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Abstract

Landscape ecology deals with the patterning of ecosystems in space. Methods are needed to quantify aspects
of spatial pattern that can be correlated with ecological processes. The present paper develops three indices
of pattern derived from information theory and fractal geometry. Using digitized maps, the indices are calcu-
lated for 94 quadrangles covering most of the eastern United States. The indices are shown to be reasonably
independent of each other and to capture major features of landscape pattern. One of the indices, the fractal
dimension, is shown to be correlated with the degree of human manipulation of the landscape.

Introduction

During the past two decades, environmental anal-
yses have been conducted at increasingly larger spa-
tial scales. From the impact of site-specific activi-,
ties (e.g., power facilities), analyses have moved to
synergistic and cumulative effects on landscapes
(Krummel et al. 1984), to continental impacts of
acid precipitation and to global effects of CO, and
other trace gases.

As analyses move to larger ,scales, it becomes
necessary to deal with new phenomena that arise at
these levels (O’Neill et al. 1986, Allen et al. 1987).
The spatial patterning of ecosystem types is a
unique new phenomenon that arises at the land-
scape level (Klopatek et al. 1983). The problem,
therefore, is t,o detect and quantify pattern in the
spatial heterogeneity of landscapes. Our approach
is to develop and test a set of indices that capture
important aspects of landscape pattern in a few
numbers. The indices are tested on a data set that
covers most of the~eastern  United States. By cor-

,

relating the indices with ecological phenomena such
as the propagation of disturbances or the move-
ment ,of organisms, it should be possible to link
small-scale ecological information with pattern at
the landscape level.

Materials and methods

The analyses are based on digitized maps of land
cover available from the U.S. Geological Survey
(Fegeas et al. 1983). The maps are derived from
high altitude aerial photography at a 1:250,000
scale with each scene (Fig. 1) covering one degree of
latitude and two degrees of longitude. Seven land
use categories (Table 1) are provided on the tapes.
The data describe the shape and extent of each land
use patch in both grid and polygonal format. The ’
polygonal format provides a series of vectors de-
scribing the boundaries enclosing a single land use
category. Minimal polygon size is 16 ha for most
categories with individual grid units of 200 meters.
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Tub/e 1. Land use categories used in the calculation of pattern
indices (Fegeas ef al. 1983)

1. Urban or built-up land: residual, industrial, etc.
2.  Agricultural land: cropland, orchards, etc.
3. Rangeland: herbaceous and shrub-brushland.
4. Forest: deciduous, evergreen, and mixed.
5. Water: stream, lakes, estuaries, etc.
6. Wetlands: forested and nonforested.
7. Barren land: beaches, exposed rock, strip mines, etc.

Four-hectare resolution is used for categories 1 and
5 and for miscellaneous subcategories such as strip
mines, confined cattle feeding operations, etc.
Figure 1 shows the landscape scenes included in the
analyses. Grid tapes were available for all 94 scenes.
For the shaded scenes, polygon tapes were also
available.

We dev,eloped three indices of pattern, two based
on information theoretic measures (Shannon and
Weaver 1962) and one on fractal geometry (Man-
delbrot 1983). The first index, D,, is a measure of
dominance:

D,=lnn+ F PilnPi
i=l

where Pi is the proportion of the grid cells on the
landscape in land use i and n is the total number of
land use categories in a particular scene. The term,
In n, represents a maximum with all land use types
present in equal proportions. Since Pi is less than
1 .O, In Pi is negative and the summation in Eq. (1)
yields a negative value. Therefore, D, represents
the deviation of the calculated value from the maxi-
mum. As the summation term in Eq. (1) increases
to the maximum, the value of D, approaches 0.0.
The use of the maximum term in the equation tends
to normalize the index across landscapes with
different numbers of land cover types.

The dominance index, D,,  measures the extent
to which one or a few land uses dominate the land-
scape. At large values of D,, the summation term
in Eq. (1) deviates from the equiprobable maximum
and the landscape is dominated by one or a few land
uses. At small values of D,, many land use types
are found in approximately equal proportions.

The second index, D,,  is a measure of contagion:
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Fig. I. Map of the eastern United States showing the quadrtin-
gles included in the present analysis. Shaded rectangles indicate
scenes with data available in both grid and polygon (i.e., vector)
formats.

D, = 2n In n + i i Pij In Pij
i=l  j=]

(2)

where Pij is the probability of a grid point of land
use i being found adjacent to a grid point of land
use j. The term, 2n In n, represents a maximum in
which all adjacency probabilities are equal, i.e., for _
a randomly chosen spot on the landscape, there is
an equal probability of any land cover being adja-
cent to the chosen spot. As in Eq. (l), the summa-
tion in Eq. (2) yields a negative value and D,
represents the deviation of the calculated value
from the maximum .

The contagion index, D,,  measures the extent to
which land uses are aggregated or clumped. At high
values of D,,  the summation term deviates from
the equiprobable maximum and large, contiguous
patches are found on the landscape. At low values,
the landscape is dissected into many small patches.

JW
Line

JW
Line



1 5 5

Table 2. Landscape indices and summary information for 94 landscapes in Eastern United States. The percentage of the landscape in
urban, agriculture and forest is given by P,, P,, and P,, respectively. The indices D,, D,, and D,  relate to the dominance, contagion,
and complexity of patterns, respectively. The value of U is calculated from the ratio of intensely managed land,uses  to undisturbed areas

Site PI P 2 P4 Dl D2 D3* U

Albany NY
Athens GA
Atlanta GA
Augusta GA
Aurora IL
Baltimore MD
Bangor ME
Beaufort  NC
Belleville IL
Bluefield WV
Boston MA
Brunswick GA
Burlington IL
Cantoan  O H
Charleston WV
Charlottesville VA
Charlotte NC
Chattanooga TN
Chicago, IL
Cincinatti, OH
Clarksburg WV
Clkveland  O H
Columbus OH
Corbin KY
Cuniberland WV
Danville IL
Davenport IW
Decatur IL
Dothan  AL
Dubuque IW
Dyersburg KY
Eastport  ME
Edmunston ME
Evansville KY
Florence SC
Fredrickton  M E
Ft Wayne IN
Georgetown GA
Greenville SC
Glens Falls NY
Greensboro NC
Hartford CN
Harrisburg PA
Huntington KY
Indianapolis IN
Jacksonville FL
Jenkins KY
Johnson City TN
Knoxville TN
Lake Champlain NY
Lewiston  M E

11.6
2.8

9.3

3.2

6.0

9.6

3.8

6.8

2.3

2.9

23.6

4.0

1 . 5

13.0

1.8

4.3

9.7

6.2

13.6

11.0
2.1

12.9
5.8

5.0
1.7

2.3

3.3

2.4

1.9

1.4

1.7

1.1
0.5

4.9

1.9

0.4

4.0

2.9

6.3

2.3

5.8

17.6

4.6

2.0

6.0

11.6
0.8

4.1

5.4

2.1

19.0

17.6

20.8

31.2

87.2

58.0

7.1

12.0

80.1

16.1

6.4

4.2

80.0

46.9

9.6

28.5

37.6

2 6 . 8

61.8

75.9

31.7

50.4

67.6

25.9

24.9

93.5

86.0

89.3

46.1

87.1

13.9

5.8

10.5

53.3

30.4

3.4

88.1

20.0

29.4

19.0

38.0

13.7

48.7

29.3

61.5

3.7

-6.3

32.8

16.5

26.5

64.2

16.7

6 8 . 1

48.2

4.2 ”

24.3

64.9

41.3

15.6

78.8

60.2

53.2

14.6

37.0

8 7 . 4

66.6

49.9

61.7

7.3

11.9

63.7

13.6

24.1

64.7

71.4

3.1

7.5

1.4

46.2

9.1

16.4

65.2

81.9

31.6 r

43.1

74.8

5.8

47.6

6 1 . 5

75.5

54.0 ,’

48.4

43.9

66.9

25.0

5 6 . 4

90.7

0.74

1.06

1.05

0.69 8
1.40

0.67

0.83

0.47

1.29

0.93

0.80

0.75

1.25
0.67

1.31

1.15

0.88

0.77

0.65

1.03

1.10
0.48

0.93

0.84

1.19

1.49
1.21
1.36

0.95

1.28

1.08
0.85

1.12

0.61

0.74

0.95

1.29

0.69

0.84

1.05

0.82

0.63

0.98

1.15

0.93 ,,
0.68

1.22

59.4 3 0.98

75.9 1.18_
62.2 0.94,

87.5 1.53

1 2 . 0

14.6

16.0

18.4

17.4

13.6

15.3

1 8 . 1
19.8 :

9.5

16.3

17.8

1 9 . 5

12.0

12.2

16.6

17.2

12.4

14.6

12.3

16.0

15.2

13.3

12.7

17.2

13.2

13.7

13.2

16.7

14.3

19.1

16.0

14.4

12.8

17.3

14.1

12.7

17.1

12.9

14.5

13.1

15.8

18.9

16.8

14.3

16.3

16.3

17.6

17.0

18.3

22.8

1.41

1.32

1.36
1.28

1.29
1.34

1.28
1.45
1.38
1.42

1.29

1.41
1.25
1.39
1.35
1.35
1.25
1.27
1.27

1.24

1.33
1.45

1.34
1.41

1.42

1.32
1.38

1.33

1.28

1.34
1.38
1.34

1.37
1.36

0.46

0.26
0.44

0.56

20.70

2.74

0.17

0.28 *

5.22

0.24

0.48

0 . 1 0
5.19

1 . 6 1
0.13

0 . 4 9

0.94

0.53

8.82

7.30

,0.53

3 . 9 8

291 ’

0.48

,’ 0 . 3 7 .

25.91
10.03

12.26

0.95

8.82

3 . 7 2

0.09

0.13

1.59

0.49

0.04

1 4 . 43

0.31

0.58

0.28 ’

0.80

0.64

1 . 0 0
0.47

2.93

0.20

0.08

0.62

0.29

0 . 4 6

0.08
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Table 2. Cont.

S i t e PI P2 P4 Dl D2 D3* U

Louisville KY 9.9
Macon GA 2.0
Marion OH 5 . 5
Millinocket ME 0 . 5
Montgomery AL 1.7
Muncie IN 3 . 3
Nashville TN 8.1
Natchez Ml 1 . 0
Newark NJ 32.3
New York NY 5 2 . 1
Norfolk VA 6.6
Paducah KY 2 . 3
Peoria IL 3 . 3
Phenix City AL 3.0
Pittsburgh PA 6.1
Portland NH 7.6
Presque Isle ME 0 . 3
Providence RI 12.1
Quincy  IL 1.1
Raleigh NC 7.8
Richmond VA 5.7
Roanoke VA 5.0
Rockford  I L 7.0
Rocky Mount NC 3.0
Rome GA 3.0
Savannah GA 3.2
Scranton PA 9.8
Salisbury  VA 4.5
Sherbrooke  ME 0.2
Spartanburg SC 4.7
St. Louis MO 1 . 3
Tallahassee FL 2.6
Toledo OH 5 . 8
Valdosta GA 1 . 9
Vincennes IN 4.0
Waycross  GA 1.1
Warren PA 2.0
Washington DC 13.1
West Palm FL 5 . 3
Williamsport NY 1.3
Wilmington DL 1 4 . 4
Winchester KY 4.6
Winston Salem NC 4.0

61.7
36.7
85.2

2 . 8
3 3 . 3
93.9
50.1
3 4 . 5
29.0

5 . 3
29.2
69.0
91.4
21.8
3 0 . 1

6 . 1
3 . 3
5 . 1

79.8
2 6 . 5
1 7 . 6
26.2
82.9
28.8
21.0
27.8
22.6
37.9

0 . 5
2 8 . 3
42.1
1 9 . 6
65.7
1 8 . 2
64.0
37.3
1 5 . 8
24.0
25.9
30.2
2 9 . 1
60.4
34.8

27.0
5 4 . 5

8 . 5
78.0
61.8

2 . 1
38.2
55.4
28.0
1 1 . 2
4 3 . 2
23.4

3 . 7
7 1 . 3
5 9 . 5
76.6
86.6
44.8
1 7 . 4
6 4 . 1
51.1
67.4
5.8

3 3 . 3
7 3 . 5
3 3 . 4
64.2
31.9
91.2
6 3 . 1
46.8
6 1 . 1
3.4

5 8 . 7
28.6
49.5
19.6 _
3 7 . 7
8.2

61.2
21.6
33.9
60.3

1 . 0 0 16.8 .
0.96 ,,18.0
1 . 4 0 18.1 ’
1 . 1 8 1 8 . 0
1 . 0 6 1 7 . 0
1 . 5 0 1 4 . 4
0.73 1 3 . 0
0 . 9 1 1 7 . 9
0.37 1 3 . 4
0.53 1 3 . 4
0.56 1 6 . 6
1.05 * 17.4 *
1 . 4 0 1 3 . 9
1 . 1 0 1 7 . 4
0 . 9 5 1 6 . 9
1.21 20.7
1.23 1 4 . 0
0.55 17.3
1.33 17.1
1.03 1 6 . 6
0.52 1 2 . 8
1.11 17.1
1 . 1 0 12.3
0.48 1 8 . 6
1.17 1 8 . 6
0.55 1 6 . 2
0.96 1 6 . 6
0.37 1 3 . 0
1.41 15.5
0.99 1 8 . 6
0.90 17.1
0.82 16.1
1 . 0 0 1 8 . 7
0.87 1 6 . 2
0.87 1 2 . 9
0.75 1 3 . 7
1 . 2 8 1 8 . 0
0.34 1 3 . 0
0.24 19.7
1 . 1 9 16.3
0.19 12.3
0.92 12.5
1 . 0 9 17.1

*Calculated only for scenes for which the data were available polygonal format.

I .27

1 . 2 9
I .27
1 . 2 9
1.33

1 . 3 7
1 . 3 0
1.31
1 . 2 8
1.41

1 . 2 6

1 . 2 7
1.33

1 . 2 8
1 . 3 9
1 . 2 9

1 . 4 0
1.33

2.64
0.64

1 0 . 6 9
0.04
0.56

47.04
1.51
0.58
1 . 9 6
4.28
0.63
2.86

25.15
0.34
0.62
0.17
0.04
0.38
4.56
0.53
0.43
0.46

12.20
0.63
0.33
0.49
0.50
1 . 0 3
0 . 0 1
0 . 5 1

‘ 1 . 0 5
0.30

18.21
0.26
2.29
0.63
0.22
0 . 9 1
0.80 -
0.47
1 . 0 6
1.91
0.64

information theoretic indices, such as D, and widely varying values of n did not arise in this
D,,  have been criticized (e.g., Pielou 1975, Phipps study.
1981) because of their sensitivity to varying values The third index, D,, is a measure of the fractal
of n. The 94 landscape scenes analyzed here have geometry of the landscape (Mandelbrot 1983). It is
n = 6 or 7. Therefore, potential problems with ’ estimated by regressing polygon area against peri-
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meter for ea.ch  patch on a digitized map. The fractal
dimension is related to the slope of the regression,
S, by the relationship (Lovejoy 1982):

D3 = 2 S. (3)

Because D, requires perimeter-area information,
this index could only be calculated for the 58 quad,-
rangles for which vector data sets were available
(Fig. 1).

The fractal dimension, D,,  is an index of the
complexity of shapes on the landscape. If the land-
scape is composed of simple geometric shapes like
squares and rectangles, the fractal dimension will
be small, approaching 1.0. If the landscape con-
tains many patches with complex and convoluted
shapes, the fractal dimension will be large (Krum-
me1  et al. 1987).

Results

Table 2 gives the values of the indices calculated for
the 94 landscape scenes. The table also contains the
percentage of the scenes in urban (P,), agriculture
(P,, forest (P4), and a measure of disturbance (U).
This measure is a ratio consisting of intensely
managed land uses, P, (urban) + P, (agriculture),
divided by relatively undisturbed land uses, P,
(forest) + P, (wetlands). The ratio, U, is included
to test whether any of the pattern indices are cor-
related with human activities and disturbance.

Values of the indices cover a sufficient range
to discriminate among different landscape types
(Table 2). D, ranges from a low of 0.19 for Wil-
mington, DL to a high of 1.53 for Lewiston, ME.
The possible range of this index for seven land
cover types is from 0.0-1.94 so the measured
values encompass 69% of the potential range of the
index. This spread is important because discrimina-
tion between landscape data sets would be difficult
if the measured values fall within a narrow range.
Low values of D, are associated with landscapes in
which many land use types (e.g., urban, agricultur-
al, and natural vegetation) occur in approximately
equal proportions within the quadrangle. High
values, indicating dominance of the landscape by

one or a few land uses, are associated with intensive
crop production or undisturbed forests.

The contagion index, D,,  has a potential range
of 0.0 to 6.8 for sevenland cover types. The values
for the eastern landscapes range from 1.29 for Al-
bany, NY to 6.19 for Lewiston, ME. The fact that
Lewiston, ME has the maximum value for both D,
and D, indicates some redundancy of information
in these two indices, at least at the extremes. This
is reasonable because Lewiston  is dominated by
forests (87% coverage) that form essentially one
large cluster, giving a high index for contagion as
well as for dominance. Low values of D,,  indicat-
ing highly dissected landscapes, tend to occur where
human development (e.g., Albany, NY) or topo-
graphy (e.g., Bluefield, WV) dissect the landscape
into many small patches. Perusal of the table, how-
ever, will reveal many exceptions. High values of
D, may be associated with landscapes having many
land use types (e.g., Dyersburg, KY) and low values
may occur where neither development nor topogra-
phy dominate (e.g., Corbin, KY) as a result, there
is no significant correlation between the indices
(Table 4) even though they show some relationship
at the extremes.

The fractal dimension D,,  has a potential range
of 1 .O to about 1.5. The upper value of 1.5 cor-
responds to shapes drawn by random Brownian
movement with zero autocorrelation (Burrough
1983). The sampled landscapes cover 42% of the
range. The smallest values of D, (e.g., 1.23 for Du-
buque, IA) are associated with agricultural land-
scapes where simple rectangular shapes dominate.
The high values (e.g., 1.44 for Edmundston, ME)
are associated with areas where topography or the
coastline force land use patches into complex
shapes.

Geographic patterns in indices

The ability of the indices to discriminate among
landscape types can be judged by examining their
geographic distribution. We would expect the in-
dices, for example, to discriminate between the
agricultural landscapes of the central states and the
mountainous landscapes of the Appalachian
region.
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nD’.36-.76 MANY LAND USES,
ABOUT EQUAL SIZES

a .76-1.14

m 1.16-1.63 FEW LAND USES

Fig. 2. Geographic distribution of the dominance index, D,
(Equation 1).

Figure 2 shows the distribution of Dr. High
valu!es of D,, indicating few land cover types, are
found in the agricultural regions of the upper Mid-
west and in the forests of New England. Low values
of D, , indicating many cover types of about equal
area, are found in the coastal regions where urban,
agricultural, forest, and wetland cover tends to be
mixed in complex patterns.

Figure 3 shows the geographic distribution for
the fractal dimension, D,. Low values, indicative
of simple patch shapes, occur in agricultural
regions. Higher values, associated with complex
patch shapes, are found in coastal/estuarine  areas
and regions of complex topography. Both D, and
the fractal dimension, therefore, seem to capture
broad-scale features of the landscape taken as a
unit.

There is no apparent overall pattern in the geo-

LUDA LANDSCAPE ANALYSIS

v
FRACTAL

El 1.23-1.30

m 1.31-1.36

&$j  1.39-1.46

Fig. 3. Geographic distribution of the fractal dimension, D,
(Equation 3).

graphic distribution of D, (Fig. 4). Highly dissect-
ed landscapes are found throughout the eastern
United States and do not seem to be simply as-
sociated with gross features such as topography.
Thus, in contrast to D, and D,, D, seems to cap-
ture the fine-grained arrangement of individual
patches on the landscape.

Statistical properties of indices

Measured values of an ideal index should be dis-
tributed over the full range of potential values. If
most values fall in the middle of the range, then
many landscapes will have similar values and the in-
dex will have little power to discriminate. The ideal
situation is unlikely to be realized because extreme
values are infrequent and some central tendency
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Tuble3.  Frequency distributions of pattern indices. Values given Table 4. Pearson correlation coefficients expressing the relation-
are the percentage of the total landscape scenes with index values ships between landscape indices.‘P*  is the proportion of the
that fall within each decade, from the lowest to the highest value landscape in agriculture, P,  is the proportion in forest. D, is an
for each index. D, is the dominance index, D,  is contagion, and index of dominance, D,  of contagion, and D,  is’the fractal
D, is fractal dimension dimension of patches

Decade Di DZ “3 ,p4 Dl

I 2 II
2 3 1 1
3 8 18
4 11 I3
5 15 1 6
6 18 11
7 I7 9
8 I2 5
9 9 2

IO 5 4

7
9

19

can always be expected. Table 3 shows the frequen-
cy distributions of the indices with the range divid-
ed into 10 equal intervals or decades. The distribu-
tion are quite broad with the highest frequencies
spread across a number of the central decades. The
distributions appear to be sufficiently broad to per-
mit adequate discrimination among landscapes.

Useful indices should also be relatively indepen-
dent of each other. At the very least, it is important
that they do not duplicate the same pattern infor-
mation. A simple test of the relationship among the
indices is given by calculating correlation coeffi-
cients between indices (Table 4). Because calcula-
tion of the fractal dimension, D,, requires poly-
gonal data, it was only possible to compare indices
for 58 scenes.

The high negative correlation between P,
(agriculture) and P, (forest) expresses a general
property of eastern landscapes: they tend to be
dominated by either forest or agriculture. This is
not surprising since most of the agricultural land in
the eastern United States is in areas that were origi-
nally forest. The correlation between P,  and D, in-
dicates that landscapes that are dominated by a sin-
gle land use tend to be agricultural. The low
correlation of D, with P,  indicates that forested
landscapes are not simply dominated by forests but
tend to have other land uses as well.

D, is not correlated with either P, or P,, which
seems to confirm the conclusion reached from Figs

p2 -0.84 0.42 0.06 - 0.60
p4 0.02 -0.10 0.52
Dl 0.05 -0.38
“2 -0 .18
u 0.15 0.05 - 0.50

2-4: D, captures the fine-grain texture of the land-
scape rather than overall properties. This conclu-
sion is further reinforced by the lack of a significant
(p < 0.05) correlation between D, and either D, or
D,. D, appears to be related to small-scale patterns
that are not captured by the other indices.

The relationship between D, and D, is signifi-
cant (p < 0.005). Landscapes dominated by
agriculture (high D1)  tend to be divided into simple
squares and rectangles, giving small fractal dimen-
sions. However, over most of the range of D,,
there is no relationship between D, and D,: The
significant correlation results from the relationship
that exists over the high range of the dominance
index.

The fractal dimension shows highly significant
correlations (p < 0.0001, Table 4) with P,, P,  and
U. This reflects the fact that landscapes dominated
by agriculture tend to have simple polygons and low
fractal dimensions (negative correlation), and land-
scapes dominated by forest tend to have complex
shapes and high fractal dimensions (positive corre-
lation). The correlation with U indicates a relation-
ship between fractal dimension and the degree to
which the landscape has been manipulated by man.
Human activities related to crop production and ur-
ban development tend to simplify shapes, smooth
and flatten contours, and result in simpler poly-
gonal shapes (Krummel et al. 1987).

In summary, the three indices are not completely
independent of each other and at extreme values
may duplicate information. However, the correla-
tions are not large enough to indicate that any of
the three should be dropped from further use as a
pattern index.
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Sk--!---

i
l

_...--

CID’1.29-3.02 DISSECTED

pJ 3.03-4.76

4.77-6.50  CLUMPED

Fig. 4. Geographic distribution of the contagion index, D,
(Equation 2).

Indices and landscape classes

Another way to test for the need to retain all three
indicators is to construct a type of dichotomous key
(Table 5). By emphasizing the high and low in-
stances of each index (see Figs 2-4) it is possible to
determine whether all three indices are needed to
divide the landscapes into meaningful subgroups
that would be useful for ecological assessment.

First, let us consider scenes that have high values
for both D, and D, (landscapes dominated by a
few land uses that are highly clumped). Does the ad-
ditional specification of the fractal dimension help
discriminate among this group in a meaningful
way? The answer is yes. Forested landscapes have
a high D,,  e.g., Sherbrooke, ME (91alo  forest).
Agricultural landscapes have low fractal dimen-
sions, e.g., Belleville and Burlington, IL, both with

Table 5. Landscape scenes with high (upper 33%) or low (lower
33%) values for the landscape indices (see legends for Figs 2-4)

Dl

High
High
High

DZ D3 Landscape scenes

Clumped Complex Sherbrooke
Clumped  S imple Belleville, Burlington, Rome
Dissected Complex Charleston, Charlottesville,

Clarksburg
High Dissected Simple Danville, Davenport,

Decatur, Rockford
Low
Low
Low

Clumped Complex None
Clumped  S imple None
Dissected Complex Richmond. Salisbury,

Washington
Low Dissected Simple None

about 80% agriculture. The interesting exception
would seem to be Rome, GA (Table 5,73% forest).
However, the forests in the Rome quadrangle are
primarily pine plantations, subject to the same
shape simplification as row crops.

As a second test, we can consider scenes with high
D, (few land uses) and low D, (dissected into small
patches). In this case, a large fractal dimension is
associated with rugged topography, e.g., West Vir-
ginia and Virginia. By including D,, it is possible to
differentiate these forested landscapes from areas
in Illinois and Iowa (Danville, Davenport, Decatur,
Rockford) where flatter topography permits simple
linear shapes to be imposed on the landscape.

The combination of low D, (many equal land
uses) and low D, (dissected) occurs in combination
with a high fractal dimension (complex shapes).
This combination characterizes coastal areas where
a mixture of urban, agricultural, and natural land
uses are further constrained by the dissected coast-
line (Richmond, VA, Salisbury, VA, Washington,
DC).

The eastern landscapes contained no examples
with low D, (many equal land uses) and high D,
(clumped) since this is, almost a contradiction in
terms. This is also partially the reason that there is
a small positive correlation between D, and D, in
Table 3. Also, there are no examples of low D,,
low D, and low D, in the eastern United States,
which helps explain the small negative correlation
between D, and D, in Table 2.



Discussion

Our analyses support the argument that a small set
of indices can capture significant aspects of land-
scape pattern. The indices discriminate among
major landscape types such as urban coastal land-
scapes, mountain forests, and agricultural areas.
There is excellent sensitivity to some determinants
of pattern, e.g., the ability to recognize the agricul-
tural pattern in the Rome GA tree plantations
(Table 5).

Useful indices have a number of desirable fea-
tures which seem reasonably satisfied by the set
proposed and tested here. First, the measured
values (Table 3) are reasonably distributed across
the potential range of the index, providing maxi-
mum discrimination. Second, the indices per-
formed well in discriminating the geographic distri-
bution of landscape pattern types (Figs 2-4).
Third, Table 4 indicates that the information con-
tained in each of the indices is relatively indepen-
dent. Fourth, it appears that all three indices, taken
together, are helpful in discriminating among land-
scape types (Table 5).

An interesting result, e,merging from the analysis
of geographic distributions, was that D, and D,
seem to capture gross features of landscape pattern.
On the other hand, D,, measuring how individual
pixels are arranged relative to each other, seems to
relate to a fine-grained texture on the landscape.
The fact that one of the indices captures a different
scale of pattern could be valuable in further investi-
gations.

An interesting feature of the correlation analysis
is the relationship between D, and landscape dis-
turbance, U. Based on the Krummel et al. (1987)
analysis, one would expect that increased agricul-
tural or urban disturbance would lower fractal
dimension and that is exactly what the correlation
shows (Table 4). This result seems to lay a firm
foundation to the claim that fractal dimension is a
reasonable index of human activities on the
landscape.

Perhaps the most exciting prospect raised by the
study is the possibility of remotely sensing ecologi-
cal change at the landscape level. The indices were
deliberately designed to minimize the need for
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groundtruth information. It now seems possible to
take raw satellite or aircraft data in the form of
reflectances and divide the reflectances into discrete
classes. In the simplest case, the total range of
reflectance could be divided into seven equal inter-
vals. Even without knowing what each discrete
class represents in terms of vegetation or land use,
changes in the indices over time provide valuable in-
formation. Thus, an increase or decrease in the
fractal dimension through time indicates the degree
to which human activities are disturbing and sim-
plifying the landscape patterns, regardless of the
specific land uses.

Continued research will be critical in applying the
indices to landscape ecology and large-scale en-
vironmental assessment. In particular, correlations
must be established between index values and eco-
logical processes occurring on the ground. The
basic question is: ‘Knowing only the values of the
indices and how they change through time, how
well can one specify the corresponding ecological
changes?’ Although this represents a difficult
research question, there is good reason for opti-
mism. For many processes, it is ‘possible to intuit
the significance of the indices. Small values of D,
indicate a dissected landscape and a. large ratio of
forest edge to forest interior. Changes in D, indi-
cate change in the forest edge ratio and should be
predictive of changes in populations of edge spe-
cies. It may also be possible to relate changes in D,
with generalizations derived from island biogeogra-
phy theory. For many large-scale problems, the
prospect of remotely sensing environmental
changes over large spatial units opens new possibili-
ties for understanding continental and global pro-
cesses.
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