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stead of actual rainfall in models of leaf litter decom-
position in deserts.
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GEOSTATISTICS IN ECOLOGY:
INTERPOLATING WITH
KNOWN VARIANCE'

G. Philip Robertson?

Interpolation is perhaps central to most ecological
field studies. Ecologists who infer mean values for par-
ticular variables within a given experimental plot or
time increment implicitly interpolate values for all
points not measured. For example, in systems ecology
the mean value for a flux over a landscape unit is
usually based on an average value for randomly dis-

tributed samples within the unit examined. In plant
population ecology, estimated population densities are
often based on random small-area samplings within
the community. So long as assumptions regarding sam-
ple independence and normality are met, parametric
statistics for samplings such as these provide optimal
estimates of variance about unbiased means, and are
widely used to describe attributes of experimental sites
and to test hypotheses about ecological processes at
these sites.

Often however, assumptions about sample indepen-
dence cannot be met in field studies because of auto-
correlation: samples collected close to one another are
often more similar to one another than are samples
collected farther away, whether in space or time. Con-
sequently, estimates of variance about interpolated
points may differ substantially from overall population
variance, resulting in imprecise estimates of sample
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values within the unit sampled (Trangmar et al. 1985)
and a biased estimate of treatment effects in experi-
mental systems (Sokal and Rohlf 1981). In many field
studies such autocorrelation can arise from subtle to-
pographic features of a site that affect a host of other
environmental factors such as microclimate or soil nu-
trient status; in other studies lack of sample indepen-
dence may reflect distance from a major seed, predator,
or herbivore source. In studies that involve sampling
through time, autocorrelation can result from under-
lying temporal features of the system such as diel trends
in temperature, radiation, or some other factor not
readily identified and thus not readily treated as a co-
variate.

Therecent development of regionalized variable the-
ory (Matherton 1971) for applications in geology (e.g.,
Journel and Huijbregts 1978, Krige 1981) and soil sci-
ence (e.g., Burgess and Webster 1980a) provides an
elegant means for describing autocorrelation in data,
and a means to use knowledge about this autocorre-
lation to derive precise, unbiased estimates of sample
values within the sampling unit and thereby resolve
detailed spatial and temporal patterns with known
variance for each interpolated point. The development
of this theory should be of considerable interest to
ecologists. Spatial variability in particular has long been
difficult to quantify in ecologically meaningful ways:
conventional interpolation techniques such as proxi-
mal weighting, trend surface analysis, and spline in-
terpolation do not consistently provide unbiased es-
timates for the points interpolated, nor do they esti-
mate optimal variances for the interpolated values.
Such imprecision leads to questions of statistical con-
fidence and subsequent difficulty with the interpreta-
tion of the patterns defined. Geostatistical techniques
address these problems directly.

Excellent reviews of regionalized variable theory and
its strengths and limitations exist already (Krige 1981,
Vieira et al. 1983, Trangmar et al. 1985, Webster 1985).
Rather than repeat these discussions, in this note I
present an overview of the theory as it applies to the
analyses of two ecological data sets. The first data set
is from a study of temporal changes in Rhodomonas
(Cryptophyceae) density in the epilimnion of a tem-
perate hardwater lake; the second is from an investi-
gation of the spatial variability of soil mineral nitrogen
in a Michigan old-field community. In addition to de-
scriptions of these analyses I provide a set of FOR-
TRAN algorithms that allow straightforward access to
these new statistical tools.

Approach and Examples

In its simplest form, geostatistical analysis is a two-
step process: (1) defining the degree of autocorrelation
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among the measured data points, and (2) interpolating
values between measured points based on the degree
of autocorrelation encountered. Autocorrelation is
evaluated by means of the semi-variance statistic
v (h), calculated for each specific distance or time
interval h in a data set such that

1 N(h)

y? - —_— — 2

T = Sy 2 [20x) = z(xism)] (1)
where z(x;) is the measured sample value at point x;,
z(x,4y) 1s the sample value at point x;,,,, and N(h) is
the total number of sample point contrasts or couples
for the interval in question. The resulting plot of 4(h)
vs. all h’s evaluated is termed the semi-variogram; the
shape of this plot describes the degree of autocorrela-
tion present.

Once spatial or temporal dependency is established,
one can use semi-variogram parameters to interpolate
values for points not measured using kriging algo-
rithms. There are several different forms of kriging
(Trangmar et al. 1985); the simplest are punctual and
block kriging. In punctual kriging, values for exact points
within the sampling unit are estimated; block kriging
involves estimating values for areas within the unit.
Block interpolation (Burgess and Webster 19805) may
be more appropriate than punctual interpolation where
average values of properties are more meaningful than
exact single-point values, especially where spatial or
temporal dependence is weak.

Both forms of kriging provide an error term (esti-
mation variance) for each value estimated, providing
a measure of reliability for the interpolations. These
error terms are independent of the observed sample
values themselves; estimation error depends only on
the locations of samples within the range of sample
interdependence and on the degree of this dependence
as quantified by the semi-variogram. Consequently,
kriging can also be used before sampling to design an
optimal strategy for sampling an area or time series
knowing only something about the degree of sample
interdependence (the shape of the semi-variogram) for
samples within the interpolation domain. For example,
where samples are strongly autocorrelated over small
sampling intervals, pre-sample kriging can show where
to add sample points to bring estimation precision to
a desirable level in sparsely sampled regions. Con-
versely, where samples are weakly autocorrelated over
small intervals, pre-sample kriging can show that ad-
ditional sampling in a given region will add little ad-
ditional precision to interpolation estimates.

Fig. la is a semi-variogram for the temporal Rho-
domonas data collected for the study mentioned ear-
lier. These data represent cell counts of Rhodomonas
sp. in water samples taken from the epilimnion of Law-
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FiG. 1. (a) Semi-variogram of Rhodomonas sp. density
(cells/mL) in the epilimnion of a southwest Michigan Lake
for the period August 1982-August 1983 (Taylor and Wetzel
1984). The solid line describes a spherical function fit by
weighted least-squares analysis (> = 0.977) such that ¥(h) =
6073. [1.5h/14.2 — 0.5(h/14.2)*] for h < 14.2, and 4(h) =
6073. for h > 14.2. (b) Rhodomonas sp. density interpolated
over the first 60 d of the 384-d study period. Measured points
appear as boxes. Estimation standard deviations bound the
interpolated points.

rence Lake in southwest Michigan at variable sampling
intervals (W. D. Taylor and R. D. Wetzel 1984 and
personal communication). Samples were collected over
a 376-d period beginning in August 1982, such that
the smallest interval h separating any two points in the
series was 1 d, and the largest was 375 d. Fig. lais a
plot of semi-variances for intervals up to 24 d, after
which there was no consistent change in the shape of
the curve. In this data strong autocorrelation is evident
among sample points <15 d apart, with the strongest
autocorrelation (the steepest portion of the semi-var-
iogram slope) among points separated by <6-d inter-
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vals. Progressively less correlation occurs among points
>8 d distant, such that at = 15-d intervals the variance
attributable to autocorrelation becomes approximately
equal to the population variance. Thus sample points
separated by > 15 d appear independent of one another.

The solid line in Fig. la describes a spherical model
of the semi-variogram obtained by weighted least-
squares analysis (#> = 0.997; SAS Institute 1985). The
spherical model is a modified quadratic equation of
the form %(h) = C[1.5h/a — (h/a)’] for h < a, and
4(h) = C for h = a, where C is semi-variance at the
asymptote and a is the interval h at the asymptote.
Fitting a reasonable model to the semi-variogram is a
critical step for subsequent interpolation by kriging, as
the technique is sensitive to relatively small changes
in semi-variogram parameters, in particular to esti-
mates of y intercept and slope values. Other models
that have been found to fit semi-variograms well in-
clude linear, exponential, DeWijsian, and segmented
models (Trangmar 1985, Webster 1985). The y inter-
cept of semi-variograms should theoretically equal O,
as indicated in Eq. 1; where it does not, as in the Rho-
domonas example where 4(0) is =15% of the popu-
lation variance, suggests either measurement error, or
that autocorrelation occurs at intervals of less than the
smallest interval sampled (<1 d in this example). In
most cases this so-called nugget variance is probably
a combination of these sources of variation.

With autocorrelation established and a suitable model
for the semi-variogram defined, kriging can be used to
interpolate between Rhodomonas sample points in or-
der to estimate more precisely the values for unsam-
pled locations. Punctual kriging is an exact interpolator
(Delhomme 1978), so that where interpolated points
coincide with measured points, the estimated values
are identical to measured values. Thus interpolated
values for a single-dimension data set such as the Rho-
domonas data will not diverge from a line drawn be-
tween all measured sample values (Fig. 1b). Neverthe-
less, kriging can be valuable for single-dimension data
because it can provide estimates of variance about the
interpolated points that will be more precise than over-
all population variance. In the Rhodomonas case, for
example, these variance estimates can be useful for
judging whether temporal patterns of epilimnetic RAho-
domonas densities differ significantly from patterns for
other species or from temporal patterns of environ-
mental variates.

Two-dimensional spatial data present a more com-
plex interpolation problem, chiefly because the degree
of autocorrelation among sample points may be a func-
tion of their alignment on the interpolation grid in
addition to their distance apart. On a grid with topo-
graphic relief, for example, points that are downslope
or upslope from one another may be differently au-
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tour interval. Where such anisotropy exists, a direc-
tional component must be included in the semi-
variogram model.

Fig. 2 demonstrates an isotropic semi-variogram for
two-dimensional spatial data of soil mineral-N content
in a Michigan old-field community (G. P. Robertson
and J. M. Tiedje, personal observation). Soil samples
were collected on a regular grid 69 m square at 4.6-m
intervals for a total of 256 sample points, with an ad-
ditional 45 soil cores taken from the northeast quad-
rant of the field at sample intervals as little as 0.9 m
apart. After collection, three replicate subsamples
from each of the 301 cores were extracted in 2 mol/L
NaCl and extracts were analyzed for total mineral-N
(NH,*-N + NO,;~ — N) by continuous flow analysis
(Technicon 1973). Data for 11 of the 301 cores were
lost during sample handling or analysis. As the data
were lognormally distributed, all statistical analyses
were performed on log-transformed values.

Anisotropy did not appear to be present and the
isotropic semi-variogram was fit by weighted least-
squares analysis (SAS Institute 1985) to an exponential
model (Fig. 2; r> = 0.968). The shape of this model
suggests that some autocorrelation occurs among sam-
ples <40 m apart and that points <20 m apart are
very strongly autocorrelated. That the y intercept or
nugget variance is <10% of the population variance
suggests that spatial autocorrelation at the 1-40 m scale
accounts for most of the variation in total mineral-N
content across the field.

Punctual kriging at 0.6-m intervals across a 50 m
square portion of the larger grid produced the isopleth
in Fig. 3. Mineral-N content across the 0.25 ha pictured

at 0.6-m intervals across a 0.25-ha portion of the old field.
Estimation variances range from 0.004 to 0.296 (ug/g)> N.

ranged from 0.1 to 7.9 ug/g soil. Estimation variances
for soil N at the points interpolated ranged from 0.004
to 0.296 (ug/g)?. As noted earlier, estimation variances
are highest where interpolated points are farthest from
sample locations; thus the highest estimation variances
in this data set coincide with locations of the missing
cores from this portion of the field.

Discussion

Regionalized variable theory is widely used for in-
terpolating spatial pattern in geological exploration. Its
recent adaptation by soil scientists shows clearly its
potential in ecological studies for providing precise,
unbiased estimates of sample values in sample do-
mains where collected samples are not independent of
one other, and for describing temporal and spatial pat-
terns with statistical confidence.

In the Rhodomonas study described above, geosta-
tistics allows comparisons of temporal Rhodomonas
trends with other species densities or environmental
variates collected on different dates. Standard para-
metric statistics are inappropriate for such compari-
sons because the samples collected are strongly auto-
correlated. In the soil mineral-N content example,
spatial patterns in the old-field community emerged as
interpolated points with known variance for each. The
estimation standard deviations for mineral-N at these
points ranged from 0.06 to 0.54 ug/g soil; this contrasts
with a standard deviation of 1.35 ug/g soil for the mean
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mineral-N content (2.67 ug/g soil) of all points sam-
pled.

Ecological studies that produce data not amenable
to normal statistical treatment because of spatial or
temporal autocorrelation may significantly benefit from
geostatistical analysis. Autocorrelation is a potential
problem in many if not most field sampling strategies,
and its presence should be routinely evaluated. The
application of geostatistics to studies with data that
exhibit autocorrelation and to studies dealing explicitly
with spatial or temporal patterning may substantially
aid their interpretation.

FORTRAN Algorithms

The analyses described above were performed using
a set of algorithms written for interactive use on mi-
crocomputers. The algorithms are written in Microsoft
FORTRAN, a subset of the ANSI-77 FORTRAN
Standard designed to operate on MS-DOS microcom-
puters but compatible with most mainframe compilers.
Source code listings (=6000 lines) are available in
printed form?® or on diskette from the W. K. Kellogg
Biological Station Computer Lab.* Documentation files
that accompany the programs provide instructions for
their use; users should refer to Vieira et al. (1983),
Trangmar et al. (1985), and Webster (1985) for dis-
cussions of how to interpret algorithm results.

Acknowledgments: 1 thank P. Sollins, G. G. Parker,
and S. R. Vieira for many helpful comments on an
earlier version of this manuscript, T. B. Parkin, B. B.
Trangmar, and R. L. Hill for generously providing al-
gorithms and data against which to test the computer
programs developed in this study, and W. Brisky for
programming expertise. W. D. Taylor and R. G. Wetzel

3 See ESA Supplementary Publication Service Document
No. 8733 for 90 pages of supplementary material. For a copy
of this document, contact the author or order from The Eco-
logical Society of America, 328 E. State, Ithaca, New York
14850-4318 USA.

4 Source code and documentation on two 5.25-inch, IBM-
compatible diskettes are available from the Computer Lab-
oratory, W. K. Kellogg Biological Station, Michigan State
University, Hickory Corners, Michigan 49060 USA. Please
include a $12.00 handling fee payable to Michigan State Uni-
versity,

NOTES AND COMMENTS

Ecology, Vol. 68, No. 3

kindly provided Rhodomonas data beyond that cited.
Principal support was provided by NSF grant BSR 83-
17198. Contribution Number 591 of the W. K. Kellogg
Biological Station.

Literature Cited

Burgess, T. M., and R. Webster. 1980a. Optimal interpo-
lation and isarithmic mapping of soil properties. I. The
semi-variogram and punctual kriging. Journal of Soil Sci-
ence 31:315-331.

Burgess, T. M., and R. Webster. 1980b. Optimal interpo-
lation and isarithmic mapping of soil properties. II. Block
kriging. Journal of Soil Science 31:333-341.

Delhomme, J. P. 1978. Kriging in the hydrosciences. Ad-
vances in Water Research 1:251-266.

Journel, A. G., and C. J. Huijbregts. 1978. Mining geosta-
tistics. Academic Press, London, England.

Krige, D. G. 1981. Lognormal-de Wijsian geostatistics for
ore evaluation. South African Institute of Mining and Met-
allurgy Monograph Series. Geostatistics 1. South Africa In-
stitute of Mining and Metallurgy, Johannesburg, South Af-
rica.

Matherton, G. 1971. The theory of regionalized variables
and its applications. Cahiers du Centre de Morphologie
Mathematique, Fontainebleau, Numéro 5. Ecole Nationale
Superieure des Mines de Paris, Paris, France.

SAS Institute. 1982. SAS user’s guide: statistics. SAS Insti-
tute, Cary, North Carolina, USA.

Sokal, R. R., and F. J. Rohlf. 1981. Biometry. Second edi-
tion. W. H. Freeman, San Francisco, California, USA.
Taylor, W. D., and R. G. Wetzel. 1984. Population dynam-
ics of Rhodomonas minuta v. nannoplanctica Skuja (Cryp-
tophyceae) in a hardwater lake. Internationale Vereinigung
fiir theoretische und angewandte Limnologie, Verhand-

lungen 22:536-541.

Technicon. 1973. Nitrite and nitrate in water and waste-
water. Industrial Method Number 100-70W. Technicon
Instruments, Tarrytown, New York, USA.

Trangmar, B. B, R. S. Yost, and G. Uehara. 1985. Appli-
cation of geostatistics to spatial studies of soil properties.
Pages 45-94 in N. C. Brady, editor. Advances in agronomy.
Volume 38. Academic Press, New York, New York, USA.

Vieira, S. R., J. L. Hatfield, D. R. Nielsen, and J. W. Biggar.
1983. Geostatistical theory and application to variability
of some agronomical properties. Hilgardia 51:1-75.

Webster, R. 1985. Quantitative spatial analysis of soil in
the field. Pages 1-70 in B. A. Stewart, editor. Advances in
soil science. Volume 3. Springer-Verlag, New York, New
York, USA.

! Manuscript received 1 April 1986,

revised 1 October 1986, accepted 16 October 1986.

2 W. K. Kellogg Biological Station, Michigan State
University, Hickory Corners, Michigan 49060-9516 USA.





