is:

Y = AE[ f (x, p,z)] = AE[y]
where Y is the landscape expression of local
behavior, y; A is the landscape area; E[] is the
expected value operator; f is the local model;
and x, p, and z are vectors of state variables,
parameters, and driving variables, respectively.
Both direct extrapolation and extrapolation by
expected value methods scale up by increasing
the model extent without altering the structure
of the small-scale model.  King (1991) indi-
cated a couple of key issues in employing
these two methods: (1) appropriately describ-
ing landscape heterogeneity with respect to the
arguments of the local scale model, and (2)
appropriately combining output from the local
scale model to derive the aggregate expression
for the landscape.  The fourth method, ex-
trapolation by explicit integration, is accom-
plished by explicitly evaluating the integral of
the smaller-scale model with respect to space
in closed form.  This requires that the small-
scale model be defined as a mathematical
function of space and also be integrable.  In
contrast with the second and third methods, the
structure of the local-scale model changes as a
function of space in the method of extrapola-
tion by explicit integration, and the problem
of model grain disappears because the land-
scape is essentially treated as a continuous sur-
face.  This approach apparently is mathemati-
cally more tractable and computationally effi-
cient, but difficulties in representing spatially
heterogeneous landscapes as continuous func-
tions in exact forms may seriously limit its ap-
plicability.

From the above discussion, it becomes
clear that a diversity of existing specific scal-
ing methods can be used in the third stage of
the hierarchical patch dynamics scaling strat-
egy.  While the HPD scaling strategy is based
on, and complements, these earlier studies, it
differs from them in its generality and the
emphasis on hierarchical structure of nature.  

Is it possible to extrapolate informa-
tion across a wide range of scales, and if so,
how?  Hierarchy theory may suggest that such
an endeavor is not necessary for understand-
ing and predicting many ecological phenom-
ena.  Conceptually, this is because the flows of
matter, energy, and information across hierar-
chical levels are successively filtered by sur-
faces, so that the details at one level will

eventually become irrelevant or undetectable
at a distant level.  However, if there is a need
for scaling up from the leaf to the globe, it is
preferable to develop a hierarchy of hierar-
chical models that each contain three adjacent
levels, which together allow for translating in-
formation across a wide range of scales.
These “unit” hierarchical models then can be
chained in an input-out fashion to reach the
total length of the patch hierarchy (e.g., Rey-
nolds et al., 1993, Jarvis, 1995; Reynolds and
Wu, 1999).  Figure 6 is a schematic illustra-
tion of such an approach, depicting the proc-
esses of decomposing complexity, establish-
ing a patch hierarchy based on pattern and
process, building a hierarchy of unit hierar-
chical models, and scaling up models through
an input-output chain while incorporating
both bottom-up mechanisms and top-down
constraints.  The object-oriented technology
(object-oriented analysis, object-oriented de-
sign, and object-oriented programming; see
Booch, 1994) seems to have much to offer to
facilitate the development of such hierarchical
models.

DISCUSSION AND CONCLUSIONS

Scaling is ubiquitous in ecological studies al-
though we may not always realize it explicitly.
In fact, whenever averages of ecological vari-
ables are used, a certain kind of aggregation
or scaling over space or time is performed.
While scaling has acutely been recognized as
one of the most important and pressing chal-
lenges across all fields of earth sciences (see
Wiens, 1989; Ehleringer and Field, 1993;
King, 1991; Levin, 1992; Rastetter et al.,
1992; Jarvis; 1995; Wu and Loucks, 1995;
Stewart et al., 1996; van Gardingen et al.,
1997; Peterson and Parker, 1998), scaling
rules or systematic scaling methods are scarce
especially when heterogeneous landscapes are
considered.  

Ecologists are acutely aware that spa-
tial heterogeneity matters, and that nonlinear-
ity rules.  Recognizing, identifying, and tak-
ing advantage of the hierarchical structure
and near-decomposability of complex eco-
logical systems may hold the key to under-
standing and prediction through robust sim-
plification and successful scaling.  Hierarchy
theory suggests that it would be difficult, if
ever possible, to translate information directly
between two distant domains when there exist
intervening levels that are relevant to the cho-
sen phenomenon but which are ignored (Al-
len et al., 1984).  O’Neill et al. (1986) reiter-
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ated this important point: “Any attempt to
relate a macroscopic property to the detailed
behaviors of components several layers lower

in the hierarchy is bound to fail due to the
successive filtering”.    

Figure 5. Hierarchical scaling or extrapolating information along a hierarchical scaling ladder.  Scaling up or down
is implemented by changing model grain size, extent, or both across  successive domains of scale (see text for more
details).

Figure 6. Illustration
of the hierarchical
patch dynamics scal-
ing strategy, which
involves establishing
a patch hierarchy
based preferably on
scale analysis of pat-
terns and processes
that are relevant to the
phenomenon under
study, making obser-
vations and develop-
ing unit hierarchical
models, and scaling
up or down by link-
ing these unit models
along the patch hier-
archy.
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The hierarchical patch dynamics
paradigm, integrating hierarchy theory and
patch dynamics, allows us to simplify the
complexity of nature, yet to retain its essence.
Scaling up and down both can be open-
ended, which in a way reminds us of what to
expect from an unclosed systems of equations
with a number of free parameters.  The hier-
archical patch dynamics scaling scheme pro-
vides a conceptual basis for closing up the
open ends when we move up or down scales
in space and time.  In particular, the HPD
scaling strategy provides a ladder for scaling.
I argue that, if it is possible to scale up from
the cell to the globe, most likely this has to be
done through a hierarchical approach.  Using
a “scaling ladder” should greatly enhance
the feasibility and minimize the danger of er-
rors in translating information across a wide
range of scales.  

Currently, we are using the HPD
scheme to develop models and scale up pat-
tern and process in arid landscapes, including
the Phoenix metropolitan area (through the
Central Arizona – Phoenix Long-Term Eco-
logical Research project).  While the benefits
of using the HPD approach in terms of con-
ceptualizing complex problems and organiz-
ing massive data for these systems are evident,
more in-depth and comprehensive examina-
tions of its strengths and weaknesses in terms
of facilitating understanding and scaling still
need to be, and will be, done through these
and other related studies.
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