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Abstract
Purpose of Review The purpose of this article is to review landscape ecology research from the past 5 years to identify past and
future contributions from remote sensing to landscape ecology.
Recent Findings Recent studies in landscape ecology have employed advances made in remote sensing. These include the use of
reliable and open datasets derived from remote sensing, the availability of new sources for freely available satellite imagery, and
machine-learning image classification techniques for classifying land cover types. Remote sensing data sources and methods
have been used in landscape ecology to examine landscape structure. Additionally, these data sources and methods have been
used to analyze landscape function including the effects of landscape structure and landscape change on biodiversity and
population dynamics. Lastly, remote sensing data sources and methods have been used to analyze historical landscape changes
and to simulate future landscape changes.
Summary The ongoing integration of remote sensing analyses in landscape ecology will depend on continued accessibility of
free imagery from satellite sources and open-access data-analysis software, analyses spanning multiple spatial and temporal
scales, and novel land cover classification techniques that produce accurate and reliable land cover data. Continuing advances in
remote sensing can help to address new landscape ecology research questions, enabling analyses that incorporate information that
ranges from ground-based field samples of organisms to satellite-collected remote sensing data.
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Introduction

In the last 5 years, landscape ecologists have continued their sem-
inal focus on the relationships of pattern and process [1], address-
ing questions of landscape structure, landscape function, and land-
scape change [2]. For example, recent studies have analyzed land-
scape structure by examining urban green cover, rangeland distri-
bution, wetland extent [3–6], fragmentation of forests [7], land
cover and land use [8–10], and heterogeneity of urban and agri-
cultural landscapes [11–14]. For relating landscape structure to

ecological processes, studies have focused on habitat and resource
selection by plants and animals [15–18], forest dynamics and
structure [19], and pollination on agricultural lands [20, 21]. For
analyzing the movement across landscapes, analyses have ex-
plored movement related to corridors and connectivity [22–27]
and movement of species populations related to metapopulation
dynamics using genetics to track reproduction and population
dispersal across generations [28, 29]. For quantifying landscape
change, recent studies have used landscape history to analyze
disturbances such as fire and their impacts on landscape structure
over time [30–33]. By analyzing prior landscape changes, other
landscape ecologists have also worked towards predicting chang-
es in landscape structure and evaluating potential impacts through
system feedbacks and potential changes in land planning by using
simulation models [34–53, 54••, 55, 56•].

Many of these studies in landscape ecology have relied on
contributions from the field of remote sensing. Since the
launch of the satellite Landsat-1 MSS in 1972, a variety of
remote sensing platforms (e.g. satellite, aerial) have collected
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data in the form of image observations. Each sensor gathers
imagery at a pre-defined spatial resolution, which denotes the
ground measurement that each pixel represents in an image.
Spectral resolutions vary based on the wavelength intervals
that the sensors are collecting reflectance of the sun on the
earth’s surface. The temporal resolution of a given remote
sensing platform is derived from its orbital path and speed,
which determines the satellite’s revisit rate for collecting a
new image in the same location. Sensors currently in opera-
tion include optical sensors from NASA’s Landsat program,
optical and synthetic aperture radar (SAR) sensors from the
European Space Agency Copernicus constellation, and many
other public and privately owned airborne and spaceborne
systems. Researchers are able to choose their remote sensing
sources based on their research questions, whether they use
sources such as unmanned aerial vehicles (UAVs), active sen-
sors like light detection and ranging (lidar), field-based spec-
troscopy, cross-boundary satellites [38–41]. Users can pre-
process images to correct for atmospheric interferences caused
by haze, clouds, or angle of the sun [42–44]. By comparing
imagery and ground-based measurements, users can classify
land cover types (e.g., forests, wetlands, development) to an-
alyze the landscape structure [45–48]. Freely available remote
sensing data from satellite sensors with large spatial coverage
has become available in the last 10 years [49–53, 54•]. For
example, in 2008, the free and open Landsat data policy was
implemented, and in 2014, the first sensor from the European
Space Agency’s open-access Copernicus mission was
launched [49–53, 55]. With increasing data availability for
large-area coverage and medium spatial resolution sensors
like Landsat and Sentinel, there has been a dramatic increase
in research using satellite data in the last 5 years [52].

Literature Review

In this review, we examine recently published manuscripts
from landscape ecology that have been made possible through
advances in remote sensing. We outline recent developments
in remote sensing and landscape ecology, highlighting impor-
tant developments from each field to illuminate their current
and approaching potential. To achieve this, we employed a
systematic review of highly cited literature related to land-
scape ecology and remote sensing for the last 5 years, from
2014 to 2019. We identified recently published manuscripts
that apply remote sensing methods in landscape ecology using
Web of Science. We sorted the manuscripts by overall citation
count in order to identify the most prominent contributions
made within this field.We terminated our exhaustive literature
search after identifying all 172 manuscripts meeting the search
criteria (e.g., “landscape ecology” & “remote sensing”). The
172 manuscripts were categorized by landscape ecology re-
search themes: landscape structure, landscape change,

landscape function. For each landscape ecology theme, we
identified remote sensing data sources and analyses most fre-
quently used in landscape ecology by analyzing the author
keywords (Table 1). Eleven publications were removed that
were unrelated to landscape ecology or remote sensing.
Additional recently published manuscripts were also incorpo-
rated into the review. Once we identified recent contributions
of landscape ecology, we projected future research opportuni-
ties for landscape ecology by identifying other advances in
remote sensing that might also be relevant to landscape ecol-
ogy, as determined from the most frequently cited manuscripts
from remote sensing in Web of Science from 2014 to 2019.

Recent Advances in Remote Sensing

Explosion of Data Diversity and Availability

The first decades of landscape ecology were characterized by a
relatively data-poor setting, with only a few satellites potentially
providing data and practical limits to analysis. For example, early
studies in the 1970–1980s typically analyzed only one Landsat
image at a time because they were expensive, had to be shipped
on tapes from receiving stations, and took weeks to analyze on
computers of the time period. In the last 10 years, this framework
has been overturned, with hundreds of thousands of images free-
ly available for analysis from multiple public and free remote
sensing platforms [49, 51–53, 54••, 55, 56•, 57•, 58]. These new
or improved platforms include those on large satellites like
Landsat-8 and Sentinel-2, on airplanes, on unmanned aerial ve-
hicles (UAVs), via small/micro/nanosatellites, and through
ground-based sensor systems. Some example sensors include
passive multi-spectral optical (i.e., collecting ground reflectance
along the optical light spectrum divided into three to ten seg-
ments), actively collected synthetic aperture radar (SAR)
(collecting return rates of wavelengths from multiple, pulsating
microwave beams), thermal sensors (i.e., heat detection),
hyperspectral sensors (i.e., collecting ground reflectance of the
sun at ten or more segments of the light spectrum), and actively
collected lidar (i.e., collecting return rates of wavelengths from a
single, pulsating laser) [59–69].Meanwhile, atmospheric noise in
data is decreasing. For example, “analysis-ready” imagery and
data cubes are now available for Landsat imagery, which enables
users to spend less time preprocessing imagery [70, 71].Whether
launched by private companies or public agencies, remote sens-
ing sources are increasing in spatial, spectral, and temporal reso-
lutions of the observations [72, 73].

Emergence of Massive-Throughput Analysis
Platforms

Open and free high-capacity analysis software and programs
have greatly altered the potential for accessing and analyzing
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time series of imagery and combining data from different re-
mote sensing sources to better understand landscape structure
[51, 52, 56•, 57•]. Most notably, the cloud-based storage and
processing platform, Google Earth Engine, was first released
in 2010 to increase accessibility to remote sensing and
geospatial data using Google servers. Prior to this, the only

option for many landscape ecologists wishing to use remotely
sensed data was to download individual images and analyze
them on local computers or networked clusters [54••, 56•].
Cloud-based platforms facilitate aggregation of remotely
sensed observations of a landscape collected on different dates
into a temporally ordered data “stack” or “cube.” Changes in

Table 1 The thematic coding
structure of this literature review.
Each manuscript was categorized
by landscape ecology theme and
example keywords were extracted
that related to remote sensing data
sources andmethods. In this table,
the keywords are ordered by most
frequently used for each
landscape ecology theme.
Landscape structure is the spatial
arrangement of landscape
elements, such as land cover types
and forest patches. Landscape
change refers to the changes in the
landscape structure over time and
space. Landscape function is the
interactions between landscape
structural elements, whether
through ecological processes or
energy flows, such as the
interactions between animal
migration routes and forest
connectivity

Theme (no. of
manuscripts)

Data sources (no. of manuscripts) Remote sensing methods (no. of
manuscripts)

Structure (88) lidar (15)

Landsat (14)

citizen science (6)

airborne laser scanning (ALS) (4)

hyperspectral data (4)

Unmanned aerial vehicle (UAV) (4)

aerial photography (2)

airborne remote sensing (2)

AVIRIS (2)

GeoEye-1 (2)

Google Street View (2)

high-resolution satellite data (2)

historical imagery (2)

IKONOS (2)

land surface temperature (2)

MODIS (2)

PhenoCam dataset (2)

RapidEye (2)

participatory science (2)

TerraSAR-X (2)

Shuttle Radar Topography Mission
(SRTM) (1)

canopy-height model (8)

classification and regression tree (8)

digital elevation model (6)

normalized difference vegetation index

(NDVI) (6)

clustering (4)

random forest machine learning (4)

segmentation (4)

spatiotemporal (4)

support vector machine (SVM) (4)

3D urban form (2)

aggregation (2)

image processing (2)

land cover classification (2)

maximum entropy classifier (2)

multi-scale (2)

object-based image analysis (OBIA) (2)

spectral unmixing (2)

spectral variable selection (2)

structure-from-motion (SFM) (2)

tree species classification (2)

Change (42) Landsat (7)

MODIS (2)

participatory mapping (2)

historical map (1)

lidar (1)

multi-source satellite images (1)

PhenoCam (1)

time series (1)

spatiotemporal (3)

change detection (1)

landscape accuracy metric (1)

NDVI (1)

OBIA (1)

random forest machine learning (1)

segmentation (1)

Function (46) lidar (4)

land surface temperature (2)

airborne remote sensing (1)

AVIRIS (1)

citizen science (1)

microsatellites (1)

MODIS (1)

National Land Cover Dataset (NLCD)
(1)

participatory mapping (1)

WorldView-2 (1)

enhanced vegetation index (EVI) (2)

NDVI (2)

change detection (1)

differenced normalized burn ratio (1)

digital elevation model (1)

downscaling (1)

maximum entropy classifier (1)

random forest machine learning (1)

radar (1)

VIIRS (1)
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landscape structures due to natural and human disturbances
can then be quantified over time [74–78]. Combining remote
sensing observations from different sensors can also provide
multi-scale views (i.e., varying spatial and temporal resolu-
tions and extents in time and space) (Table 2) [54••, 56•,
79–81]. Recent studies have combined observations from
multiple remote sensing sources such as the USGS’s Landsat
satellite and NASA’s MODIS satellite [82–85]; Landsat and
synthetic aperture radar (SAR) [86]; airborne laser scanning
(e.g., lidar) and digital aerial photogrammetric data (e.g., aerial
photographs) [87, 88]; unmanned aerial vehicles (UAVs) and
digital aerial photogrammetric data [89]; UAV, aerial, and sat-
ellite [90]; lidar and Landsat [91, 92].

Development of Algorithms for Large-scale Image
Classifications

A primary focus of remote sensing research is to develop
methods for converting remotely sensed data into a meaning-
ful description or picture of what is actually on the ground.
This is referred to as “classification” of the remotely sensed
data. Several recent advances have greatly improved algo-
rithms used in classification [54•, 56••, 93]. For example,
object-based image classifications group neighboring pixels
into objects and classify the objects based on their shape, size,
color, texture (spatial variation), and context (neighboring or
ancillary information) [94, 95]. Machine/deep learning ap-
proaches (e.g., convolutional neural networks, random for-
ests) are automated classification algorithms that rely on min-
imal user interference when classifying imagery [59, 63, 72,
96–101]. Additionally, time-series analyses have been used to
map land cover changes by stacking images from multiple
sources and identifying disturbance patterns and deviations
from expected values [69, 74, 102–113]. This allows the rapid
detection of landscape change and disturbances like forest loss
and fires. Time-series analyses have created reliable global-
scale landscape change datasets that are freely available for

subsequent analyses [114–118]. For example, a regularly up-
dated forest cover dataset including landscape changes and
drivers of changes is available annually for the entire globe
[119, 120]. Additionally, the World Resources Institute’s
Global Forest Watch initiative detects forest changes globally
in near real time [121]. Other recent studies have used time-
series analyses, machine learning, and object-based image
analyses to analyze land surface temperatures and identify
urban heat islands [122], to provide increased data to support
forest inventory efforts [66], to map landscape changes related
to climate change [123], to inform precision agriculture [124],
to monitor air pollution [125], to quantify colored dissolved
organic matter in lakes [126], to quantify aboveground bio-
mass [127], and to track urbanization [128].

Advances in Landscape Ecology Using
Remote Sensing

Landscape ecologists use remote sensing for three principal
reasons: (1) to quantify landscape structure based on classified
imagery; (2) to identify landscape change and its impact and
make future predictions using statistical models; and (3) to
quantify landscape function. Landscape structure is the spatial
arrangement of landscape elements, such as land cover types
and forest patches. Landscape change refers to the changes in
the landscape structure over time and space. Landscape func-
tion is the interactions between landscape structural elements,
whether through ecological processes or energy flows, such as
the interactions between animal migration routes and forest
connectivity.

Quantifying Landscape Structure

Remote sensing observations provide the potential to map and
analyze landscape structure at a variety of spatial and temporal
grains and extents. Landscape ecologists analyze both raw

Table 2 In the first column, we identified possible scale requirements
(both spatial and temporal grain and extents) for landscape ecology
research. In the second column, we named presently available remote
sensing sources that meet those scale requirements. In the third column,
we present example studies that use those sources in their analyses.
Landsat is a satellite mission from the USGS consisting of multiple
sensors that have been launched since 1972, including the Multispectral
Scanner System (MSS), Thematic Mapper (TM), Enhanced Thematic

Mapper Plus (ETM+) and Operational Land Imager (OLI). MODIS
(Moderate Resolution Imaging Spectroradiometer) is a sensor from
NASA that is mounted on two satellites, Terra and Aqua. Sentinel-2 is
a European Space Agency mission consisting of two satellites, Sentinel-
2A and Sentinel-2B. Planet Labs is a satellite company that has multiple
satellites in orbit, including Dove, RapidEye, and SkySat. Unmanned
aerial vehicles (UAVs or drones) are useful for mapping small extents at
a fine resolution with a mounted sensor on board

Scale required Best sensors at required scale Example studies

Fine spatial grain 10 cm–1 m (“Planet Labs” satellites, UAV, airplane) [38, 45, 48, 93, 183]

Fine temporal grain Every ~5 days at 10–60 m (Sentinel-2), and daily at 250 m (MODIS) [67, 69, 78, 95, 112]

Large spatial extent Global and daily at 250 m (MODIS) [69, 78, 83, 95]

Long temporal extent 1972 to present, every 16 days at 30–60 m (Landsat MSS, TM, ETM+, OLI) [53, 91, 106, 122, 132]
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remote sensing data and remote sensing-derived maps to
quantify landscape structure. For example, by harmonizing
airborne lidar and satellite imagery, researchers were able to
quantify structural connectivity and identify patches that were
most important for landscape-level conservation in Alberta,
Canada [129]. Landscape ecologists have extracted
landscape-based information using a variety of remote sensing
spectral vegetation indices (e.g., tasseled cap, leaf area index,
normalized difference vegetation index (NDVI)) [130–132].
In Finland, researchers combined data collected by citizen
scientists (e.g., landowners, students, recreationalists) with
lidar-derived forest measurements to quantify landscape struc-
ture [133]. Additionally, landscape structure has frequently
been quantified using open-source toolboxes designed to pro-
cess remote sensing data [134–137]. The wide range of appli-
cations employing landscape-scale analyses has been made
possible from the increasing availability of remote sensing
sources and advances in imagery analyses (Table 3).

Future Prospects

Advances in methods for quantifying landscape structure will
mirror advances made in remote sensing for image classifica-
tion due to the direct relationship between a landscape’s sur-
face cover and its structure. As data diversity and availability
continue to grow, information from remote sensing data seems
poised to make novel advances within landscape ecology in
the near future. For example, opportunities exist for increasing
landscape-scale analyses focusing on biomass analyses and
vegetation structure using data from the recently launched
and future active sensors (e.g., NISAR, GEDI, BIOMASS,
MOLI, SAOCOM1A, ICESat-2, ALOS-4, TanDEM-L,
RADARSATConstellationMission) [138]. Additional oppor-
tunities will be created to use the finer spatial and temporal
resolutions that will be provided by future optical satellites
that are being built (e.g., Landsat 9, Sentinel constellation).
While many landscape ecology studies take advantage of re-
mote sensing observations collected by aerial and satellite
sources, future studies can use observations from novel data
sources like UAVs and microsatellites (i.e., small satellites
from companies like DigitalGlobe and Planet) for very high
spatial resolution observations of fine-scale landscape features
[139], hyperspectral sensors for greater spectral sensitivity
when using raw remote sensing values in landscape ecology
models [140], and synthetic aperture radar (SAR) sensors and
lidar sensors for reconstructing three-dimensional landscape
structure and analyzing connectivity [141–143]. Landscape
structure can be quantified by using feature extraction tech-
niques and machine-learning classifiers to improve the accu-
racy of image classifications [80, 144, 145]. By quantifying
landscape structure on a cloud-based processing platform like
Google Earth Engine [57•], large-area landscape ecology
structural analyses become more tenable and it will no longer

be necessary to download new imagery to personal
computers.

Quantifying Landscape Change

Landscape ecology studies use remote sensing images from
multiple collection dates to identify landscape change, to an-
alyze their impacts on populations, and to predict future land-
scape change. Satellite-based time-series data (whether from
one sensor or many) provide observations spanning multiple
decades of landscape change such as cumulative forest cover
decline, recovery of forest species from disturbances, degra-
dation of forest patches, and land-use change [130, 132,
146–152]. Researchers applied a temporal trend analysis of
Landsat TM time-series imagery and vegetation indices from
1987 to 2010 to map gradual and abrupt forest decline and
regrowth in Québec, Canada, and inform land management
policy [132]. Another study integrated multi-source imagery
from NASA’s Landsat MSS, TM, ETM+, the Russian KATE-
200 satellite camera, and satellite Keyhole imagery to identify
regions for management by evaluating the relationship be-
tween oasis changes and landscape structure in an arid region
of China from 1963 to 2010 [148]. Remote sensing data has
also been incorporated into existing landscape ecology simu-
lations to model stochastic dynamics of landscape structure
elements, and in turn, landscape function. For example, land-
scape ecologists have used remote sensing-based data to pre-
dict rates and patterns of urban expansion over time [153], to
quantify landscape structure and ecosystem service changes in
urban areas [154, 155], and to simulate changes in soil organic
carbon due to changing climate [156]. Observations from re-
mote sensing platforms enable landscape ecologists to recon-
struct landscape history for analyzing landscape changes and
to inform predictive models for landscape changes.

Future Prospects

As the temporal revisit rate of satellite image observations gets
shorter, landscape ecologists will be able to see landscape
changes as they happen in near real time, whether they are
persistent (e.g., fire), ephemeral (e.g., floods), or gradual (e.g.,
forest degradation) [157–159]. Increased data frequency will
be useful for analyzing landscape changes at daily or monthly
resolutions rather than only annual resolutions. Additionally,
by accessing publicly available near-real-time global datasets
that map land cover changes using cloud-based platforms like
Google Earth Engine, landscape ecologists will be able to
perform their own analyses more rapidly without developing
their own image classification protocols. Multi-temporal land-
scape analyses of the same landscape or analyses comparing
different landscapes will become increasingly accessible by
employing data fusion methods to combine observations from
multiple sensors and weighing the evidence from each
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classification [54••, 129, 160–162]. Such analyses have been
previously difficult for landscape ecology due to data collec-
tion limitations and financial costs of imagery. However,
open-access satellites provide multi-scale views for free [37,
163]. Robust predictive models that are able to include remote
sensing classifications derived from multiple sources or clas-
sifications with continuous values (e.g., forest quality on a
continuous scale rather than discrete classes) will be useful
for incorporating future data sources more readily into
existing landscape ecology models.

Understanding Landscape Function

Landscape ecologists can analyze landscape function of the
study area by combining information derived from remote
sensing with information from other sources into landscape
ecology models. For example, satellite-derived ecosystem ser-
vice indicators (e.g., water quality, soil moisture, and soil ero-
sion) can be analyzed in combination with land cover infor-
mation (e.g., wetland area) to estimate ecosystem service pro-
visioning [164, 165]. Habitat classifications identifying

Table 3 A review of novel remote sensing techniques that were applied in landscape ecology studies and some results that contributed to the field of
landscape ecology

Remote sensing advance Use in landscape ecology Research finding Reference

Regional airborne lidar data Quantified structural habitat connectivity and
simulate changes

Identified most important patches for landscape
conservation in Alberta, Canada

[129]

Multiple data sources with
varying spatial and thematic
resolution

Predicted seasonal land surface temperatures Determined strong predictors of land surface
temperatures to include percent of impervious
surfaces, percent of tree canopy from spring to fall,
and vegetative-based indices from summer to fall

[131]

Multiple data sources from ground
observations and airborne lidar

Quantified aboveground forest biomass and
vegetation structure

Identified spatially explicit biodiversity indicators for
bird habitats for 41 different species in boreal forest
regions

[133]

Refining spatial resolution from
remote sensing sources

Examined landscape surface metrics at a
higher spatial resolution to assess
scale-dependent relationships

Found that map accuracy for data aggregation of
sub-pixel remote sensing classifications was
dependent on spatial heterogeneity of the landscape

[136]

Synthetic aperture radar (SAR)
data sources

Calculated resistance maps for habitat
connectivity

Found that SAR-based maps explained more of the
species abundance for forest beetles than aerial
photograph-based maps

[141]

Active (lidar) and passive
(AVIRIS) aerial sensors

Modeled vegetation structure and historical
land use

Determined that topography and substrate type
impacted vegetation distribution, and grazing
intensity/ranges predicted vegetation patterns on
Santa Cruz Island, USA

[142]

Data fusion of imagery from
multiple spaceborne sources

Mapped and quantified spatiotemporal
landscape mosaic patterns

Found that water use, land development policies,
urbanization, and agricultural technological
advances caused oasis conversions in arid regions of
China from 1962 to 2010

[148]

Multiple data sources from ground
samples and MODIS
time-series data

Quantified the temporal and spatial patterns of
land-use regime shifts

Identified that regime shifts were caused by
livestock/pasture privatization and installment iron
fences inQinghai-Tibetan Plateau using oral histories
and GIS data

[150]

Multi-temporal satellite analysis Quantified land cover change and calculated
landscape composition and configuration

Found that an abandoned mine landscape was less
heterogeneous with fewer dense conifer patches and
more bare patches than a comparison protected site
over 20 years in the Northwest Territories, Canada

[160]

High-resolution radar and lidar
data

Mapped vegetative structure and modeled
dispersal barriers of population structure
using Circuitscape connectivity software

Determined that higher elevations in the Amazon
rainforest were related to larger genetic distances
between macaw individuals due to mountain ridges
limiting gene flows

[182]

Multiple data sources from ground
observations and remote
sensing–derived land cover
data

Identified relationships between land cover
classes and reptile roadkills using a hotspot
analysis

Identified hotspots of amphibian/reptile deaths near
arable land, suburban areas, and vineyards using
freely available remote sensing data in eastern
Austria

[184]

Satellite time-series data Analyzed multi-temporal landscape mosaic
patterns

Identified changes in coverage and pattern of six
dominant tree species in Saskatchewan, Canada

[185]

Long-term remote sensing
time-series dataset

Compared models for calculating landscape
connectivity between scenario models and
a 25-year surface water time series

Found that scenario-derived connectivity models were
less effective than remote sensing–derived time
series for identifying important areas for connectivity
in south-eastern Australia

[186]
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population preferences and vulnerability related to landscape
change, and primary productivity related to spatial distribu-
tions of species have been assessed using object-based classi-
fications and random forest machine-learning algorithms of
satellite data, vegetation structural observations provided by
lidar data, and gross primary productivity values derived from
the enhanced vegetation index [139, 143, 145, 166, 167]. By
fusing spectral indices like NDVI with vegetative structural
information provided by lidar and topographical information
derived from SAR observations, human impacts on vegetation
patterns and environmental gradients can be analyzed [142].
Research focusing on urban landscape ecology has analyzed
remote sensing data like land surface temperature products to
examine the relationship between land surface temperature
and land cover/use [168–170]. By incorporating remote sens-
ing data like the National Land Cover Database, NDVI, and
Landsat 7 ETM+ observations with land surface temperatures,
the urban heat island effect can be analyzed and used to pre-
dict future land surface temperatures [131].

Future Prospects

For analyzing landscape function, advances will be made in
landscape ecology by using new remote sensing data
sources and analyses to quantify interactions between land-
scape structure and ecological processes (e.g., land cover
type and population movement). Calls have been made to
shift habitat assessments from categorical indices (e.g., low,
medium, and high) to continuous values (e.g., 0–100) to
better evaluate impacts of landscape change on biodiversity
and incorporate error quantification into landscape ecology
models [115, 171•, 172]. This shift towards continuous
values would capitalize on advances made in remote sens-
ing for classifying gradients of sub-pixel land cover and
forest quality, per-pixel confidences in classification, and
data uncertainty measurements [147, 171•, 172–174]. New
sensors like GEDI and continuous data such as forest qual-
ity can provide more functional information about the land-
scape in terms of species distribution, resource distribution,
and three-dimensional habitat connectivity [175].
Landscape ecology studies that incorporate remote sensing
images can also incorporate data from non-remote sensing
sources like crowdsourcing, participatory research, and oth-
er existing geospatial datasets [54••, 56•, 176–178]. For ex-
ample, landscape ecologists can incorporate geolocations of
bird sightings collected by citizen scientists in eBird (eBird.
org) in combination with vertical vegetative structure data
from lidar to improve models analyzing species distribution
or biodiversity. Additionally, the fusion of data and imagery
from multiple sources can increase spatial, temporal, and
spectral resolutions by updating the data cube with the
finest resolution data available to better analyze landscape
processes [54•, 112, 179–181]. For example, often genetic

and metapopulation studies examine landscape changes
that occur at scales finer than landscape changes captured
by medium-resolution satellites like Landsat. Therefore,
there is an opportunity to assimilate very high spatial reso-
lution remote sensing data from microsatellites and UAVs
or temporally fine-scale satellite time series to analyze
metapopulation dynamics [182].

Conclusions

The advances that have beenmade in landscape ecology using
remote sensing can inform future opportunities for integrating
remote sensing in landscape ecology studies. Landscape ecol-
ogy has made advances in quantifying landscape connectivity,
using genetics to analyze metapopulation dynamics, examin-
ing multi-functional and social-ecological systems, simulating
future landscape changes, and establishing landscape histories
to inform and model future landscape changes. These ad-
vances have been made possible in part due to remote sensing
including the production of reliable land cover datasets that
use new data sources, time series of remotely sensed data and
three-dimensional data, machine-learning classification tech-
niques, and free data accessibility. Within landscape ecology,
remote sensing images and analyses have been applied to
construct multi-scale, multi-temporal, and multi-source land-
scape-scale analyses.

Upcoming data sources will be used to estimate functional
attributes of a landscape such as interactions between land-
scape elements and ecological processes, which can then be
integrated into existing landscape ecology models that relate
landscape structure or landscape change to ecological re-
sponses like species diversity. Remote sensing–derived data
can either inform the landscape structure and landscape
change or the ecological responses, depending on research
objectives and data availability. The fusion of remote sensing
observations from multiple sources into data cubes can in-
crease temporal and spatial resolutions without trading off
spatial extent coverage. Near-real-time monitoring provided
by open-access satellite sensors can provide landscapes pre
and post-change at the time steps necessary to evaluate im-
pacts on ecosystem processes. Ultimately, these advances in
data sources at varying scales and resolutions from very high-
resolution to large-area coverage enable landscape ecology
analyses that can be produced more rapidly, for larger study
regions, and for longer study periods.
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