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Abstract

The ecological interpretation of landscape patterns is one of the major objectives in landscape ecology. Both land-
scape patterns and ecological processes need to be quantified before statistical relationships between these variables
can be examined. Landscape indices provide quantitative information about landscape pattern. Response variables
or process rates quantify the outcome of ecological processes (e.g., dispersal success for landscape connectivity
or Morisita’s index for the spatial distribution of individuals). While the principal potential of this approach has
been demonstrated in several studies, the robustness of the statistical relationships against variations in landscape
structure or against variations of the ecological process itself has never been explicitly investigated. This paper
investigates the consistency of correlations between a set of landscape indices (calculated with Fragstats) and three
response variables from a simulated dispersal process across heterogeneous landscapes (cell immigration, dispersal
success and search time) against variation in three experimental treatments (control variables): habitat amount,
habitat fragmentation and dispersal behavior. I found strong correlations between some landscape indices and all
three response variables. However, 68% of the statistical relationships were highly inconsistent and sometimes
ambiguous for different landscape structures and for differences in dispersal behavior. Correlations between one
landscape index and one response variable could range from highly positive to highly negative when derived from
different spatial patterns. I furthermore compared correlation coefficients obtained from artificially generated (neu-
tral) landscape models with those obtained from Landsat TM images. Both landscape representations produced
equally strong and weak statistical relationships between landscape indices and response variables. This result
supports the use of neutral landscape models in theoretical analyses of pattern-process relationships.

Introduction

Landscape ecology examines relationships between
landscape patterns and ecological processes (Forman
and Godron 1986; Turner 1989; Gustafson 1998). In
order to quantify these relationships, we need to quan-
tify both landscape patterns and ecological processes.
Landscape patterns are quantified by landscape in-
dices (e.g., contagion index). Ecological processes
are measured by response variables (process rates),
such as dispersal success or survival probability of
populations. Statistical methods are than used to re-
late landscape indices and response variables to each

other. High correlation scores indicate that the corre-
sponding landscape indices provide information about
landscape patterns with particular importance to an
ecological process. This information could than be
used to manage landscape patterns with a predictable
effect on ecological processes. This approach seems
to have become common practice, supported by the
increasing availability of remotely sensed landscape
data, Geographic Information Systems and computer
programs to calculate landscape indices. However,
there are some major problems associated with the
generalization of relationships between landscape pat-
terns and ecological processes.



236

What are these problems and what do we already
know about landscape indices? Our current knowledge
about landscape indices is attributed to many stud-
ies conducted over the past two decades. We know
that many commonly used landscape indices provide
redundant information about spatial patterns (O’Neill
et al. 1988; Riitters et al. 1995; Hargis et al. 1998;
Giles and Trani 1999; Traub and Kleinn 1999). Factor
analysis techniques have been used to reduce redun-
dancy in the information provided by sets of landscape
indices (e.g., McGarigal and McComb 1995; Riitters
et al. 1995; Cain et al. 1997). Other studies revealed
that some landscape indices provide ambiguous infor-
mation about spatial patterns, i.e. one landscape index
may have the same numerical value for different spa-
tial patterns (Gustafson and Parker 1992; Hargis et al.
1998) (Figure 1). It has also been shown that landscape
indices are sensitive to the spatial resolution (scale) at
which they are calculated (Turner et al. 1991; Baker
and Cai 1992; Cullinan and Thomas 1992; Plotnick
et al. 1993; Leduc et al. 1994; Qi and Wu 1996; Cain
et al. 1997; Nikora et al. 1999).

Landscape indices have been applied to compare
heterogeneity between different landscapes (O’Neill
et al. 1988; Hulshoff 1995; Skinner 1995; Garrabou
et al. 1998; Pan et al. 1999; Trani and Giles 1999) and
to predict response variables of ecological processes,
such as dispersal success (Gustafson and Gardner
1996; Schumaker 1996), abundance (McGarigal and
McComb 1995; Hamazaki 1996), distribution (With
and Crist 1995; With et al. 1997) and survival prob-
ability (Fahrig 1997; Fahrig 1998) of species or pop-
ulations in heterogeneous landscapes. Most of these
studies revealed significant statistical relationships be-
tween some landscape indices and response variables,
suggesting the general potential of landscape indices
to predict ecological processes. However, relation-
ships between landscape indices and response vari-
ables of ecological processes may be nonlinear (With
and Crist 1995; Wiens et al. 1997), including thresh-
olds at which ecological processes may change dra-
matically. For instance, the survival probability of a
population may dramatically decrease after a certain
proportion of habitat is removed from the landscape
(Fahrig 1998).

To summarize, while landscape indices have
been found to be statistically related to ecological
processes, generalization of such relationships is prob-
lematic. Thresholds, nonlinearity, ambiguity and sen-
sitivity to spatial resolution are associated with the use
of landscape indices. Furthermore statistical relation-

ships are usually not based on the complete numerical
range of a landscape index (i.e., not the whole spec-
trum of pattern variation is included in the analysis)
and many statistical relationships are based on artifi-
cially generated landscape patterns, which must not
necessarily represent realistic landscape patterns. Fac-
ing these problems, we need to identify how robust
and consistent statistical relationships between land-
scape indices and response variables really are. We
furthermore need to key out those landscape indices
which provide the most consistent relationships with
response variables.

The primary focus of this paper is to examine the
consistency of correlations between 26 landscape in-
dices and 3 response variables against variations in
both landscape pattern and ecological process. This
examination is based on simulating dispersal of four
hypothetical species across a set of artificial (neutral)
landscape models and across a set of realistic land-
scapes derived from Landsat TM images. Landscape
indices for each landscape model were calculated by
using the spatial pattern analysis program ‘Fragstats’
(McGarigal and Marks 1995). I simulated dispersal
of hypothetical specialist and generalist species to
vary the ecological process, i.e., a specialist’s dis-
persal strategy is different from a generalist species.
I measured three response variables that have been
used to quantify the success of dispersal in hetero-
geneous landscapes: dispersal success (Schumaker
1996), search time (Doak et al. 1992; Ruckelshaus
et al. 1997) and cell immigration (Tischendorf and
Fahrig 2000).

The results provide answers to the following re-
search questions. (1) What is the overall potential of
the landscape indices to predict the response variables:
dispersal success, search time and cell immigration?
(2) How robust are the correlations between landscape
indices and response variables against variation in (a)
habitat amount, (b) habitat fragmentation, and (c) dis-
persal process (i.e. different disperser types)? (3) Are
there general patterns in the variation of the corre-
lations between landscape indices and response vari-
ables? (4) Can artificial model landscapes substitute
for realistic landscapes in theoretical analyses?
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Figure 1. Relationship between the area-weighted mean shape index for habitat (AWMSIH) and the habitat area (black area) in artificial
landscape models. This relationship indicates that there is no one-to-one relationship between spatial pattern and the landscape index AWMSIH.
AWMSIH can have the same numerical value for patterns emerging from different proportions of habitat.

Methods

Experimental design – Overview

The experiment is based on simulating dispersal across
two sets of heterogeneous, mosaic landscape models.
The first set comprises artificially generated (neutral)
landscape models. For the second set I used Landsat
Thematic Mapper (TM) images. Landscape models
in both sets were composed of three landcover types:
habitat, hospitable matrix and inhospitable matrix. For
each landscape model a set of landscape indices was
calculated. I then simulated dispersal of four hypo-
thetical species across each landscape model. For each
simulation run I measured the success of dispersal by
means of three different response variables: dispersal
success, search time and cell immigration. Data analy-
sis comprised the following steps. At first I pooled
the data over all artificial landscape models and over
all four hypothetical species and examined the sta-
tistical relationships between each landscape index
and each response variable. In a second step I in-
vestigated these statistical relationships separately for
each hypothetical species and for subsets of the arti-
ficial landscape models, e.g., for all landscapes with
a certain habitat amount or habitat fragmentation. I
used type III sums of squares to quantify the relative
importance of habitat amount, habitat fragmentation
and hypothetical disperser type to the variation in the
statistical relationships between each landscape index
and each response variable. Finally, I compared the
statistical relationships obtained from simulations on
artificial landscape models with those obtained from
simulations on realistic (Landsat TM images) land-
scape models. I analyzed the conditions under which
statistical relationships between landscape indices and

Table 1. Landscape parameters and their factorial combina-
tions. HCOV is the proportion of the grid in habitat while
HMCOV is the proportion in hospitable matrix. HMCOV can
not exceed the difference between the total area and habitat
amount. The factorial variation therefore depends on the ac-
tual habitat amount, i.e., 1-HCOV. Fragmentation for habitat
amount and hospitable matrix is controlled by HFRAG and
HMFRAG respectively. All factorial combinations make up
1632 landscapes.

Parameter name Range Step Variations

HCOV 0.1–0.8 0.1 8

HFRAG 0.05–1 0.19 6

HMCOV 0-(1-HCOV) 0.1 10, 9,. . . , 3

HMFRAG 0.05–1 0.19 6

response variables were similar to those obtained from
realistic landscapes.

Landscape model

All landscape models were represented by a square
grid of 40,000 cells. The state of each cell was defined
by one of three landcover types: habitat (H), hospitable
matrix (HM) and inhospitable matrix (IM). I created
two sets of landscapes. One set was artificially gen-
erated by a placement algorithm, which assigned the
three landcover types to cells of the grid. (Figure 2,
Table 1, see also Fahrig 1997, 1998; Tischendorf and
Fahrig in press). The second set of landscapes com-
prised 60 non-overlapping subsets (5 km× 5 km, i.e.
200×200 pixels of 25 m pixel size) of a Landsat The-
matic Mapper (TM) image covering the St. Lawrence
Region east of Lake Ontario in June 1993. I reclas-
sified the processed image into three landcover types
by combining forest and wetlands into habitat, agri-
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cultural landuse classes into hospitable matrix, and
urban land-use classes into inhospitable matrix. Four
examples of these landscape models are shown in Fig-
ure 3. For all of the artificially generated and realistic
landscape grids I combined adjacent (orthogonal and
diagonal) cells of the same landcover type to patches.
In the final landscapes each cell of the grid belongs to
a single patch, which is defined by its cover type and
an identification number.

Dispersal model

I developed an individual-based model to simulate
dispersal of four hypothetical species across the land-
scape models. The four hypothetical species mimic
dispersal behavior of specialist and generalist species.
I associate specialist (or escape) dispersal behavior
with faster movement and less convoluted movement
patterns on matrix (e.g., Baars 1979; Rijnsdorp 1980;
Wallin and Ekbom 1988; Wegner and Merriam 1990;
Hansson 1991; Andreassen et al. 1996; Matter 1996;
Charrier et al. 1997; Collins and Barrett 1997; Rosen-
berg et al. 1997), higher mortality risk on matrix
(e.g., Lidicker 1975; Gaines and McGlenaghan 1980;
Krohne and Dubbs 1984; Krohne and Burgin 1987;
Garrett and Franklin 1988; Henein and Merriam 1990;
Johansen 1994; Fahrig et al. 1995; Schippers et al.
1996; Charrier et al. 1997; Poole 1997; Sakai and
Noon 1997; Bonnet et al. 1999), and low probabil-
ity to cross boundaries from habitat to matrix (e.g.,
Mader 1984; Wiens et al. 1985; Bakowski and Koza-
kiewicz 1988; Merriam et al. 1989; Duelli et al. 1990;
Mader et al. 1990; Frampton et al. 1995; Mauremooto
et al. 1995; Charrier et al. 1997; Sakai and Noon
1997; Haddad 1999). I assume that generalist species
show a less pronounced response to different land-
cover and boundary types. The generalist disperser
types are therefore more likely to cross boundaries be-
tween habitat and matrix, experience lower mortality
risk on matrix, and exhibit slower and less directed
movement patterns on matrix. The parameter defin-
itions and values of the four hypothetical disperser
types on all landcover and boundary types are listed
in Table 2.

Dispersal for each hypothetical species was de-
scribed by three sets (one for each landcover type)
of probabilistic movement, mortality and boundary
crossing parameters. The actual value of these para-
meters depends on the individual’s position within the
landscapes. That is, movement pattern, mortality rates
and boundary crossing probabilities vary among the

3 landcover and the 6 boundary types (Table 2). The
position of each individual is defined by a pair ofx,
y coordinates, which allows for defining movement
steps as vectors using two parameters: step length and
step angle (Kareiva and Shigesada 1983; Turchin et al.
1991). Decision on mortality (per movement step) was
made by comparing the current value of the mortal-
ity parameter (depending on the individual’s position)
with a random number between 0 and 1. If the random
number was smaller than the parameter value, the in-
dividual ‘died’ and was deleted. When an individual
encountered a boundary between two cover types, a
random number between 0 and 1 was compared to
the corresponding boundary crossing parameter (see
Table 2) to determine whether the individual proceeds
or returns into the previous patch. If the random num-
ber was smaller than the parameter value, boundary
crossing was denied and the individual returned to the
previous patch by reversing its movement direction.

Individuals perceived the landscape models as a
torus (i.e., when individuals approached a landscape
border, they reentered the landscape at the opposite
border). This torus perception assumes that the region
of interest is isolated from other regions, because there
are no net losses or gains due to emigration from or
immigration into the landscape (Haefner et al. 1991).
The dispersal model is density independent (Gaines
and McGlenaghan 1980; Krohne and Dubbs 1984).

Simulation

The experiment consisted of simulation runs of 1000
movement steps for each of 800 individuals across
all artificial (N = 1632, see Table 1) and all re-
alistic (N = 60, see above) landscape models. At
the beginning of each simulation run individuals were
randomly distributed across habitat area of the land-
scapes. Each simulation run was replicated ten times.
Response variables (see below) were averaged over the
ten replicate simulation runs and transformed into per
capita rates (actual values divided by the number of
simulated individuals, 800).

Landscape indices

I used the spatial pattern analysis program Fragstats
(McGarigal and Marks 1995) to calculate a set of land-
scape indices for all artificial and realistic landscape
models used in this experiment. Fragstats calculates
landscape indices separately for (i) individual patches
(patch-level indices), (ii) landcover types (class-level
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Figure 2. (a) Flow diagram of the placement algorithm used to assign first cover type habitat (H) and subsequently hospitable matrix (HM; see
text) to cells of the grid. The algorithm is therefore executed twice and governed by two principal parameters: Cover (COV) and Fragmentation
(FRAG). COV in the flow diagram stands for HCOV and HMCOV in Table 1. Equally, FRAG stands for HFRAG and HMFRAG in Table 1. We
squared the value of FRAG within the algorithm to achieve a linear reduction of the number of patches with decreasing FRAG. (b) Small values
of FRAG (near zero) prioritize assignment of H or HM adjacent to already assigned cells. This results in clumped patterns compared to a more
fragmented distribution of H when FRAG is large, i.e., near 1 (c).
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Figure 3. Sample landscapes as obtained from a Landsat TM image covering the St. Lawrence Region east of lake Ontario in June 1993.
Black area corresponds with habitat (forest and wetlands), gray area is hospitable matrix (agricultural landuse), and white area corresponds to
inhospitable matrix (urban landuse).

indices), and (iii) for the entire landscape (landscape-
level indices). I selected a subset of landscape-level
and (habitat) class-level indices out of the entire set
of landscape indices calculated by Fragstats. I ex-
cluded those indices which were highly correlated
(r > 0.8) (e.g., different versions of diversity and
eveness indices) from the analysis. Variable names and
descriptions for all landscape indices included in this
analysis are listed in Table 3. A full explanation and
mathematical formulas are provided elsewhere (Mc-
Garigal and Marks 1995). I furthermore calculated
the habitat class-level index ‘patch cohesion’, which
was introduced and related to dispersal success by
Schumaker (1996), see also (Gustafson 1998).

Response variables

From the simulation runs I measured three response
variables, which have been used to quantify the
success of dispersing individuals across landscapes
in simulation models: dispersal success (Schumaker
1996), search time (Doak et al. 1992; Ruckelshaus
et al. 1997) and cell immigration (Tischendorf and
Fahrig 2000). Although all three response variables
refer to the same ecological process (dispersal across
heterogeneous landscapes), they are differently re-
lated to the set of landscape indices used in this
analysis. The comparison of these relationships will
demonstrate the importance of quantifying ecologi-
cal processes consistently to achieve general insights
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Table 2. Each disperser type is defined by a set of parameters defining its dispersal characteristics in each
of the three different cover types in the landscape model. Step length is the expected value of a negative
exponential distribution. Step angle is drawn from a uniform probability distribution. Boundary crossing
probability defines the probability that an individual crosses that boundary type on each encounter.

Cover type

Disperser type Parameters Habitat Hospitable matrix Inhospitable

(H) (HM) matrix (IM)

Extreme specialist mortality (rate per 1000 0.1 0.5 1

‘es’ movement steps)

step length 1 3 5

step angle ±180◦ ±45◦ ±5◦
boundary crossing H→ HM: 0.3 HM→ H:1 IM→ H:1

probability H→ IM: 0.1 HM→ H:0.2 IM→ HM: 1

Moderate specialist mortality (rate per 1000 0.1 0.4 0.8

‘ms’ movement steps)

step length 1 2 4

step angle ±180◦ ±90◦ ±45◦
boundary crossing H→ HM: 0.5 HM→ H: 1 IM→ H:1

probability H→ IM: 0.3 HM→ IM: 3 IM → HM:1

Moderate generalist mortality (rate per 1000 0.1 0.3 0.6

‘mg’ movement steps)

step length 1 1 3

step angle ±180◦ ±135◦ ±45◦
boundary crossing H→ HM: 0.7 HM→ H:1 IM→ H:1

probability H→ IM: 0.5 HM→ IM: 0.5 IM → HM:1

Extreme generalist mortality (rate per 1000 0.1 0.2 0.5

‘eg’ movement steps)

step length 1 1 2

step angle ±180◦ ±180◦ ±135◦
boundary crossing H→ HM: 0.9 HM→ H:1 IM→ H:1

probability H→ IM: 0.7 HM→ IM: 0.7 IM → HM: 1

into the effects of landscape patterns on ecological
processes.

Dispersal success is the total number of immigra-
tion events of all individuals into all habitat patches.
An immigration event is the first entry of an in-
dividual into a habitat patch not previously visited.
In other words, dispersal success was incremented
by one when an individual entered a new (not yet
visited) habitat patch during the simulation run. Indi-
viduals were allowed to return into previously visited
habitat patches. This did not, however, contribute to
incrementing dispersal success.

Search time corresponds to the average number of
movement (time) steps individuals needed to move be-
tween any two habitat patches. I quantified search time
as the average number of steps taken by individuals

who successfully dispersed between any two habitat
patches.

Cell immigration quantifies the number of immi-
gration events into habitat grid cells (e.g. equally sized
territories). Similar to the measurement of dispersal
success, only the first entry of an individual into a
habitat grid cell is counted as immigration event for
that individual. Any subsequent return into a previ-
ously visited habitat grid cell does not contribute to
cell immigration. This response variable is sensitive to
movement within and between habitat patches, since a
habitat patch is composed of habitat grid cells.

Data analysis

I conducted simple linear regression analyses between
landscape indices (Table 3) and three response vari-
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Table 3. Landscape indices used in the analysis. I excluded highly redundant landscape indices (i.e.,r > 0.8) from the
entire set of landscape indices calculated by Fragstats. The numerical ranges (min and max) were obtained from the values
of all artificial (1632) model landscapes and from all 60 realistic (GIS) landscapes.

Abbreviation Description Artificial Realistic

landscapes landscapes

Min Max Min Max

landscape-level indices

LPI (%) largest patch index 2.75 90 12.86 71.94

NP number of patches 145 5909 403 1061

MPS (cells) mean patch size 10 300 40 990

PSCV (%) patch size coefficient of variation 354 5761.4 628.61 1771.2

TE (cell edges) total edge between all landcover types 7381 52744 7430 16919

AWMSI area-weighted mean shape index 6.4 69.37 4.78 11.98

DFLD double log fractal dimension 1.6 1.77 1.318 1.414

AWMPFD area-weighted mean patch fractal dimension 1.46 1.85 1.392 1.503

MNN (cell edges) mean nearest-neighbor distance 1 3.66 1.626 3.14

NNCV (%) nearest-neighbor coefficient of variation 0 136.53 64.5 108.35

SIDI Simpson’s diversity index 0.18 0.66 0.41 0.67

IJI (%) interspersion and juxtaposition index 54.57 99.99 55.54 99.88

CONTAG (%) contagion index 0 58.39 21.97 51.3

habitat class-level indices

CAH (%) habitat area 10 80 7.25 68

LPIH (%) largest habitat patch index 0.02 80 0.45 56.78

NPH number of habitat patches 1 3006 101 507

MPSH (cells) mean habitat patch size 2 32000 8 269

PSCVH (%) habitat patch size coefficient of variation 0 1755.3 201.5 1290.8

TEH total habitat edge 7272 40208 4280 12450

AWMSIH area-weighted mean shape for habitat 1.22 69.55 1.57 10.24

DLFDH habitat related double log fractal dimension 0 1.92 1.299 1.44

AWMPFDH area-weighted mean habitat patch fractal dimension 1.315 1.85 1.259 1.491

MNNH mean nearest-neighbor distances between 0 9.055 1.354 3.559

(cell edges) habitat patches

NNCVH (%) coefficient of variation for nearest-neighbor 0 147.43 49.44 98.24

distances between habitat patches

IJIH (%) habitat related juxtaposition and 26.8 100 42.1 99.87

interspersion index

PCOHH patch cohesion (see Schumaker 1996) 0 1 0.755 1

ables (see above). In a first step I pooled data obtained
from simulations on all artificial landscape models
and all disperser types and calculated the Pearson
product-moment correlation coefficients between each
landscape index and each response variable.

In a second step I conducted ANCOVA’s (SAS In-
stitute 1990) to test for differences in the slopes of
the regression lines (between each landscape index
and each response variable) at different values of three
control (class) variables: habitat amount, habitat frag-
mentation, and disperser type. Differences between
slopes of the regression lines at different values of the

control variables are indicated by significant effects
of the interaction terms (landscape index vs. control
variable) in the statistical models.

Based on the ANCOVA results, I calculated Pear-
son product-moment correlation coefficients between
all landscape indices and all three response variables
separately for each value of the three control vari-
ables (habitat amount, habitat fragmentation, disperser
type). For instance, correlation coefficients were cal-
culated separately for 8 values of habitat amount (e.g.
10, 20, . . . , 80%), for 6 values of habitat frag-
mentation and for 4 disperser types (192 correlation
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coefficients altogether). From these sets of correla-
tion coefficients I extracted the minimum and maxi-
mum values to identify the overall range of possible
correlations values.

Finally, I compared the statistical relationships be-
tween landscape indices and response variables for the
realistic landscape models (landsat TM images) and
a subset of the artificial landscape models. The sub-
set comprised those artificial landscape models whose
habitat patterns were similar to the realistic landscapes
with respect to the range of habitat amount and the
range of the mean patch sizes. I included only artifi-
cial landscape models with habitat amounts up to 70%
(maximum HCOV = 0.7, see Table 1 and Table 3)
and with low habitat fragmentation (HFRAG = 0.05,
0.24) in this analysis. These settings produced land-
scape patterns similar to the realistic landscapes. The
correlation coefficients were obtained for the extreme
specialist disperser type only, because the specialist
disperser type produced the highest correlation scores
and allowed for a better comparison.

Results

Overall pattern-process relationships

The overall Pearson product-moment correlation co-
efficients between all landscape indices and all three
response variables are shown in the Figures 4a, 5a
and 6a. Dispersal success (Figure 4a) was strongly
correlated with patch cohesion (PCOHH), number of
habitat patches (NPH) and area weighted mean ver-
sions of both shape index (AWMSIH) and patch fractal
dimension (AWMPFDH). Search time (Figure 5a) was
highly correlated with the habitat class-level nearest-
neighbor indices (MNNH and NNCVH) as well as
habitat edge (TEH). Cell immigration (Figure 6a)
elicited strong correlations with the habitat class-level
indices: mean nearest-neighbor distance and its coeffi-
cient of variation (MNNH and NNCVH respectively),
habitat edge (TEH) and habitat amount (CAH). In
general, habitat class-level indices were often bet-
ter correlated to the response variables than their
landscape-level counterparts.

Consistency

I tested the robustness of the overall correlation co-
efficients against variations in habitat amount, habi-
tat fragmentation and dispersal behavior. This was
achieved by examining the interaction effects between

each landscape index and three control (class) vari-
ables: habitat amount, habitat fragmentation and dis-
perser type on each of the three response variables. For
example, a significant interaction effect between the
landscape index LPI and the control variable habitat
amount on the response variable cell immigration in-
dicates different slopes of the regression lines between
LPI and cell immigration for different values (lev-
els) of habitat amount. The results of the ANCOVA’s
revealed that all possible interaction effects (i.e., all
landscape indices vs. all control variables on all three
response variables) are significant atp < 0.001. Con-
sequently, statistical relationships between all exam-
ined landscape indices and all three response variables
depend on the actual values of habitat amount, habitat
fragmentation and disperser type. The relative impor-
tance of these interaction effects corresponds directly
to their type III sums of square values in the statistical
models. Higher type III sums of square values indicate
stronger interaction effects. The actual type III sums
of square values are comparable within one statistical
model, but not necessarily between two or more sta-
tistical models. I therefore transformed the actual type
III sums of square values into proportions, which are
shown in Figures 4b, 5b and 6b. Figure 4b shows that
habitat amount accounts for most of the variations in
the relationships between landscape indices and dis-
persal success. These relationships are otherwise quite
robust against variations in habitat fragmentation and
dispersal behavior. However, correlations between the
two habitat class-level indices NPH and NNCVH and
dispersal success are most sensitive to disperser type
and habitat fragmentation respectively. Correlations
between landscape indices and search time (Figure 5b)
depend mostly on habitat fragmentation. However,
type III sums of square values were highest for in-
teractions with habitat amount (e.g., LPIH, MPSH)
and disperser type (MNNH). Finally, relationships
between landscape indices and cell immigration (Fig-
ure 6b) vary mainly with habitat amount and between
disperser types. Type III sums of square values were
lowest for most interaction effects between landscape
indices and habitat fragmentation.

I was also interested in the absolute variations of
the correlation coefficients. I calculated correlation co-
efficients between all landscape indices and all three
response variables separately for each value (level)
of each control variable (see section ‘data analysis’
above). From these sets of correlation coefficients I
extracted the minima and maxima, which bound the
error bars in Figures 4a, 5a and 6a. For most of
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Figure 4. (a) Bars show the values of the Pearson product-moment correlation coefficients between landscape indices and the response variable
‘Dispersal success’ pooled over all 1632 model landscapes (see Table 1) and all 4 disperser types (see Table 2). The error bars indicate
minimum and maximum correlation coefficients when calculated separately for each level of the control variables (i.e., habitat amount, habitat
fragmentation and disperser type, see text). (b) Ratio of the type III sums of square values of a statistical model relating the interaction effects
between landscape indices and habitat amount (black bar), habitat fragmentation (striped bar) as well as disperser type (white bar) to the
response variable ‘Dispersal success’ (see text for further explanation). The proportion (lengths of a colored bar) corresponds with the relative
importance of this interaction effect after controlling for the other two interaction effects.
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Figure 5. (a) Bars show the values of the Pearson product-moment correlation coefficients between landscape indices and the response variable
‘Search time’ pooled over all 1632 model landscapes (see Table 1) and all 4 disperser types (see Table 2). The error bars indicate minimum and
maximum correlation coefficients when obtained separately for each level of the control variables (i.e. habitat amount, habitat fragmentation and
disperser type, see text). (b) Ratio of the type III sums of square values of a statistical model relating the interaction effects between landscape
indices and habitat amount (black bar), habitat fragmentation (striped bar) as well as disperser type (white bar) to the response variable ‘Search
time (see text for further explanation). The proportion (lengths of a colored bar) corresponds with the relative importance of this interaction
effect after controlling for the other two interaction effects.



246

Figure 6. (a) Bars show the values of the Pearson Product Moment correlation coefficients between landscape indices and the response variable
‘Cell immigration’ pooled over all 1632 model landscapes (see Table 1) and all 4 disperser types (see Table 2). The error bars indicate
minimum and maximum correlation coefficients when obtained separately for each level of the control variables (i.e., habitat amount, habitat
fragmentation and disperser type, see text). (b) Ratio of the type III sums of square values of a statistical model relating the interaction effects
between landscape indices and habitat amount (black bar), habitat fragmentation (striped bar) as well as disperser type (white bar) to the
response variable ‘Cell immigration’ (see text for further explanation). The proportion (lengths of a colored bar) corresponds with the relative
importance of this interaction effect after controlling for the other two interaction effects.

the relationships between landscape indices and re-
sponse variables, correlation coefficients covered a
wide range of possible values. Some correlation co-
efficients varied between high positive and high neg-
ative values indicating a strong ambiguous predictive
potential. Habitat amount (CAH) was consistently cor-
related to all three response variables. Mean nearest

neighbor indices (MNNH, NNCVH) and habitat edge
(TEH) predicted cell immigration and search time con-
sistently. Dispersal success was consistently predicted
by the number of habitat patches (NPH), and mean
habitat patch size (MPSH).
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Figure 7. (a) Pearson product-moment correlation coefficients between selected habitat class-level indices and the response variable ‘Cell
immigration’ calculated separately for different levels of the control variable ‘Habitat amount’ (pooled over all levels of HFRAG). Most habitat
class-level indices elicit higher correlation scores at low habitat amounts. Some correlation coefficients change from highly positive to negative
at habitat amounts between 30 and 50% (e.g., LPIH, PSCVH, AWMSIH AWMPFDH). (b) Correlation coefficients between selected habitat
class-level indices and ‘Cell immigration’ calculated separately for different levels of the control variable ‘Habitat fragmentation’ (pooled over
all levels of HCOV). Most habitat class-level indices produce stronger correlation’s with ‘Cell immigration’ when habitat fragmentation is low,
i.e., near zero. (c) Correlation coefficients between selected habitat class-level indices and ‘Cell immigration’ calculated separately for each
disperser type (see Table 2). Higher correlation scores are mostly associated with the specialist disperser types.

Patterns

The results give rise to the question; can we predict the
variation in these statistical relationships along with
changes in the control variables? I visually examined
all correlation coefficients against the values of the
control variables. Figure 7 shows a subset of these
graphs of the relationships between habitat class-level
indices and cell immigration. Generally, correlation
coefficients declined with increasing habitat amount
(Figure 7a) and with increasing habitat fragmentation
(Figure 7b) (i.e., lowest values correspond with pure
random habitat distributions). Correlations were also
stronger for the specialist disperser types (Figure 7c)
due to their more pronounced response to landscape
structure. However, not all of the examined correlation
coefficients follow these patterns. For example, rela-
tionships between the habitat class-level indices LPIH,
PSCVH and AWMPFDH (see Table 3) and cell immi-
gration changed from positive to negative at different
values of habitat amount (Figure 7a).

Artificial vs. realistic landscapes

Figure 8 shows the comparison of correlation coeffi-
cients obtained from simulations on a subset of the
artificially generated landscape models and on the
realistic landscapes. Habitat class-level indices were
similarly correlated to all three response variables for
both artificial and realistic landscapes. Landscape-
level indices (based on all landcover types) performed
generally better in the realistic landscape models. I
examined the numerical ranges of all landscape-level
indices. Large differences in the statistical relation-
ships between artificial and realistic landscapes were
mostly attributed to differences in the numerical range
of the landscape indices. For instance, double log
fractal dimension (DLFD) was highly correlated with
cell immigration and search time (r = −0.65 and
r = −0.74, respectively) in realistic landscapes but
was not in artificial landscapes. The numerical range
of DLFD obtained from the realistic landscapes was
1.318–1.414 compared to 1.63–1.74 as obtained from
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Figure 7. Continued.
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Figure 8. Comparison of the Pearson product-moment correlation coefficients between landscape indices and all three response variables
obtained from artificial model landscapes (white bars) and realistic landscapes (black bars). Habitat class-level indices produced equally
strong correlation’s for both landscape types. In contrast, most landscape-level indices predicted the response variables much better in realistic
landscapes.
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the selected subset of artificial landscapes (compare
with Table 3).

Discussion

How well are landscape-level and class-level indices
doing?

Habitat class-level indices were generally more
strongly correlated with all three response variables
than landscape-level indices. This is logical since
the calculation of all response variables refers exclu-
sively to habitat. Remember that dispersal success
and search time are based on immigration events into
habitat patches and cell immigration was incremented
by immigration events into habitat grid cells. Matrix
structure is not explicitly considered in the calcula-
tion of these response variables, but is included in the
calculation of landscape-level indices. Consequently,
landscape-level indices contain information which is
not crucial to the habitat class-level specific response
variables. For instance, the number of all patches in
a landscape (i.e., patches of all three landcover types)
explains much less of dispersal success compared to
the number of habitat patches (see Figure 4a, NP,
NPH). This effect will likely increase when landscapes
comprise more than just three landcover types.

Dispersal success was highly correlated with patch
cohesion (PCOHH), area-weighted mean shape in-
dex (AWMSIH) and area-weighted mean habitat patch
fractal dimension (AWMPFDH). Although I deter-
mined dispersal success in a somewhat different way
than Schumaker (1996), my results confirm the po-
tential of these landscape indices, in particular patch
cohesion, to predict dispersal success. The most con-
sistent correlations, however, are attributed to the
number of habitat patches (NPH) and the habitat
amount (CAH) of the landscapes (Figure 4a). Disper-
sal success is determined by inter-patch movements.
The more patches there are, the shorter are the inter-
patch distances and, consequently, more patch im-
migration can occur. The number of habitat patches
declines with increasing habitat amount (r = −0.66,
p < 0.001, df= 1631) which accounts for the nega-
tive relationship between habitat amount and dispersal
success.

Search time and cell immigration were strongly
correlated with nearest-neighbor indices (MNNH,
NNCVH), habitat amount (CAH) and habitat edge
(TEH). Search time is positively correlated with inter-
patch distances, because more movement steps are

required to cover longer distances between habitat
patches. Longer inter-patch distances are in turn re-
lated to a smaller number of habitat patches, which
corresponds to less fragmentation. In other words,
fewer and more compact habitat patches increase
search time. Increasing habitat amount, however,
decreases mean-nearest neighbor distances (MNNH)
(r = −0.35,p < 0.001, df= 1631), and is therefore
negatively correlated with search time.

The calculation of cell immigration is not based
on habitat patches, which is reflected in the lack of a
relationship to NPH (see Figure 6a). Cell immigration
responds positively to inter-patch distances (MNNH,
NNCVH) and negatively to habitat edge (TEH) as well
as habitat amount (CAH). Less habitat edge combined
with longer inter-patch distances corresponds to less
habitat fragmentation. The negative effect of habitat
amount on cell immigration is attributed to the habi-
tat specific response of the modeled individuals. All
disperser types express a random walk on habitat area
with an overall low displacement potential. More habi-
tat area results in more random walk movement based
on which fewer new habitat grid cells are entered.
Hence, the overall displacement potential, which is
crucial for cell immigration, is reduced in landscapes
with more habitat amount.

Finally, statistical relationships varied consider-
ably among the three response variables. This is an
interesting result itself, since all three response vari-
ables quantify the success of dispersal and refer to
the same ecological process. Consequently, pattern-
process relationships may depend on the way we
quantify ecological processes. Consistent quantifica-
tion of ecological processes is necessary to allow for
comparisons of pattern-process relationships between
different studies.

Altogether, landscape indices, and in particular,
class-level indices do have the potential to explain
class-specific response variables of dispersal across
heterogeneous landscapes. However, as the results
indicate, ecological interpretation of one single land-
scape index is unlikely to completely explain the re-
sponse of an ecological process to landscape structure.

How consistent are correlations between landscape
indices and response variables?

Consistency in statistical relationships between land-
scape indices and response variables of ecological
processes is the prerequisite for generalizations. Sur-
prisingly, this question has rarely been addressed in
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previous studies, mostly because of the lack of appro-
priate and independent control variables against which
consistency could be examined. Gustafson (1998) rec-
ommended exploring the response of landscape in-
dices to changes in landscape heterogeneity by using
neutral landscape models. I went one step further and
examined the robustness (response) of the ecological
interpretations of landscape indices against changes
in landscape pattern and the ecological process itself.
The results revealed that only 25 out of the 78 ana-
lyzed statistical relationships were unambiguous (i.e.,
clearly positive or clearly negative) for all variations of
the three control variables. Correlation coefficients of
the remaining 53 statistical relationships ranged from
highly negative to highly positive values indicating
low consistency with variations in landscape structure
and/or dispersal process. Consequently, these land-
scape indices do not provide the potential for general
interpretations with respect to the process of dispersal.
The inconsistencies of the examined statistical rela-
tionships across all three response variables emphasize
the dangerous potential for inappropriate interpreta-
tions of landscape indices. A careful examination of
the (range of) conditions under which a certain statis-
tical relationship was established, can help to avoid the
derivation of improper generalizations or conclusions.

Do correlations between landscape indices and
process variables vary in a predictable way?

Most of the minima and maxima enclosing the po-
tential ranges of the correlation coefficients are at-
tributed to extreme values of the control variables
(i.e. to landscapes with low amounts of habitat (Fig-
ure 7a), low habitat fragmentation (Figure 7b) and
the extreme specialist disperser type (es, Figure 7c).
Two principal patterns emerged for the relationships
of the correlation coefficients with habitat amount.
Correlation coefficients either declined linearly with
increasing habitat amount (e.g., NPH, TEH, NNCVH
in Figure 7a) or changed from high positive values to
negative values near a common threshold at the habitat
amount scale (e.g., PCOHH, LPIH, AWMSIH in Fig-
ure 7a). The location of the threshold at the habitat
amount scale (between 30% and 50%, see Figure 7a),
and the fact that threshold behavior is restricted to
habitat area dependent class-level indices, suggest a
relationship to percolation thresholds (e.g., Gardner
et al. 1987; Gardner and O’Neill 1991; Lavorel et al.
1993; With et al. 1997). It is likely that the fundamen-
tal differences in habitat structure below and above the

percolation threshold may cause a turnover in the sta-
tistical relationships between some habitat class-level
indices and response variables of ecological processes.

Increasing habitat fragmentation resulted in lower
correlation coefficients for most of the statistical re-
lationships examined. The lowest values of the cor-
relation coefficients were mostly associated with a
pure random distribution of habitat (see Figure 7b,
HFRAG = 1). Using habitat fragmentation as a con-
trol variable, however, is problematical, since (to my
knowledge) there is no commonly used measure for
habitat fragmentation (but see McGarigal and Mc-
Comb 1995; Trzcinski et al. 1999 for statistical mea-
sures). This result is particularly interesting in light of
the potential for random (neutral) landscape models to
substitute for realistic landscape pattern in theoretical
analyses. Analyses based on pure random distribu-
tions of habitat area will definitely underestimate the
predictive potential of landscape indices (compare to
Schumaker 1996).

The variation in the dispersal process (i.e., the
differences in the dispersal behavior between the mod-
eled hypothetical species) affected statistical relation-
ships between landscape indices and cell immigration
(see Figure 6b). In most cases, correlation coefficients
were higher for the more specialist disperser types,
which is likely caused by their more pronounced re-
sponse (i.e., larger differences between the dispersal
parameters for different landcover types) to landscape
structure.

In summary, statistical relationships between land-
scape indices and response variables varied in a
predictable way along with changes in the control
variables. Low habitat amount and low habitat frag-
mentation account for most of the extreme values of
the correlation coefficients. The qualitative change of
habitat pattern near potential percolation thresholds
is likely to cause dramatic changes in statistical re-
lationships between habitat area dependent landscape
indices and response variables of ecological processes.

Can artificial landscape models substitute for
realistic landscapes in theoretical analyses?

There is no general answer to this question, since
many different algorithms have been used to gener-
ate artificial (neutral) landscape models (e.g., Li and
Reynolds 1994; With et al. 1997; Hargis et al. 1998;
Meisel and Turner 1998) and there are no general
patterns in realistic landscapes, e.g., natural patterns
may differ substantially from human landuse (e.g.,
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agricultural) patterns (e.g., O’Neill et al. 1988; Hul-
shoff 1995). I examined the statistical relationships
between landscape indices and the response variables
for a range of natural and human dominated landscape
pattern (compare Figures 3a and 3d), and I compared
the correlation coefficients with those obtained from a
subset of the artificially generated landscape models. I
found very similar relationships between habitat class-
level indices and all three response variables for both
landscape representations. In fact, high values of the
correlation coefficients based on artificial landscape
models were always confirmed by realistic landscapes.
These results (Figure 8) support the idea of using
artificial landscape models for analyzing statistical re-
lationships between landscape indices and response
variables of ecological processes (see also With and
King 1997). Substantial differences between corre-
lation coefficients (e.g., DLFD in Figure 8a,c) were
mostly attributed to differences in their actual numer-
ical range (see results). It is therefore likely that not
all aspects of spatial patterns of realistic landscapes
are reflected in their artificial counterparts. However,
since the values of the correlation coefficients based
on realistic landscapes were mostly higher than those
obtained from artificial landscape models, estimates
from artificial landscape models may be considered as
conservative.

Implications for further studies

The results of this study revealed the potential but also
the pitfalls of using landscape indices to predict eco-
logical processes. How can we use this potential and
how can we avoid improper interpretations of land-
scape indices? First of all, we need to avoid automa-
tism. Rather than ‘plugging’ all available landscape
indices (as calculated by computer programs) into
statistical analyses, we need to propose hypothetical
relationships followed by statistical tests. That means
to select those landscape indices, which are likely to
be relevant to the ecological process in question. This
pre-selection requires understanding of mechanisms
that would lead us to expect certain statistical rela-
tionships. In some cases it might be appropriate to
develop new landscape indices which contain specific
information about landscape patterns with particular
importance to the ecological process in question (e.g.,
Schumaker 1996; Jaeger 2000). Second, it should be
mandatory for any further study dealing with this sub-
ject to report the numerical ranges of the landscape
indices. This would allow to restrict the validity of

a detected pattern-process relationship and ease com-
parisons across different studies. Finally, I recommend
one visually examining (scatter plot) relationships be-
tween landscape indices and response variables. It
might be that statistical tests other than linear corre-
lation analysis are more suitable to reflect a certain
pattern-process relationship.

Conclusions

The results obtained from my simulation experiments
support the following conclusions:
1. Landscape indices appear statistically related to

response variables of ecological processes. Class-
level indices show generally stronger statistical re-
lationships with response variables than landscape-
level indices.

2. Dispersal success is consistently explained by
habitat amount and the number of habitat patches.
Patch cohesion as well as area weighted mean
versions of shape index and habitat patch fractal
dimension elicit overall strong but less consistent
correlations with dispersal success.

3. Search time responds consistently to the mean
nearest neighbor distance between habitat patches
and to habitat edge.

4. Cell immigration is best and consistently corre-
lated to the mean nearest-neighbor distance be-
tween habitat patches, habitat edge and habitat
amount.

5. Most landscape indices appear to have the po-
tential for inconsistent and ambiguous statistical
relationships with response variables of ecologi-
cal processes. Careful examination and report of
the range of conditions for which statistical rela-
tionships were obtained may prevent misleading
ecological interpretations of landscape indices.

6. Class-level indices tend to provide stronger cor-
relations with response variables of ecological
processes at low amounts and low fragmentation
of the corresponding landcover type (class, e.g.,
habitat in this analysis).

7. Neutral landscape models do have the potential for
studying the effects of spatial patterns on disper-
sal across heterogeneous landscapes. However, a
close match of the artificially generated patterns
with their realistic counterparts (i.e., equal number
of landcover types, similar range of the amount of
landcover types, etc.) and the use of clumping al-
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gorithms are necessary to obtain reliable statistical
relationships with response variables.
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