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Abstract

Context Considerable research has examined scale

effects for patch-based metrics with the ultimate goal

of predicting values at finer resolutions (i.e., down-

scaling), but results have been inconsistent. Surface

metrics have been suggested as an alternative to patch-

based metrics, although far less is known about their

scaling relationships and downscaling potential. If

successful, downscaling would enable integration of

disparate datasets and comparison of landscapes using

different resolution datasets.

Objectives (1) Determine how surface metrics scale

as resolution changes and how consistent those scaling

relationships are across landscapes. (2) Test whether

these scaling relationships can be accurately down-

scaled to predict metric values for finer resolutions.

Methods Various scaling functions were fit to 16

surface metrics computed for multiple resolutions for

a set of landscapes. Best-fitting functions were then

extrapolated to test downscaling behavior (i.e., predict

metric value for a finer resolution) for an independent

set of validation landscapes. Relative error was

assessed between the predicted and true values to

determine downscaling robustness.

Results Seven surface metrics (Sa, Sq, S10z, Sdq,

Sds, Sdr, Srwi) fit consistently well (R2[ 0.99) with a

3rd order polynomial or power law. Of those, the

scaling functions for Sa, Sq, and S10z were able to

predict metric values at a finer resolution within 5 %.

Three metrics, (Ssk, Sku, Sfd) were also notable in

terms of fit and downscaling.

Conclusions Many metrics exhibit consistent scal-

ing relations across resolution, and several are able to

accurately predict values at finer resolutions. How-

ever, prediction accuracy is likely related to the

amount of information lost during aggregation.

Keywords Scaling � Grain size � Resolution �
Gradient landscapes � Tree canopy cover � Impervious

surface area

Introduction

The issue of scaling is central to ecology, particularly

landscape ecology (Levin 1992; Urban 2005). Specif-

ically, it is well known in landscape ecology that

patch-based landscape patterns are spatially correlated

and scale dependent (Wu 2004). These scale depen-

dencies have been studied thoroughly, most notably

with respect to the effects of changing grain size (i.e.,
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pixel resolution) on spatial pattern indices (Turner

et al. 1989; Milne 1991; Benson andMacKenzie 1995;

Wickham and Riitters 1995; Jelinski and Wu 1996;

O’Neill et al. 1996; Cain et al. 1997; Neel et al. 2004;

Uuemaa et al. 2005; Na and Li 2013). A major

outcome of these explorations has been the identifi-

cation of consistent scaling relationships (i.e., linear or

power law) for a handful of patch-based landscape

metrics. These scaling relationships can describe the

behavior of the metric as map resolution changes

(Turner et al. 1989; Wu et al. 2000, 2002; Shen et al.

2004; Wu 2004; Saura 2004; Castilla et al. 2009;

Alhamad et al. 2011; Li et al. 2011; Argañaraz and

Entraigas 2014) and have the potential to help us

understand how landscapes change across different

scales. However, apart from the knowledge that

scaling relationships exist, they have seen limited

operational use or application.

A major interest in investigating scaling relation-

ships is to ultimately develop ways to estimate metrics

at a finer (i.e., higher) resolution than the original data

were collected (Saura and Castro 2007). The ability to

estimate landscape patterns at fine resolutions from

coarser resolution data would enable detailed inves-

tigations without costly aerial or satellite data acqui-

sitions (Riitters 2005). It would also allow the

integration of disparate datasets (Atkinson 2012) and

comparisons of landscapes at different points in time

using different resolution data, without sacrificing

information (Argañaraz and Entraigas 2014). Theo-

retically, estimation at finer resolutions can be com-

pleted via the scaling relationships described above, in

which a statistical relationship (i.e., scaling function)

is established from coarse resolution maps, and metric

values are predicted for a finer resolution using that

function. This process is known as ‘downscaling’.

Several attempts have been made to downscale patch-

based landscape metrics (Riitters 2005; Garcia-Gig-

orro and Saura 2005; Saura and Castro 2007; Gardner

et al. 2008; Argañaraz and Entraigas, 2014; Frazier

2014), but results have not been consistent. Proposed

theories as to why there are inconsistencies include the

‘scale domain’ concept by Wiens (1989), which

hypothesizes that there may be certain regions of the

scale spectrum where pattern changes are predictable.

Other possible explanations for the inconsistencies

include issues matching the scale of observation with

the scale of analysis (Karl and Maurer 2010) and also

the varying levels of heterogeneity between different

landscapes (Frazier 2014), but the true causes remain

unknown.

Meanwhile, researchers are realizing that tradi-

tional patch-mosaic models of the landscape do not

adequately represent continuous spatial heterogeneity

(McIntyre and Barrett 1992; McIntyre and Hobbs

1999; Manning et al. 2004; McGarigal and Cushman

2005; Fischer and Lindenmayer 2006; McGarigal

et al. 2009; Frazier and Wang 2013). Thus, there has

been recent impetus to move beyond patch-mosaic

models and incorporate additional landscape hetero-

geneity through the use of continuous landscape

surfaces. Continuous surfaces represent phenomena

that vary progressively across space, and they are

characterized by a continuum rather than discrete

values. An example of a continuous surface is a

remotely sensed image that has been classified using

the normalized difference vegetation index (NDVI).

Each pixel is assigned a value ranging from -1.0 to

?1.0 depending on the amount of live, green vegeta-

tion. Other types of continuous surfaces include

elevation rasters and soft, or fuzzy, classifications of

land cover where each pixel contains the proportion of

a particular land cover type.

Continuous surfaces cannot be analyzed in the same

manner as patch-mosaics because they do not contain

discrete land cover boundaries (Frazier and Wang

2011). As a result, the large body of knowledge that

has been dedicated to understanding and developing

scaling relationships for patch-based metrics is not

applicable to continuous surfaces. Instead, new met-

rics are being developed and tested for these land-

scapes including the recent adoption of surface

metrology techniques (McGarigal et al. 2009) in

landscape ecology. Despite several barriers to access-

ing and using surface metrics (e.g., software avail-

ability and cost), these metrics have already been

successfully applied for modeling continuous spatial

heterogeneity (Moniem and Holland 2013), and their

use is expected to grow considerably once software

becomes more widely available. However, little is

known about the effects of changing spatial scale on

continuous landscapes or the scaling relationships for

the surface metrics being used to analyze them.

Since surface metrics are specifically designed to

quantify the heterogeneity of continuous landscapes,

and heterogeneity is known to be scale dependent (Wu

2004), it is expected that many surface metrics will be

spatially correlated and scale dependent, much like
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their patch-based counterparts. Additionally, surface

metrics are expected to exhibit more accurate down-

scaling capabilities than patch-based metrics. This is

because surfaces can be statistically aggregated (e.g.,

based on mean) instead of relying on majority rules

aggregation, which has been cited as a major reason

why downscaling attempts for traditional patch-based

metrics have been inconsistent (Frazier 2014). How-

ever, in-depth investigation is needed to determine (1)

the exact nature of scaling relationships for surface

metrics, and (2) the ability to extrapolate those scaling

functions to accurately predict surface metric values

for finer resolutions.

The objective of this research is to examine scaling

relationships for a suite of surface metrics to determine

whether or not these scaling relationships are consis-

tent across landscapes and are robust enough to be

extrapolated to predict metric values at finer, unmea-

sured spatial resolutions. The specific aims are to (1)

examine how surface metrics scale (e.g., power law,

polynomial, etc.) as resolution changes and determine

how consistent those relationships are across different

landscapes, and (2) test whether these scaling rela-

tionships are robust for accurately predicting metric

values at finer resolutions through downscaling.

Successful identification of consistent scaling func-

tions that are able to accurately predict metric values

for finer resolution surfaces would greatly increase the

operational value and applicability of these metrics for

ecological analyses.

Data and methods

The study area includes a variety of different land-

scapes in the United States. Two types of surface data

were acquired from the Multi-Resolution Land Char-

acteristics Consortium (MRLC) National Land Cover

Database (NLCD) (Jin et al. 2013) in order to test

realistic landscape data used in ecological applica-

tions. The MRLC produces continuous gradient sur-

faces of (1) percent impervious surface area (ISA), and

(2) percent tree cover canopy (TCC) across the U.S. at

30 m resolution. Both datasets are derived from

Landsat imagery with other ancillary data sources

(Xian et al. 2011; Coulston et al. 2012, 2013).

Thirty different surfaces (15 ISA and 15 TCC) were

selected to represent a variety of regions across the

continental U.S. in order to capture a wide range of

diverse urban and natural landscapes (Fig. 1). Since

the focus of this study is on scaling behavior at

different spatial grains, all landscapes were clipped to

a spatial extent of approximately 20 9 20 km in an

effort to reduce any ancillary scaling effects that might

be introduced by variable extents (Turner et al. 1989;

Wu 2004). Fifteen surfaces, including a mixture of

TCC and ISA landscapes, were randomly selected to

be used for calibrating the scaling functions (noted in

Fig. 1). Hereafter, these surfaces are referred to as

‘calibration’ surfaces. The remaining fifteen land-

scapes were reserved to independently test the accu-

racy of the selected scaling for downscaling

robustness. These surfaces are referred to as ‘valida-

tion’ surfaces.

To derive the set of coarse resolution surfaces

needed to calibrate the scaling relationships, the

original 30 m TCC and ISA surfaces for each land-

scape were aggregated to five additional coarse

resolutions (60, 120, 180, 240, and 360 m) using

statistical mean aggregation. In mean aggregation, the

average of the four contributing 30 m pixels is

assigned to the larger, aggregated 60 m pixel, and so

on for each resolution. Mean aggregation has been

found to retain a greater amount of information than

other statistical aggregation techniques (Bian and

Butler 1999). Next, 16 surface metrics (Table 1) were

computed for each of the six resolutions of each

landscape using Scanning Probe Image Processor

(SPIPTM) software. Metric computations used a plane

correction for the overall surface mean, following the

method used in McGarigal et al. (2009).

The six metric values for each landscape were then

plotted as a scalogram, and four different scaling

functions (power law, 1st order, 2nd order, and 3rd

order polynomials) were fit to each scalogram to

determine the best-fitting curve. Linear and power law

scaling functions have been found to be characteristic

of many patch-based scaling relationships (Wu 2004;

Argañaraz and Entraigas 2014). The 2nd and 3rd order

polynomial functions were included after preliminary

assessment of scaling characteristics. A separate curve

was fit to each calibration landscape using the Matlab

Curve Fitting Toolbox (The Mathworks Inc., 2012).

Goodness-of-fit for each scaling function was assessed

using R2. A separate R2 value was computed for each

metric, for each scaling function, for each of the 15

calibration landscapes (16 9 4 9 15 = 960 R2 val-

ues). Values were then averaged across the 15
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calibration landscapes to produce a single lR2 value

for each metric at each scaling function (16 9 4 = 64

lR2 values reported). A lR2 value of 0.99 was selected

as the cutoff for considering the function a ‘consistent

good fit’. The use of a high R2 threshold is based on

prior research that found consistent scaling

Fig. 1 Study areas (60 m resolution). Top group are impervious surface area (ISA) surfaces and bottom group are tree canopy cover

(TCC) surfaces. Surfaces with (asterisk) indicate calibration landscapes, and surfaces with (double dots) indicate validation landscapes
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relationships will typically have R2 values above 0.99

(Frazier 2014).

To test the robustness of each scaling function for

predicting an accurate metric value at a finer resolu-

tion (i.e., downscaling), the best-fitting scaling func-

tion determined from the calibration landscapes was

applied to the validation landscapes. For this step, the

30 m resolution surface was set aside prior to fitting

the scaling function, and the scaling function was fit to

only the five coarsest surfaces (Fig. 2). The fitted

scaling function was then extrapolated to 30 m (also

using Matlab) to predict a metric value. The value of

the metric at 30 m as predicted by the scaling function

(i.e., the ‘predicted’ value) was then compared to the

metric computed for the actual 30 m surface (i.e., the

‘true’ value) through a measure of relative error:

Erelð%Þ ¼ Mp �Mt

� �
=Mt

�� ��� 100 ð1Þ

where Erel is the relative error for a particular

metric, Mp is the predicted metric based on the

scaling function, and Mt is the true metric value

calculated for the original 30 m surface. Low Erel

values indicate that the scaling function accurately

predicts the metric value for a finer resolution

surface. A separate Erel value was computed for

each metric for each of the 15 validation land-

scapes, and values were averaged across the 15

validation landscapes to produce a single lErel

value for each metric. A lErel threshold of 5 % was

selected as the cutoff for determining whether the

scaling function accurately predicted the true value

of the surface metric based on coarser resolutions.

Metrics with scaling functions that satisfied this

downscaling accuracy criteria were considered

‘robust’. While the 5 % threshold is somewhat

stringent, it is important that downscaling produce

highly accurate results, particularly if the results

are to be used as input into other types of analysis

(e.g., super-resolution mapping). Alternatively,

users may choose to downscale less-robust metrics

if their applications do not require such stringent

accuracy standards.

Table 1 Surface metrics tested

Surface metric Symbola Description

Amplitude metrics

Roughness average Sa Statistical average of surface heights

Root mean square Sq Root mean square of surface heights

Surface skewness Ssk Skewness of surface heights

Surface kurtosis Sku Kurtosis of surface heights

Ten point height S10z The average height of the five highest local maximas plus average height of five lowest local

minimas

Root mean square

gradient

Sdq The root mean square value of the surface slope within the sampling area

Surface bearing metrics

Surface bearing index Sbi Uses the Abbott Curve to determine the area between 5 % and the maximum height.

Core fluid retention

index

Sci Void volume (area above the bearing area curve) in the core zone

Spatial metrics

Summit density Sds The number of local maximas per area

Surface area ratio Sdr (%) Increment of the interfacial surface area relative to the area of the projected, flat, x, y plane

Texture direction index Stdi A measure of the dominance of the dominating texture direction

Radial wave index Srwi A measure of the dominance of the dominating radial wavelength

Fractal dimension Sfd The rate at which surface height increases with the scale of observation

Texture direction Std The angle of the dominating texture in the image

Texture aspect ratio Str20

Str37

Ratio of fastest to slowest decay to correlation 20 and 37 % of the autocorrelation function,

respectively

a Symbols and descriptions based on Scanning Probe Image Processing (SPIPTM) software. See Appendix—Supplemental Electronic

Material for further details
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A typology similar to that introduced byWu (2004)

for patch-based metrics was developed here for

surface metrics. In Wu’s (2004) typology, Type I

metrics exhibit consistent scaling relationships, Type

II metrics exhibit staircase responses, and Type III

metrics behave erratically. Type I is further broken

down into Type IA and Type IB for landscapes

exhibiting robust similarity of scaling relationships

between different patch types within the same land-

scape. Since patches do not exist in surface land-

scapes, this conception of robust is not appropriate.

Instead, robustness for surface metrics refers to the

ability of the scaling function to predict metric values

at a finer resolution.

For surface metrics, Type I is assigned to metrics

that exhibit consistent scaling functions (lR2[ 0.99).

Type IA metrics are also robust in terms of the ability

for a scaling function to correctly predict the metric

value at the finer resolution to within 5 % lErel. Type

IB metrics exhibit a consistent scaling function but are

unable to be accurately downscaled (lErel[ 5 %).

Type II metrics exhibit less consistent scaling func-

tions (lR2\ 0.99) that are less robust for downscaling

(lErel[ 5 %) but are still noteworthy. Type IIImetrics

exhibit inconsistent scaling behaviors (lR2 � 0.99).

Results

Average goodness-of-fit (lR2) results for the four

scaling functions fit to the calibration landscapes

(Table 2) show that eight metrics were fit consistently

well (lR2[ 0.99) by at least one scaling function.

Five of those metrics (Sa, Sq, Ssk, S10z, Srwi) were

best fit with a 3rd order polynomial function, while the

remaining three metrics (Sdq, Sds, Sdr) were best fit

with a power law function. However, Ssk was only

marginally consistent when considering its standard

deviation. Furthermore, Sku can also be considered

marginally consistent when considering its mean

(0.9863) plus standard deviation (0.034). The 1st

order polynomial (linear) scaling function did not fit

any of the calibration surfaces well, with lR2 values

ranging from 0.4286 to 0.9595, and it will not be

discussed further. The 2nd order polynomial fit several

metrics fairly well (Sa, Sq, Srwi) with lR2 values less

than or just below 0.99, but it was always outper-

formed by the 3rd order polynomial.

The best-fitting scaling function for each metric

was applied to the 15 validation surfaces to test

downscaling. Results for the validation surfaces show

eight metrics (Sa, Sq, Ssk, Sku, S10z, Sci, Stdi, Sfd) met

the lErel\ 5 threshold (Table 3). Again, Ssk, met the

lErel threshold, but with the high variability exhibited

by its standard deviation, it can be concluded that it is

not a particularly strong candidate for downscaling.

Sku was also marginal when considering its standard

deviation along with the mean. The other six metrics

had low lErel values even when considering their SD

values. However, it should be noted that of the six

metrics that were found to be robust for downscaling,

only three were fit consistently with a scaling function

Fig. 2 Example of scaling

function fit to surface

metrics computed for

Tucson, AZ (ISA). Scaling

function is extrapolated to

predict metric value at finer

resolution (30 m)
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as determined by the calibration landscapes (Sa, Sq,

S10z). The typology for the metrics is included in

Table 4.

Scalograms, or plots of grain size versus metric

value, were created for Type I and Type II metrics

(Fig. 3). Only data from the calibration surfaces are

shown for clarity, however both the calibration and

validation surfaces exhibited similar behavior. In

particular, the scalograms for S10z, Srwi, and Sku

(Fig. 3c, g, i) illustrate why there is a need for a higher

order polynomial scaling function. S10z (Fig. 3c)

exhibits an undulating patterns for many of the

surfaces that would not be adequately captured by a

power law or linear curve. Similarly, the plots for Sku

(Fig. 3d) show varying directional trends. The scalo-

grams for the Type IB metrics Sdq, Sds, and Sdr clearly

have consistent power law scaling relationships, but

the fitted functions were not robust for prediction.

Discussion

The aims of this study were to (1) determine how

surface metrics scale as resolution changes and how

consistent those scaling relationships are across

different landscapes, and (2) test whether fitted scaling

relationships can be extrapolated to accurately predict

metric values for finer resolution surfaces (i.e.,

downscaled). The major finding from the first objec-

tive was that many surface metrics do follow consis-

tent scaling relationships as resolution changes, with

Table 2 Average goodness

of fit (lR2) values with

standard deviations (SD) for

the four scaling functions

computed for the 15

calibration datasets

Best-fit function for each

metric is bolded
a Not all landscapes

produced values for these

metrics

Metrics Power Law 1st Order Polynomial 2nd Order Polynomial 3rd Order Polynomial

lR2 (SD) lR2 (SD) lR2 (SD) lR2 (SD)

Sa 0.9754 (0.023) 0.9217 (0.049) 0.9898 (0.012) 0.9983 (0.003)

Sq 0.9760 (0.020) 0.9286 (0.042) 0.9907 (0.042) 0.9984 (0.003)

Ssk 0.8448 (0.183) 0.8657 (0.177) 0.9587 (0.062) 0.9906 (0.018)

Sku 0.7795 (0.263) 0.8317 (0.224) 0.9742 (0.040) 0.9863 (0.034)

S10z 0.7524 (0.213) 0.8999 (0.115) 0.9811 (0.013) 0.9947 (0.004)

Sdq 0.9977 (0.004) 0.6875 (0.097) 0.9067 (0.035) 0.9735 (0.001)

Sbi 0.7765 (0.212) 0.5814 (0.251) 0.8532 (0.142) 0.9375 (0.132)

Sci 0.7867 (0.281) 0.7393 (0.355) 0.9019 (0.153) 0.9619 (0.060)

Sds 0.9972 (0.002) 0.5439 (0.049) 0.8383 (0.039) 0.9541 (0.017)

Sdr 0.9986 (0.002) 0.5093 (0.061) 0.8051 (0.056) 0.9361 (0.028)

Stdi 0.6518 (0.310) 0.6147 (0.356) 0.8346 (0.143) 0.8973 (0.129)

Srwi 0.9984 (0) 0.9892 (0.006) 0.9995 (0) 0.9996 (0.057)

Sfd 0.7812 (0.334) 0.7007 (0.327) 0.9262 (0.113) 0.9629 (0.064)

Stda 0.6215 (0.269) 0.7255 (0.272) 0.8401 (0.200) 0.8861 (0.199)

Str20a 0.5060 (0.302) 0.5034 (0.290) 0.7176 (0.262) 0.8698 (0.158)

Str37a 0.3697 (0.394) 0.3037 (0.278) 0.5767 (0.321) 0.6928 (0.270)

Table 3 Average relative error (lErel) values with standard

deviations (SD) for the 15 validation datasets using the best fit

scaling function determined from the calibration datasets

(Table 2)

Metrics Best fit lErel (SD)

Sa 3rd Order 1.7 (2.35)

Sq 3rd Order 1.37 (1.11)

Ssk 3rd Order 2.93 (4.5)

Sku 3rd Order 1.87 (2.73)

S10z 3rd Order 1.71 (1.79)

Sdq Power 5.13 (2.74)

Sbi 3rd Order 18.5 (15.3)

Sci 3rd Order 1.40 (1.09)

Sds Power 27.4 (13.9)

Sdr Power 13.6 (6.22)

Stdi 3rd Order 1.72 (1.42)

Srwi 3rd Order 17.8 (1.74)

Sfd 3rd Order 0.46 (0.352)

Std(o)a 3rd Order 20.6 (36.3)

Str20a 3rd Order 8.72 (9.55)

Str37a 3rd Order 7.67 (4.85)

lErel\ 5 are bolded
a Not all landscapes produced values for these metrics
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ten metrics classified as Type I or Type II. All of the

amplitude metrics (Table 1: Sa, Sq, S10z, Ssk, Sku,

Sdq), which measure the vertical characteristics of the

surface deviations, exhibited consistent scaling rela-

tions. Most of these metrics are non-spatial (except

Sdq) and measure landscape composition through

variations in surface height and height distribution

statistics. According to McGarigal et al. (2009), Sa,

Sq, and S10z are analogous to diversity measures in the

patch-mosaic paradigm (e.g., Shannon’s Diversity

Index), and Ssk and Sku, while having no strong

analogs, show some correlations with Simpson’s

Evenness Index and Largest Patch Index. It is not

surprising then that these amplitude metrics scale

consistently across resolutions because they measure

simple variations in surface height that will naturally

scale with aggregation (see Appendix-Electronic

Supplementary Material), and several analogous

patch-based composition measures have also been

shown to exhibit consistent scaling relations (Wu

2004).

Several spatial metrics (Sds, Sdr, Srwi), which take

into account the spatial distribution of the vertical

profile, also were fit consistently. Sdr is analogous to

patch-based edge density metrics (McGarigal et al.

2009), which scale consistently (Wu 2004), so this

finding is expected. Lastly, the surface bearing metrics

(Sbi, Sci), which are based on the Abbott curve of the

cumulative height distribution, did not exhibit con-

sistent scaling relations. In general, the findings from

the first objective are important because they (i) con-

firm that many landscape composition metrics scale

consistently across resolutions for gradient surfaces,

and (ii) indicate that many of the same arguments

developed for landscape ecology based on scaling

knowledge of patch-based metrics may also apply

when gradient conceptions of the landscape are

adopted.

For the second objective, this study found that, in

general, scaling functions fit to amplitude metrics can

be downscaled accurately to predict the metric value

for a finer resolution. Since most amplitude metrics do

not consider spatial heterogeneity (McGarigal et al.

2009), they are not affected by the difficulties

associated with capturing heterogeneity across scales

(see Frazier 2015). This likely explains why these

metrics showed good downscaling results (Sdq, the

one amplitude metric that does consider spatial

heterogeneity, was marginally less robust). The diffi-

culties associated with modeling heterogeneity across

scales may also explain why the three spatial metrics

(Sds, Sdr, Srwi) did not have good downscaling

success even though they were fit consistently with a

scaling function.

Interestingly, three metrics (Sci, Stdi, Sfd) showed

robust downscaling despite inconsistent scaling func-

tion fits (Table 4). Both Sci and Stdi are constrained in

terms of their range of possible values (see Appen-

dix—Electronic Supplementary Material), which may

have contributed to better downscaling accuracy

despite poor fits, although no limits were specified

for prediction values. The metric Sfd is also interesting

because even the poorest fitting function (i.e., linear

with an lR2 value of 0.7347) had exceptional down-

scaling accuracies (e.g., lErel = 0.72). Since Sfd

represents the fractal dimension of the surface, it is

possible that the inherent scaling nature of the metric

played a role in the high prediction success. Addi-

tionally, the metric transforms the data to log–log

curves, which may have contributed to high down-

scaling accuracies, particularly for the linear function.

Implications for scaling

The 3rd order polynomial was found to be the best fit

for many metrics, but with higher order functions,

Table 4 Metric types determined from consistency (lR2[ 0.99) and robustness (lErel\ 5 %) threshold for downscaling

Type Description Metrics

Type IA Consistent, and robust Sa, Sq, S10z

Type IB Consistent, not robust Sdq, Sds, Sdr, Srwi

Type II Less consistent, less robust Ssk, Sku

Type III Not consistent Scia, Stdia, Sfda, Sbi, Std, Str20, Str37

a Metrics were not consistent but were robust for downscaling
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there is the risk of over-fitting curves, especially when

the model contains too many parameters relative to the

number of data points. For the 3rd order polynomial,

six observations were modeled with four terms, which

may have led to over-fitting in some cases. One way to

test for over-fitting is to determine if the higher order

models are less accurate for downscaling. Results

using this technique suggest that two of the 16 metrics

were over-fit. Srwi can be fit with either a 2nd order

polynomial or a power law within the accuracy

threshold (Table 2), and downscaling for the 2nd

degree polynomial outperformed the 3rd degree

polynomial indicating it was indeed over-fit, although

neither results were within the 5 % error threshold.

Fig. 3 Scalograms for Type I and Type II metrics using the 15 calibration surfaces
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The metric Sq can also be fit with a 2nd order model

since the lR2 for that function also satisfied the 0.99

threshold. Downscaling, while slightly less accurate

than the 3rd order polynomial, did satisfy the 5 %

threshold with a value of 2.52 % (SD = 1.7) indicat-

ing Sq can be fit with a 2nd order polynomial and still

achieve acceptable modeling and downscaling results.

For the remaining metrics, satisfactory R2 values were

occasionally obtained for individual landscapes using

the 2nd order polynomial, but it was very rare for the

2nd order function to outperform the 3rd order function

for downscaling. This implies that the 3rd order

function is appropriate for scaling many surface

metrics.

When fitting models to data points, there is also a

tradeoff between the complexity of the model and it’s

goodness-of-fit, and the best-fitting model may not

always be the best choice. Measures such Akaike’s

Information Criterion (AIC) (Akaike 1974) provide an

estimate of this tradeoff and can be used to select the

optimal model, but the nature of scalogram creation

presents an interesting challenge. For example, mea-

sures such as ‘leave one out’ cross-validation (akin to

AIC for linear regressions) or bootstrapping fit the

model to various sets of points by iteratively leaving

out one or more samples. These measures are prob-

lematic for scalogram curve fitting because the

number of resolutions and scaling factors (i.e., reso-

lution increment for aggregation) are selected at the

discretion of the analyst and can be altered at any time.

A base surface can produce an unlimited number of

aggregations using non-integer scaling factors, so

relative fit measures may easily be manipulated by

overinflating the number of scalogram points.

A more useful measure for scalograms would be to

determine an optimal set of resolutions and scaling

factors for each scaling function. For instance, Šı́mová

and Gdulová (2012) found that the shape of the scaling

function for patch-based metrics is dependent on the

range of pixel resolutions as well as the increment

between each resolution. Their findings suggest that

the exact data points chosen for the scalogram will

influence the best-fit model, and thus downscaling

accuracy. Since only a single set of resolutions with

fixed increments was tested in this research, it is not

clear whether the shape of the scaling function would

change if the range of resolutions was altered or the

increments between resolutions were changed. The

use of only a few data points is supported by Wu et al.

(2002), who found that extrapolation and interpolation

of Type I patch-based metrics can be done accurately

based on a few data points. However, given the

intricacies of model selection for scalograms, deter-

mining the optimal resolution ranges and scaling

factors for curve fitting would be more productive than

comparing measures of relative quality for user-

defined numbers of scalogram points.

Perhaps of larger interest is understanding why

many surface metrics behave in a complex manner

across resolutions. From the scalograms (Fig. 3), it

can be observed that there is often one resolution

(usually 360 m) where the metric value is ‘‘out of

sync’’ with the rest of the values. This is most apparent

for Athens (TCC) for Srwi (Fig. 3h) where the 360 m

value actually decreases despite the increasing trend as

resolution increases. The presence of these anomalies

illustrate why the 3rd order polynomial outperforms

other models, and understanding why surface metrics

exhibit these characteristics is vital if we wish to use

their scaling relations for future applications.

The concept of minimum mapping unit (MMU)

offers one explanation for this behavior. In the patch-

mosaic paradigm, MMU is the minimum size a land

cover patch must be in order to be detected (Castilla

et al. 2009). MMU will vary based on the different

types of patches and land covers within a scene, but it

has been suggested that map resolution must be 2–5

times smaller than a patch in order for it to be detected

(O’Neill et al. 1996). Similarly, Saura (2002) found

that sparse and fragmented land cover classes can be

misrepresented when mapping resolution is increased

and the classes occupying a large portion of the map

begin to dominate. Surface metrics are likely experi-

encing similar biases when certain intensity values

dominate the landscape. For example, the Big Bend,

TX (TCC) landscape was the only validation land-

scape that did not meet the 5 % Erel downscaling

threshold for the metric Sa. Its Erel value was 9.5,

whereas all other landscapes were below 3.0. The Big

Bend site is dominated by very low intensity values

(Fig. 1q), and at 30 m resolution, the highest intensity

value is only 83 whereas most other 30 m surfaces

comprise pixels ranging from 0 to 100. At the 360 m

aggregation, the highest pixel value is only 32 whereas

the other surfaces have values in the 80 and 90 s

indicating they lost a smaller range of values as

aggregation proceeded. This observation suggests that

the findings made by Saura (2002) are also
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manifesting for surface metrics whereby sparse and

fragmented intensity values become misrepresented

when more intense areas of land cover dominate

aggregation. Moving forward, it may be possible to

identify thresholds of data reduction during aggrega-

tion beyond which a scaling function is unable to

predict landscape patterns for finer resolutions. This

concept is similar to Wiens’ (1989) scale domains

concept discussed earlier, and investigating this

threshold of information dilution (Karl and Maurer

2010) should be the focus of future explorations.

Lastly, the findings of this research have implica-

tions for patch-based metrics. Selection of ‘best fit’

models for patch-based metrics has traditionally been

based on visual examination. However, recent studies

have reported different ‘best’ scaling relationships

when multiple types of scaling functions are analyzed

and selection is instead based on R2 values (Bar

Massada et al. 2008; Argañaraz and Entraigas 2014).

This study supports the use of R2 values instead of

visual examination for selecting scaling relationships

as scalograms often appeared linear or power law but

were indeed better fit with power law or 3rd order

polynomials, respectively. This study also found that a

3rd order polynomial provided the best fit for many

surface metrics, which has potential implications for

patch-based metrics since studies of patch-based

metric scaling have yet to investigate higher order

polynomials. The results found here suggest it may be

possible to improve downscaling results for patch-

based metrics by using higher order scaling relation-

ships in place of linear or power law functions, but

further study is needed to investigate this potential.

Limitations

There are several limitations of this study that deserve

mention. First, only a limited number of total surfaces

(n = 30) were used to develop and test the scaling

relationships, and more robust statistical generaliza-

tions would require a larger number of landscapes.

Additionally, some landscapes contributed both TCC

and ISA surfaces, so the number of independent

landscapes was nominally less (see Fig. 1). A more

robust analysis with a larger sample size is needed if

the typology of surface metrics is to be formalized.

Also, not every surface metric available through the

SPIP software was tested in this study, so somemetrics

are not represented in the typology.

Second, the ground ‘truth’ surfaces are not com-

pletely independent from the coarse resolution surfaces

since the 30 m resolution surfaces were originally used

to derive the 60 m surface. However, the autonomy of

the ‘ground truth’ surfaces is somewhat supported by

the fact that many metrics still showed extremely high

errors when predicting the 30 m values when utilizing

scaling functions with high R2 values. Additionally,

while mean aggregation is the least biased statistical

aggregation for creating coarser surface, the method

selected by the user (e.g., mean, center pixel value,

etc.) will impact results (Bian and Butler 1999), and it

is possible that using different aggregation methods

will lead to different results.

Lastly, only a single scaling factor was tested in this

research. Scaling factor refers to the ratio between the

finest known resolution (60 m) and the target resolu-

tion for downscaling (30 m). Therefore, the only

scaling factor tested in this study was 2. In general,

downscaling accuracy decreases as scaling factor

increases (Frazier forthcoming) since the distance

between the known and unknown values increases.

Most downscaling studies do not test multiple resolu-

tions, but this is an area for future consideration.

Conclusions

This paper explored scaling functions for 16 surface

metrics and investigated their ability to predict metric

values for finer resolutions (i.e., downscaling). By

plotting the metric values for a series of coarse

resolutions and then selecting the best-fitting functions

to test downscaling, this study found that it may be

possible to accurately predict metric values at finer

resolutions for several surface metrics. Key findings

are as follows:

• Three surface metrics (Sa, Sq, S10z) were fit

consistently well (lR2[ 0.99) with 3rd order

polynomials that were robust for predicting a

surface metric value for a finer resolution to within

5 % of the true value (lErel\ 5 %). These metrics

can be considered consistent and robust and have

been designated as Type IA.

• Four metrics (Sdq, Sds, Sdr, Srwi) were fit

consistently well with a 3rd order polynomial or

a power law, but their scaling functions were not

able to accurately predict the surface metric value
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for a finer resolution. These metrics can be

considered consistent but not robust and have been

designated as Type IB.

• Two metrics (Ssk, Sku) were less consistently well

fit and achieved less robust downscaling success,

but they remain notable and have been designated

as Type II.

• Seven metrics (Sbi, Sci, Std, Sfd, Stdi, Str20, Str37)

did not exhibit consistent scaling relationships and

have been designated as Type III despite robust

downscaling success in some cases.

Additionally, results indicate that surface metrics and

their scaling functions may be able to better predict

values at finer resolutions (i.e., downscaling) than

patch-based metrics, and the ability for a scaling

function to predict the surface metric value at a finer

resolution through downscaling may be related to

information loss during aggregation.
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