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Remote-sensing systems typically produce imagery

that averages information over tens or even hundreds

of square meters – far too coarse to detect most organ-

isms – so the remote sensing of biodiversity would

appear to be a fool’s errand. However, advances in the

spatial and spectral resolutions of sensors now avail-

able to ecologists are making the direct remote sensing

of certain aspects of biodiversity increasingly feasible;

for example, distinguishing species assemblages or

even identifying species of individual trees. In cases

where direct detection of individual organisms or

assemblages is still beyond our grasp, indirect

approaches offer valuable information about diversity

patterns. Such approaches derive meaningful environ-

mental parameters from biophysical characteristics that

are revealed by remote sensing.

Since the days of Darwin and Wallace, ecologists and
evolutionary biologists have sought to explain the distri-
bution of species or groups of species, and to discover why
certain places are especially rich in species. Today,
conservation biologists rely on estimates of species
richness (i.e. the number of species in a particular place)
as they race to determine areas in which to spend limited
resources in an age of rapid biodiversity decline. Scienti-
fically sound environmental management requires fre-
quent and spatially detailed assessments of species
numbers and distributions. Such information can be
prohibitively expensive to collect directly. Measuring the
distribution and status of biodiversity remotely, with
airborne or satellite sensors, would seem an ideal way to
gather these crucial data. But can remote sensing (Box 1)
become an effective tool for exploring patterns of biodi-
versity? Can we detect individual species or species
assemblages from afar or measure the environmental
parameters that are necessary to estimate the distri-
butions of species, levels of species richness, or the
structure of ecological communities?

The potential for modern sensors to identify areas of
significance to biodiversity, predict species distributions
and model community responses to environmental and
anthropogenic changes is an important research topic.

Underlying this effort is the assumption that certain key
environmental parameters, with remotely detectable
biophysical properties, drive the distribution and abun-
dance of species across landscapes and determine how they
occupy habitats. New imagery and data sets are now
enabling remote sensing, in conjunction with ecological
models, to shed more light on some of the fundamental
questions regarding biodiversity. These tools should prove
useful to those seeking to generate basic knowledge about
why organisms are found where they are, as well as those
asking the more applied question of where to invest
conservation funds.

Here, we use the term ‘biodiversity’ in its organismal
sense to refer to species and certain characteristics of
species, in particular their distribution and number within
a given area. We also use ‘biodiversity’ more broadly to
mean species assemblages and ecological communities
(i.e. groups of interacting and interdependent species).
There are two general approaches to the remote sensing of
biodiversity. One is the direct remote sensing of individual
organisms, species assemblages, or ecological commu-
nities from airborne or satellite sensors. New spaceborne
systems with very high spatial (also known as hyper-
spatial) resolutions are now available from commercial
sources. For the first time, the direct remote sensing of
certain large organisms and many communities is possible
with unclassified satellite imagery. Likewise, new hyper-
spectral sensors slice the electromagnetic spectrum into
many more discrete spectral bands, enabling the detection
of spectral signatures that are characteristic of certain
plant species or communities.

The other approach is the indirect remote sensing of
biodiversity through reliance on environmental parameters
as proxies. For example, many species are restricted to
discrete habitats, such as a woodland, grassland, or sea-
grass beds that can be clearly identified remotely. By
combining information about the known habitat require-
ments of species with maps of land cover derived from
satellite imagery, precise estimates of potential species
ranges and patterns of species richness are possible. Just
such an approach has been employed extensively in the US
GAP analysis program [1]. Of course, it is probable that no
single environmental parameter drives patterns of species
distribution and richness. Many possible drivers have beenCorresponding author: Woody Turner (Woody.Turner@hq.nasa.gov).
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proposed (Table 1). Here, we focus on three often-cited
environmental parameters that now lend themselves
particularly well to detection because of recent advances in
remote-sensing technology: primary productivity, climate
and habitat structure (including topography) [2–5].

For the conservation biologist, remotely sensed imagery
exposes land-cover changes at spatial scales from local to

continental, letting one monitor the pace of habitat loss and
conversion [6,7]. These measurements of habitat loss can be
converted into quantitative estimates of biodiversity loss
through the use of the species–area relationship (Box 2),
which underlies many current estimates of biodiversity
decline [8–12]. Remote sensingprovides the area component
of the equation. Public and nongovernmental conservation

Box 1. Introduction to remote sensing

Here, ‘remote sensing’ refers to the detection of electromagnetic energy

from aircraft or satellites. The electromagnetic spectrum can be divided

into wavelength regions known as ‘optical’ and ‘microwave’. Optical

remote sensing targets energy reflected and emitted by the Earth,

typically at wavelengths between 0.4 and 14 mm. Microwave remote

sensing detects much longer wavelengths, between ,1 mm and 1 m.

Optical and microwave radiation occupy distinct regions of the

electromagnetic spectrum and are detected using distinct technologies

(Fig. I).

The two principal types of sensor discussed here are ‘passive’ and

‘active’. Passive sensors measure radiation that reaches a detector

without the sensor first transmitting a pulse of radiation. Active sensors

emit a pulse and later measure the energy returned or bounced back to a

detector. Both passive and active sensors record the intensity of a signal

within a wavelength interval, known as a ‘band’ or ‘channel’, of specified

width within the electromagnetic spectrum.

Data are often distributed to remote-sensing practitioners in a matrix

of square picture elements (or pixels). The size of these pixels

corresponds to the ‘spatial resolution’ of the sensor, which determines

the smallest object detectable. So, ‘30 m data’ would refer to data in a

matrix of 30 m £ 30 m pixels. The matrix of pixels is often called a

‘scene’. Scene sizes also vary; for example, the Enhanced Thematic

Mapper þ sensor on the Landsat 7 satellite produces scenes that are

183 km wide £ 170 km long.

Land-cover and land-use monitoring commonly use passive

sensors to measure visible, near- and middle-infrared, and

thermal-infrared radiation. Data describing energy reflected or

emitted from the surface of the Earth are statistically or visually

analyzed to identify objects.

Vegetation structure and ground surface elevations are often

measured using active sensors. Light detection and ranging (lidar)

systems operate in visible to near-infrared wavelengths, while radio

detection and ranging (radar) emits radiation in longer microwave

wavelengths [33]. Characteristics of the energy pulses influence the

strength and likelihood of returned signals. Both the strength and timing

of the returned signal describe physical properties of remotely sensed

objects.

The width of the bands of the electromagnetic spectrum detected by a

sensor determine its ability to detect spectral differences and as such

constitute the spectral resolution of that instrument. All objects have a

spectral signature based upon how they reflect and emit electromag-

netic radiation. More spectral bands of narrower width allow research-

ers to find more unique features within the spectral signature of an

object that distinguish it from other objects.

Temporal resolution, or ‘revisit time’, refers to the time period

between repeat passes over an object being remotely sensed. For

example, Landsat satellites pass over the same point on the surface of

the Earth every 16 days. Thus, they have a 16-day revisit or repeat time.

Systems that image wider areas might pass over the same point every

day but must usually sacrifice spatial resolution to do so (i.e. they can

only detect much larger objects). Temporal resolution is especially

important when one is trying to obtain a clear view of areas frequently

obscured by clouds (or other atmospheric phenomena) because optical

sensors cannot view through clouds.

Fig. I.
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Box 2. Species–area relationship

The species–area relationship is one of the oldest rules of ecology.

Naturalistsof the19thcenturyrecognized that thenumberofspecies inan

area isa functionof thesizeof thearea,andArrhenius [34]showedthat the

relationship couldbedescribedwith a power function:S ¼ cAz whereS is

the number of species, A is area, and c and z are constants. Work by

Preston [35] and MacArthur and Wilson [36] later helped to square this

relationship with ecological theories about the relative abundances of

specieswithincommunitiesandthenumbersofspecies foundonislands.

More recent work by Rosenzweig [3] and others has led to a more subtle

understanding of the effect of scale on the species–area relationship.

Using the species–area relationship, conservation biologists have

derived estimations of the proportion of species lost as a result of

habitat loss, according to the formula: Snew=Soriginal ¼ ðAnew=AoriginalÞ
z

(see [8]). The key element in this process is estimating the proportion of

habitat loss, which is where remote sensing has become increasingly

useful. New data sets on the pace and pattern of deforestation produced

by satellite-based sensors are becoming available at global to local

scales [7,37] and are making remote assessments of species losses

possible [38]. By further coupling the species–area relationship and

remotely sensed deforestation rates, researchers have projected the

impacts of a variety of conservation scenarios in the face of 21st-century

deforestation [12].
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Table 1. Examples of ecological variables and data sources useful for quantifying and modeling biodiversitya

Ecological

variable

SensorbSpace (S)/

Airborne (A)

Spatial

resolution

Revisit

time

Spectral

resolution

Description Website

Direct approaches

Species

composition

TM/ETM þ (S),

ALI (S),

HYPERION (S),

ASTER (S),

IKONOS (S),

Quickbird (S),

AVIRIS (A),

CASI (A)

,1–30 m 16 days

(ETM, ALI, Hyperion);

4–16 days (ASTER);

2–5 days (IKONOS);

2–4 days (Quickbird);

N/A for aircraft

V/NIR, SWIR,

ASTER also has TIR

These sensors are being

tested for their ability to

measure directly canopy

community, and perhaps

species, type based upon

unique spectral signatures

c– i

Land cover MODIS (S),

TM/ETM þ (S),

ASTER (S),

ALI (S),

IKONOS (S),

Quickbird (S)

,1–1000 m 1–2 days (MODIS);

16 days (TM/ETM þ );

4–16 days (ASTER);

2–5 days (IKONOS);

2–4 days (Quickbird)

V/NIR, SWIR,

MODIS and ASTER

also have TIR

Can discriminate different

land surfaces at various

resolutions; land cover

classification is considered

a first-order analysis for

species occurrence

c–e,h,i,k

Indirect approaches

Primary Productivity

Chlorophyll SeaWIFS (S),

MODIS (S),

ASTER (S),

TM/ETM þ (S),

ALI (S),

Hyperion, (S),

IKONOS (S),

Quickbird (S),

AVIRIS (A),

CASI (A)

,1–1000 m 1 day (SeaWiFS);

1–2 days (MODIS);

4–16 days (ASTER);

16 days (TM/ETM þ ,

ALI, Hyperion);

2–5 days (IKONOS);

2–4 days (Quickbird);

N/A (AVIRIS, CASI)

V/NIR, SWIR,

MODIS and ASTER

also have TIR

Measure reflectance to

assess presence/absence

of vegetation and relative

greenness measures

enabling detection of

ocean and land surface

chlorophyll useful for

calculating productivity

and plant health

c,d,f–k

Ocean color

and

circulation

TOPEX/Poseidon (S),

AVHRR (S),

MODIS (S),

SeaWiFS (S)

1–10 km 10 days

(TOPEX/Poseidon);

1 day (AVHRR);

1–2 days (MODIS);

1 day (SeaWIFS)

TOPEX/Poseidon;

(microwave) AVHRR,

MODIS, SeaWiFS

(V/NIR, SWIR,

MODIS

and AVHRR

also have TIR)

Circulation patterns can be

inferred from changes in

ocean color, sea surface

height, and ocean

temperature, important for

understanding larval

transport and movement of

pathogens and sediment

j–m

Climate

Rainfall CERES (S),

AMSR-E (S)

20–56 km 1–2 days

(CERES, AMSR-E)

Microwave Enable detection of

precipitation and surface

moisture at coarse

resolutions; such data

parameterize models of

species occurrence based

on drought tolerance

n,o

Soil

moisture

AMSR-E (S) 5.4–56 km 1–2 days Microwave Can be estimated over rel.

large areas; data

parameterize models of

species occurrence based

on moisture requirements

o

Phenology MODIS (S),

TM/ETM þ (S),

ASTER (S),

ALI (S),

HYPERION (S),

IKONOS (S),

Quickbird (S)

1–1000 m 1–2 days (MODIS);

16 days (TM/ETM þ ,

ALI, Hyperion);

4–16 days (ASTER);

2–5 days (IKONOS);

2–4 days (Quickbird)

V/NIR, SWIR, MODIS

and ASTER

also have TIR

Information on leaf

turnover and

flowering/fruiting cycles

can be inferred from

comparisons of time series

of images. Provides for

identification of species

tied to certain phenological

events

c–e,h,i,k

Habitat Structure

Topography SRTM (S),

ATM (A),

ASTER (S),

IKONOS (S),

SLICER (A),

LVIS (A)

90 m SRTM;

30 m/15 m ASTER;

1–15 m IKONOS,

SLICER, LVIS

N/A (SRTM);

4–16 days (ASTER);

2–5 days (IKONOS);

N/A (SLICER, LVIS)

Microwave SRTM;

V/NIR and SWIR

for others

Digital elevation models

derived from radar signals

via interferometry (SRTM);

image stereo pairs (ASTER)

or discrete-return (usually)

LIDAR signals. Many

species are constrained by

microhabitats resulting

from changes in altitude;

elevation also determines

watershed flows

e,h,p –s

(continued on next page)
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organizations worldwide leverage their understanding of
species–area relationships with imagery-based habitat
classifications to estimate species losses associated with
changesinlandcoverandlanduse(Box3).Thechallengeisto
go beyond this approach to a more detailed understanding of
which species are being lost and why. How can we match
existing and emerging remote-sensing technologies to
parameters that have clear implications for organisms and
ecosystems?

Here, we review evidence that indicates that we might
be close to improving greatly the detection of species,
ecological communities and patterns of species richness
with remote sensing. We explore recent advances in
technology, addressing direct and indirect approaches to
the remote sensing of biodiversity. Following the discus-
sion of each technology, we offer examples of applications of
that technology to the issue at hand.

Direct remote sensing of species and species

assemblages

Hyperspatial technology and its applications

Recently launched commercial satellites with very high
spatial resolution, multispectral sensors are improving
our ability to resolve objects at spatial scales previously
only attainable from aerial photography or classified
satellite imagery. The IKONOS system from Space
Imaging and the QuickBird system from DigitalGlobe
offer multispectral imagery at resolutions of 4 m and
2.4–2.8 m, respectively, and panchromatic imagery at 1 m
and 0.6–0.8 m, respectively. At these resolutions, direct
identification of certain species (e.g. through the detection
of individual tree crowns) and species assemblages is
becoming feasible. Remote sensing of phenological change
(e.g. fruiting events and early/late onset of greenness or

senescence) holds promise as a method for the detection of
vegetation types down to the species level. Capturing plant
phenology does require a sensor with high temporal
resolution (Fig. 1).

Early research into applying IKONOS imagery to
find and count baleen whales at or near the ocean
surface shows promise, and would provide another tool
to those charged with monitoring these and other
protected whale species [13]. In a freshwater context,
IKONOS imagery has been used in conjunction with
Landsat to map the expansion of a non-native invasive
plant species [14]. Watershed research in small catch-
ments (,260 ha) requires data sets at spatial resol-
utions of 30 m or finer (E.P. Gardiner, PhD thesis,
University of Georgia 2002).

Hyperspectral technology and its applications

In tandem with increases in spatial resolution, gains in
spectral resolution offer new possibilities for the direct
remote sensing of biodiversity patterns. Perhaps the best
examples of fine-scale, species-specific land-cover classifi-
cation through spectral analysis come from the use of
airborne and spaceborne hyperspectral sensors. These
devices differ from multispectral sensors (which detect
relatively few discrete bands) in that they detect reflected
radiation across a continuous spectrum, often including
200 or more contiguous spectral bands. This added
spectral resolving power is useful in sorting out finer
differences among traditional land-cover classes, typi-
cally based on vegetation and soils. Once atmospheric
interference has been accounted for and the infor-
mation validated, acquired spectral signatures can be
compared to spectral libraries, which enable rapid

Table 1 (continued)

Ecological

variable

SensorbSpace (S)/

Airborne (A)

Spatial

resolution

Revisit

time

Spectral

resolution

Description Website

Vertical

canopy

structure

SLICER (A),

LVIS (A)

1–10 m N/A (SLICER, LVIS) V/NIR Provides 3D measurements

via laser pulses; provides

biomass estimates and

information about

vegetation structure

r,s

aAbbreviations: ALI, Advanced Land Imager; AMSR-E, Advanced Microwave Radiometer for EOS; ASTER, Advanced Spaceborne Thermal Emission and Reflection Radiometer;

ATM, Airborne Topographic Mapper; AVHRR, Advanced Very-High Resolution Radiometer; AVIRIS, Airborne Visible/Infrared Imaging Spectrometer; CASI, Compact Airborne

Spectrographic Imager;CERES,CloudsandtheEarth’sRadiantEnergySystem;ETM þ , LandsatEnhancedThematicMapperPlus;LIDAR,LightDetectionandRanging;LVIS,Laser

Vegetation Imaging Sensor; MODIS, Moderate-resolution Imaging Spectroradiometer; SeaWiFS, Sea-viewing Wide Field-of-view Sensor; SLICER, Scanning Lidar Imager of

Canopies by Echo Recovery; SRTM, Shuttle Radar Topography Mission; SWIR, short-wave infrared (roughly corresponds to the near and middle infrared bands); TIR, thermal

infrared; TM, Landsat Thematic Mapper; TOPEX, The Ocean Topography Experiment; V/NIR, visible/near-infrared.
bSensors listed are a sample of relevant sensors and show a bias toward NASA-validated systems because of the experience of the authors.
chttp://landsat.gsfc.nasa.gov/
dhttp://eo1.gsfc.nasa.gov/
ehttp://asterweb.jpl.nasa.gov/
fhttp://aviris.jpl.nasa.gov/
ghttp://www.itres.com/
hhttp://www.spaceimaging.com/
ihttp://www.digitalglobe.com/
jhttp://seawifs.gsfc.nasa.gov/SEAWIFS.html
khttp://modis.gsfc.nasa.gov/
lhttp://topex-www.jpl.nasa.gov/
mhttp://www.ngdc.noaa.gov/seg/globsys/avhrr.shtml
nhttp://asd-www.larc.nasa.gov/ceres/ASDceres.html
ohttp://wwwghcc.msfc.nasa.gov/AMSR
phttp://www.jpl.nasa.gov/srtm/
qhttp://aol.wff.nasa.gov/aoltm.html
rhttp://denali.gsfc.nasa.gov/research/laser/slicer/slicer.html
shttp://lvis.gsfc.nasa.gov/
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land-cover classification, characterization and change
detection.

The Hyperion instrument on the Earth Observing-1
(EO-1) satellite of NASA records visible light and other
reflected electromagnetic energy ranging from 0.4 to
2.5 mm in 220 channels that are 10-nm wide. Its spatial
resolution of 30 m and the orbit of the satellite complement
those of Landsat. Although Hyperion is the first civilian
spaceborne hyperspectral sensor, the Airborne Visible/In-
frared Imaging Spectrometer (AVIRIS) from NASA pio-
neered hyperspectral research in a variety of applications,
including vegetation and mineral classification.

Hyperspectral measures of leaf-surface attributes
during different seasons can yield useful information
about ecosystem functioning, evolution and change [15].
When analyzed together with remotely derived indices
[e.g. leaf-area index (LAI) and the fraction absorbed
photosynthetically active radiation (FAPAR)] and then
assimilated into models that include edaphic parameters,
hyperspectral data offer the potential to observe patterns
of species diversity.

One application is the detection and mapping of
invasive species. Research conducted in the Theodore
Roosevelt National Park of western North Dakota,
USA, successfully detected infestations of leafy spurge
Euphorbia esula, using three hyperspectral sensors at
three separate ground spatial resolutions. All three
sensors could detect infestations to varying degrees.
The Hyperion instrument achieved mapping accuracies

of up to 80%, but was unable to resolve infestations
,500 m2 or mixed pixels with ,35% leafy spurge.
Similarly, AVIRIS, with a spatial resolution of 17 m for
this activity, can map infestations of ,160 m2, and
CASI (Compact Airborne Spectrographic Imager), with
even higher 4-m spatial resolution can map infestations as
small as 9 m2 [16,17].

Indirect detection of species diversity through remote

sensing of environmental parameters

The remote sensing of certain environmental parameters
or indices can be used as an indirect method for discerning
patterns of species diversity. Although it is probable that
no single factor drives biodiversity patterns (e.g. the
latitudinal gradient in species richness), investigators
have long considered primary productivity, climate and
habitat structure as important in determining species
richness and distribution patterns [2–5]. Advances in
remote sensing are providing relevant data about each of
these three environmental parameters.

Technologies for the remote sensing of primary

productivity for species richness

The nature of the relationship between primary pro-
ductivity and species richness is still contentious. Explor-
ing it at different spatial scales and in a variety of
terrestrial and aquatic ecosystems, investigators have
found positive linear, negative linear and unimodal or
humped relationships as well as results showing no

Fig. 1. Satellite images from three sensors at different spatial resolutions. (a) MODIS mosaic Southeast Asia. (b) Landsat 7 ETM þ scene of central Vietnam. (c) IKONOS

scene for 108.6 km2 region near Song Thon Dac Pring; False color ( ¼ Color IR, Red, Green) and pan-sharpened. (d) IKONOS closeup showing different land-use types.

Figure courtesy of AMNH/Ned Gardiner; IKONOS imagery from Space Imaging.
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Box 3. New opportunities with Landsat

Today’s researcher has more options than ever in terms of the volume

and variety of available remote-sensing imagery. Landsat satellites

have provided multispectral imagery products for 30 years, and their

long history and reliability have made them a popular source for

documenting changes in land cover and use over time. New operating

conditions and recent US Government data purchases have greatly

increased the availability of this imagery. The 1999 launch of the Landsat

7 satellite marked the return of the Landsat program to US Government

operation and resulted in a price reduction to US$600 per scene, down

from several thousand dollars. Future reductions are possible as

increases in data purchases enable savings in operations costs to be

made.

Landsat 7 also provides a higher spatial resolution 15-m panchro-

matic (i.e. broad-band black and white) band to augment the 30-m

resolution of its six visible to middle infrared bands. In addition, more

data are available: US Government acquisition plans call for the capture

of a nearly global set of images every three to six months. The USA is

also investing in the development of historical Landsat global datasets

from the mid-1970s (at the coarser 79-m spatial resolution available at

that time), c. 1990 (at 30-m resolution), and from 2000. These data will be

publicly available from the Earth Resources Observation Systems Data

Center of the US Geological Survey, and will provide baseline

information for analyses of past land cover and the detection of land

cover change.
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significant relationship [18]. Worm et al. [19] found a
strong interactive effect between nutrient supply and
consumer (food-web) pressures when looking at drivers of
diversity in marine environments. Although there are
many theories to explain the different productivity–
diversity relationships, there is consensus about the
need for more data linking patterns of primary pro-
ductivity, large-area estimates of species richness and
abundance, and more detailed information about the
functional types of organism that occupy specific habitats
and use resources in very different ways (S. Goetz, pers.
commun.).

There are numerous remote sensing-based approaches
for estimating primary productivity. Typically, multi-
spectral satellite imagery available at spatial resolutions
ranging from 4 m to 8 km provides a basis for primary
productivity estimates at a variety of spatial scales. These
estimates are often derived from one of several vegetation
indices (e.g. the normalized difference vegetation index or
NDVI) or direct measures, such as net primary pro-
ductivity (NPP). The challenge for the researcher is to
ensure that the scale of the imagery matches that of the
species richness data and that both are scaled appro-
priately for the theory being tested [18,20]. For example, in
watershed sediment yield models, the resolution and
associated minimum-mapping unit of data derived from
a given sensor greatly influenced the precision of results.
Watershed sediment yield estimates varied over orders of
magnitude when land cover, soil and topographic infor-
mation were measured at different spatial resolutions
from 30 m to 285 m [21].

Application of remotely sensed primary productivity to

understanding species richness

In Oregon, USA, woody species richness is highest in areas
of intermediate productivity, supporting a unimodal
relationship. To show this, Waring et al. [22] used 1-km
imagery from the Advanced Very High-Resolution Radio-
meter (AVHRR) instrument of the US National Oceanic
and Atmospheric Administration (NOAA) to derive
seasonal ratios of gross photosynthesis across Oregon.
These ratios were then compared with plot data of woody
plant species richness.

Technologies for the remote sensing of climate variables

The modeling of primary productivity via satellite data
captures other environmental variables that might them-
selves be important to understanding spatial patterns of
diversity. Many of these are climatic variables acting as
probable limiting factors for many species (e.g. seasonal
temperature, relative humidity and soil moisture). New
sources of data and the implementation of a series of
models that estimate some of these climatic parameters
have become available since the launch of the US TERRA
and AQUA satellites in 1999 and 2002, respectively.
Moderate-Resolution Imaging Spectroradiometer (MODIS)
sensors are aboard both satellites. MODIS has 36 spectral
channels and produces imagery at spatial resolutions of
250 m, 500 m and 1 km. These relatively coarse resolu-
tions and a broad viewing width mean regular global
coverage from MODIS, (i.e. imagery of any location on

Earth) every one to two days. Many of the satellite data
products measured by or modeled from MODIS are new
and require validation and re-calibration with field data
(see Table 1). The availability of these and related products
provides researchers worldwide with a common baseline
for discussion and comparison. To make such information
available, government agencies in the US and elsewhere
are investing substantially in data management and
distribution systems.

Application of remotely sensed climate variables to

species distributions

Johnson et al. [23] used climate and NDVI data from the
meteorological satellites of NOAA and the European
Organization for the Exploitation of Meteorological Satel-
lites (EUMETSAT) to predict areas of high bird species
endemism in East Africa to an accuracy of 89%. Johnson
et al. [23] also incorporated digital elevation data, which
were the top-ranking predictor for most of their analyses.
However, those cases in which elevation data were not
used still showed predictive accuracies of 70–88%,
with rainfall and thermal variables having the highest
predictive power.

Technologies for the remote sensing of habitat structure

and topography

Passive remote-sensing systems show us a two-dimen-
sional world. Active systems bring the third dimension
into play, making possible measures of habitat structure,
biomass and topography. For example, in forests, lidar
sensors use the return signals to detect the height of the
canopy top, ground elevation, and the positions of leaves
and branches in between. The Laser Vegetation Imaging
Sensor (LVIS) is an aircraft-mounted lidar sensor, which
has so far been flown over La Selva, Costa Rica, and
various sites in the USA. NASA is investigating possibi-
lities for developing a satellite-mounted lidar sensor,
which would sample a large percentage of the surface of
the Earth in a line-sampling mode. In 1994, the US Army
Corps of Engineers developed the Scanning Hydrographic
Operational Airborne Lidar Survey (SHOALS) system
[24]. SHOALS, a marine lidar, collects accurate, high-
resolution bathymetry data via helicopter.

The longer wavelength pulses of radars can penetrate
clouds, and the longest radar wavelengths (i.e. L band and
beyond) penetrate tree canopies – or, in cases of bare and
loamy soil, the surface of the Earth to depths of a meter or
more[25].Although still a researchapplication, theability to
penetrate forest canopies makes radar a potential tool for
measuring biomass and determining vegetation structure.

For the first time, radar-derived datasets are also
making available high-resolution topographic information
for most of the land surface of the Earth. In 2000, NASA
and the US National Imagery and Mapping Agency
(NIMA) joined forces to launch the Shuttle Radar
Topography Mission (SRTM) on the Space Shuttle Endea-
vour. Over the course of ten days, the SRTM radar system
obtained elevation data from ,80% of the land surface of
the Earth, virtually all land between þ /2608 latitude.
NASA and NIMA are now releasing SRTM digital
elevation data to researchers. Horizontal postings
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(i.e. the distance between individual measures of elevation
on the ground) being released are 30 m in the USA and
90 m elsewhere. Vertical resolutions (i.e. the ability of the
sensor to correctly detect ground elevation differences) are
of the order of 5 m [26]. Another source for remote sensing-
derived elevation information is the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER)
sensor of Japan. ASTER detects reflected and emitted
electromagnetic radiation at spatial resolutions of 15 m in
the visible and near-infrared wavelengths, 30 m in the
middle-infrared wavelengths, and 90 m in the thermal-
infrared wavelengths. ASTER also produces digital
elevation models (DEMs) of up to 10 m relative accuracy
from stereo pair images, produced by imaging the same
point on the surface of the Earth from different angles.

Applications of remote sensing for habitat structure and

topography

Work by Nagendra [5] and Johnson et al. [23] reported
improvements in classifying forest types and in predicting
areas of bird endemism through the incorporation of
elevation data. Data from LVIS enable the mapping of sub-
canopy topography and canopy heights to within 1 m [27].
Going beyond elevation, recording numerous lidar return
signals makes it possible to estimate vegetation density at
different heights throughout the canopy and enables
three-dimensional profiles of vegetation structure to be
made. These data demonstrate the potential for appli-
cations such as mapping emergent tree species and
sub-canopy layers that are important indicators of
stratification for forest bird species (Fig. 2).

To date, the primary users of marine-based lidar have
been port designers and beach engineers seeking to survey
coastal dynamics (e.g. geomorphic changes and structural
conditions), and to estimate sediment transport [28]. The
application of lidar technology to marine biodiversity
conservation shows considerable promise for detecting
habitats in two major ways. First, when combined with
optical remote sensing, lidar data enable scientists to
calibrate reflectance so they can differentiate between
water depth and changes in the sea floor. Second, models
based on lidar-generated, fine-scale bathymetry data and
biophysical parameters affecting the growth and popu-
lation dynamics of many reef organisms (e.g. depth,
exposure and suspended sediment concentration) should
help us to predict the distribution of benthic communities
as well as the processes governing the distribution of these
communities (P. Mumby, pers. commun.).

Freshwater applications will also greatly benefit from
new sources of data. Because interpretation of photo-
graphs does not provide a consistent method for mapping
streams, automated stream channel identification
methods that use elevation data have been developed
over the past 25 years [29]. Higher resolution airborne
radar or lidar sensors with X-, Y-, and Z-precisions of the
order of 1 m hold tremendous potential for mapping
stream channels, riparian systems, and floodplains.
Terrain information is essential for models of surface
processes (such as sediment yield), statistical analysesof the
spread of invasive species, and detecting habitat conditions
[21,30]. Elevation data underlie powerful visualizations of

well known phenomena. Researchers often use such data to
understand the distribution of different land uses across
landscapes, and the interaction of land use and topography
has important effects on water quality [31]. When Landsat 7
imagery is draped over SRTM elevation data, watershed
land use can be compared to expectations, and resultant
water-quality conditions, species assemblages and habitat
conditions can be predicted [32].

Caveats

There are major challenges involved in working with
remote-sensing data. First, costs for imagery and other
data products are often high. In general, imagery from the
newer and higher spatial resolution hyperspatial satellites
is more expensive than lower resolution imagery. Although
the overall trend is toward declining imagery costs (Box 3),
handling even small quantities of satellite imagery
requires special software and hardware tools. Increases
in computational power are driving down the costs of
necessary computer hardware while the costs of remote
sensing and geographical information system (GIS) soft-
ware are also declining. Nevertheless, these costs are not
negligible. An even greater challenge for ecologists and
conservation biologists hoping to incorporate remote-
sensing technologies into their work is the technical
expertise required to handle imagery and other data
products. Training and hours spent working with the
imagery are a prerequisite for understanding what one is
looking at. Fortunately, new software tools are making
remote-sensing data more accessible. That said, many of
the remote-sensing data types discussed here (hyperspec-
tral, lidar and radar) are still largely or exclusively in the
research phase of development and might currently be
beyond the capabilities of most researchers. Another point
to emphasize is the tremendous importance of getting
accurate information to validate what the remote-sensing
data products appear to be telling the user. Such ‘ground-
truth’ information might come from researchers in the

Fig. 2. Volumetric rendering of intercepted rain forest canopy surfaces from La

Selva, Costa Rica taken with Laser Vegetation Imaging Sensor in March 1998.

Figure courtesy of John Weishampel, University of Central Florida.
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field, ground-based sensors, or even higher resolution
remote-sensing sources (e.g. aerial photography). Remote-
sensing products should not be taken at face value.
Atmospheric phenomena, mechanical problems with the
sensor and numerous other effects might be distorting
one’s view. Finally, although they are not discussed here,
ecological models have a vital role in the process of
converting remote-sensing data products into actual
knowledge of species distributions and richness. Applying
these models also requires additional software and
analytical skills.

Prospects

Understanding the environmental drivers of species
distributions and levels of species richness and how they
operate in different geospatial contexts is a fundamental
challenge of modern biology. This challenge is made all the
more urgent by the ongoing and escalating loss of
biodiversity. If we are to stem this loss, we must know
where the species are that we are trying to conserve and
what areas of the Earth are especially rich in species. But
to be truly successful, we must also understand, at a
deeper level, why species are located where they are and
why certain areas are species rich or characterized by high
levels of endemism. The launch of many new satellite
systems over the past five years and the development of
new technologies, some available only on airborne plat-
forms, have given us an unprecedented number of remote-
sensing tools with which to address these challenges.
These tools are found in both the public and private sectors
of the economy and are not limited to any particular
country or region.

The largest obstacle to applying these tools to both the
scientific and conservation challenges before us are, for the
first time, probably more cultural than technological. A
perception problem continues to exist, even among those
directly involved in developing and promoting remote-
sensing systems: the belief that the spatial scales provided
by remote-sensing systems and those addressed by
ecologists, evolutionary biologists and conservation
biologists still do not match. This perception has probably
prevented many otherwise interested and concerned
remote-sensing researchers from pursuing the problems
of greatest relevance to their colleagues in the biological
sciences, and has kept most biologists from considering
remote sensing as a useful tool. We believe it continues to
do so today. New tools are slowly overtaking this false
perception. The direct remote sensing of certain aspects of
biodiversity is now possible. But as important, if not more,
indirect approaches to the remote sensing of biodiversity
hold the promise of not only getting better estimates of
species distributions and richness levels, but of also
shedding light on the processes underlying them.

To make progress, ecologists, evolutionary biologists
and conservation biologists must bring their data sets on
species distributions, levels of species richness, areas of
endemism, and so on, to the table and combine them with
the global, regional and local data sets of, for example,
primary productivity and climate, which have been
generated by remote-sensing researchers. This is already
starting to occur in remote-sensing laboratories around

the world. Simultaneously, many newly emerging ecolo-
gists, evolutionary biologists and conservation biologists
are beginning to include remote sensing and GIS experi-
ence in their professional toolkits. This is also a welcome
development. However, time is our enemy in this regard.
Biodiversity loss will not wait for the development of new
graduates and undergraduates to the point where they can
influence environmental policy. What is needed is more
collaboration now among remote-sensing researchers and
those working in biodiversity science and conservation.
The tools are there. Let us hope that the users will soon
follow.
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