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Abstract Modern landscape ecology is based on

the patch mosaic paradigm, in which landscapes are

conceptualized and analyzed as mosaics of discrete

patches. While this model has been widely success-

ful, there are many situations where it is more

meaningful to model landscape structure based on

continuous rather than discrete spatial heterogeneity.

The growing field of surface metrology offers a

variety of surface metrics for quantifying landscape

gradients, yet these metrics are largely unknown and/

or unused by landscape ecologists. In this paper, we

describe a suite of surface metrics with potential for

landscape ecological application. We assessed the

redundancy among metrics and sought to find groups

of similarly behaved metrics by examining metric

performance across 264 sample landscapes in western

Turkey. For comparative purposes and to evaluate the

robustness of the observed patterns, we examined 16

different patch mosaic models and 18 different

landscape gradient models of landscape structure.

Surface metrics were highly redundant, but less so

than patch metrics, and consistently aggregated into

four cohesive clusters of similarly behaved metrics

representing surface roughness, shape of the surface

height distribution, and angular and radial surface

texture. While the surface roughness metrics have

strong analogs among the patch metrics, the other

surface components are largely unique to landscape

gradients. We contend that the surface properties we

identified are nearly universal and have potential to

offer new insights into landscape pattern–process

relationships.
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Introduction

Modern landscape ecology is based on the patch

mosaic paradigm, in which landscapes are conceptu-

alized and analyzed as mosaics of discrete patches

(Forman 1995; Turner et al. 2001). Sometimes the
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‘‘patch mosaic’’ model is referred to as the ‘‘patch-

corridor-matrix’’ model after Forman and Godron

(1986) and Forman (1995) in order to recognize

the different major landscape elements that can be

present in a patch mosaic. Any reading of the

published landscape ecology literature shows near

uniformity in the adoption of this approach. Conse-

quently, our current state of knowledge regarding

landscape pattern–process relationships is based

almost entirely on a categorical representation of

spatial heterogeneity. The patch mosaic model has

led to major advances in our understanding of

landscape pattern–process relationships (Turner

2005), and has proven extraordinarily robust, being

applied successfully to landscapes across the globe.

The strength of the patch mosaic model lies in its

conceptual simplicity and appeal to human intuition.

In addition, the patch mosaic model is consistent with

well-developed and widely understood quantitative

techniques designed for discrete data (e.g., analysis of

variance), and there is ample evidence that it applies

very well in landscapes dominated by severe natural

or anthropogenic disturbances (e.g., fire dominated

landscapes and built landscapes) where sharp discon-

tinuities have been created by disturbance.

Despite the progress made in understanding and

managing landscapes based on the patch mosaic

model, there are many situations where the patch

mosaic model fails or is at best sub-optimal. In

particular, the patch mosaic model does not accu-

rately represent continuous spatial heterogeneity

(McGarigal and Cushman 2005). Once categorized,

patches subsume all internal heterogeneity, which

may result in the loss of important ecological

information. When applying the patch mosaic model

in practice, it is prudent to ask whether the magnitude

of information loss is acceptable. We contend that

there are many situations when the loss is unaccept-

able. Most ecological attributes are inherently

continuous in their spatial variation (at least at some

scales; Wiens 1989), even in human-dominated

landscapes. Consider soil properties such as depth,

texture and chemistry, and terrain properties such as

elevation, slope and aspect. These physical environ-

mental properties typically vary continuously over

space despite discontinuities in above-ground land

cover that might exist due to natural or anthropogenic

disturbances. Even above-ground land cover defined

on the basis of vegetation more often than not varies

continuously along underlying environmental gradi-

ents, except where humans have substantially

modified it (Austin and Smith 1989; Austin 1999a, b).

These observations have led several authors to

propose alternatives to the patch mosaic model for

situations where spatial heterogeneity is continuous

rather than discrete. McIntyre and Barrett (1992)

introduced the ‘‘variegation’’ model as an alternative

to the ‘‘island biogeographic’’ model, in which

habitat is viewed as a continuous gradient instead

of discrete patches within a homogeneous matrix.

Later, Manning et al. (2004) defined the ‘‘continua-

umwelt’’ model as a refinement of the variegation

model in which habitat gradients are species-specific

and governed by ecological processes in a spatially

continuous and potentially complex way. Fischer and

Lindenmayer (2006) offered an additional refinement

of the continua-umwelt model by suggesting that the

landscape be defined on the basis of four specific

habitat gradients (food, shelter, space, and climate)

that are closely related to ecological processes that

affect the distribution of animals. Importantly, these

alternative conceptual models are all habitat-centric;

that is, they propose a gradient model of ‘‘habitat’’;

they do not provide a general purpose model of

landscape structure.

McGarigal and Cushman (2005) introduced the

‘‘landscape gradient’’ model, a general conceptual

model of landscape structure based on continuous

rather than discrete spatial heterogeneity. In this

model, the underlying heterogeneity is viewed as a

three-dimensional surface and can represent any

ecological attribute(s) of interest. The most common

example of a landscape gradient model is a digital

elevation surface, but there are many other possibil-

ities. Of course McGarigal and Cushman (2005) were

not the first to recognize the need to characterize

three-dimensional surfaces for ecological purposes.

Geomorphologists, for example, have long sought

ways to characterize land surfaces for the purpose of

understanding the relationships between landforms

and geomorphological processes (e.g., Strahler 1952;

Schumm 1956; Melton 1957), and biologists as early

as 1983 have sought ways to assess topographic

roughness for the purpose of characterizing fish and

wildlife habitat (e.g., Beasom 1983; Sanson et al.

1995). To this end, many methods have been

developed to quantify surface complexity (e.g., Pike

2000; Wilson and Gallant 2000; Jenness 2004).
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However, until recently these methods have focused

almost exclusively on characterizing topographic

surfaces at the scale of the individual pixel or cell

(e.g., Moore et al. 1991; Jenness 2005), or as the basis

for mitigating the source of error associated with the

planimetric projection of slopes in the calculation of

patch metrics (e.g., Dorner et al. 2002; Hoechstetter

et al. 2008). Only recently has attention been given to

the application of surface metrics for the purpose of

quantifying surface heterogeneity at the scale of

entire landscapes (McGarigal and Cushman 2005;

Hoechstetter et al. 2008).

Largely unknown to landscape ecologists, research-

ers involved in microscopy and molecular physics have

made significant advances in the area of three-dimen-

sional surface analysis, creating the field of surface

metrology (Stout et al. 1994; Barbato et al. 1995;

Villarrubia 1997; Ramasawmy et al. 2000). Over the

past two decades structural and molecular physicists

have been developing surface metrics which we

believe will be highly applicable to landscape gradients

(e.g., Gadelmawla et al. 2002). Until recently, how-

ever, there have been no landscape ecological

applications of these surface metrics. The purpose of

this paper is to describe the use of surface metrics for

quantifying landscape patterns. Our specific objectives

are to: (1) clarify the relationship between the patch

mosaic and gradient models of landscape structure and

the metrics used to characterize landscapes under each

model; (2) describe a variety of surface metrics with

the potential for quantifying the structure of landscape

gradients; (3) evaluate the behavior of a large suite of

surface metrics across 264 sample landscapes and 18

alternative landscape gradient models of landscape

structure; and (4) discuss the challenges to the appli-

cation of surface pattern metrics in landscape

ecological investigations.

Methods

Study area

To evaluate and illustrate the use of surface metrics we

delineated a 1,988 km2 montane landscape in western

Turkey. The landscape is located between the towns of

Aytinova and Altinoluk on the Gulf of Edremit in the

western part of the Marmara Regions between 26�360–
27�210N latitude and 39�100–39�460E longitude

(Fig. 1). The terrain is rugged and ranges from sea

level to 1,769 m in elevation. Geologic formations are

primarily marine sandstones and shales, granite,

basaltic volcanic rocks, and related intrusives. Most

soils are well drained and have well-developed

horizons. Soils on steep slopes tend to be shallow

and stony loam-textured, whereas soils on uneven and

unstable slopes are deeper and derived from colluvi-

ums. The overall climate is maritime Mediterranean,

with cold wet winters and hot dry summers. Land

cover is highly variable owing to a mixture of land

uses. Forest, maquis, and garrigue vegetation is

interspersed with settlements and agriculture. Domi-

nant tree species include Quercus sp., Pinus spp.,

Juniperus sp., Abies equi-trojani, Castanea sativa,

Populus sp., Fagus sp., Cedrus libani, and Carpinus

betulus. The landscape includes one large protected

area, Mount Ida National Park, but otherwise the land

cover reflects a long history of human land uses.

Spatial data

To examine the robustness of the relationships being

examined we constructed several alternative patch

mosaic and gradient models of landscape structure.

The purpose of doing this was to ensure that any

findings were not idiosyncratic given the many ways

one can represent landscape structure.

We created eight different patch mosaics using

categorical data obtained from various Turkish Gen-

eral Directorates (Table 1). All of these mosaics

represented realistic landscape models as used in

forest management plans in the region. Six of the

mosaics are land cover maps derived from aerial

photographs (1:15,000) and field data. Two of the

mosaics (GEO and SOILS) are classifications based

on physical substrate. In these latter two cases, we

aggregated a rather large number of original classes

into a smaller set of classes based on shared physical

attributes. In all cases, the original data were in vector

format with a minimum polygon size of 3.7 ha. For

the landscape pattern analysis, we converted the

vector coverages to raster data sets using a cell size of

28.5 m for consistency with the Landsat Enhanced

Thematic Mapper (ETM?) data below.

We created nine different gradient models using

continuous data obtained from Landsat ETM? and a

Digital Elevation Model (DEM) (Table 2). All of

these gradient surfaces represented realistic landscape
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models as used in a wide variety of ecological

applications. Five of the gradient models represented

various terrain-based indices (i.e., derived from the

DEM) hypothesized to be important determinants of

the distribution of plants and ecological communities

(e.g., Parker and Bendix 1996). Four of the gradient

models represented various land cover indices (i.e.,

the Normalized Difference Vegetation Index (NDVI),

and three Tasseled Cap indices) derived from ETM?

imagery acquired in June, 2000. Before deriving

these indices, we geometrically corrected the raw

ETM? image based on 50 ground control points

taken from 1:25,000 topographic maps; the root mean

square error was less than 0.5 pixels.

Sampling design and data analysis

We selected 264 sample locations at random through-

out the study area maintaining a minimum distance of

1,000 m between sample points, and between points

and the landscape boundary (Fig. 1). At each sample

location we clipped each of the 17 spatial data sets (i.e.,

8 patch mosaic models and 9 landscape gradient

models) using 1000 9 1000 m and 2000 9 2000 m

square windows centered on the point. The square-

shaped window was required by the software used to

compute the surface metrics (see below) and is

currently a limitation of available software. The two

window sizes selected represented a compromise

between maximizing the number of independent

samples that could be drawn from the landscape and

maintaining a sufficiently large spatial extent to

capture the inherent heterogeneity of the landscape.

Smaller extents too often resulted in landscapes with

no spatial heterogeneity in one or more of the maps and

larger landscapes reduced the sample size too much.

For the categorical data (8 patch mosaics 9 2

window sizes 9 264 sample landscapes), we

Fig. 1 Study area located

in western Turkey. Solid
circles represent 264

random sample locations
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calculated 28 landscape-level metrics using FRAG-

STATS (McGarigal et al. 2002; Table 3). We

selected a suite of commonly used metrics with the

aim of capturing a broad suite of landscape structure

components (Neel et al. 2004; Cushman et al. 2008).

All of the metrics were structural metrics except for

three metrics based on edge contrast. For each patch

mosaic model, we established edge contrast weights

for each pairwise combination of classes based on a

combination of expert knowledge and quantitative

data (e.g., percent canopy closure).

For the continuous data (9 gradient surfaces 9 2

window sizes 9 264 sample landscapes), we calcu-

lated 18 surface metrics using the Scanning Probe

Image Processor (SPIP) software. For this study, we

selected a suite of surface metrics that measure various

aspects of surface texture that have an ecological

interpretation (Appendix—Electronic Supplementary

Material). All metrics were computed employing a

correction for the surface mean. This correction was

applied to each of the sample landscapes to remove the

differences in the mean absolute height of the surface

among sample landscapes and focus the comparison

among landscapes on the relative differences in

surface roughness. After preliminary analyses, we

dropped dominant radial wavelength (Srw) from the

analysis due to the lack of variation among sample

landscapes in some subsets of the data. Thus, the final

data set consisted of 17 surface metrics.

To evaluate the degree of redundancy among

landscape metrics we used principal components

analysis (PCA). Briefly, we conducted a separate

PCA for each landscape model, including 16 patch

mosaic models (8 mosaics 9 2 window sizes) and 18

landscape gradient models (9 surfaces 9 2 window

sizes). PCA was based on the correlation matrix of

the metrics (28 patch metrics or 17 surface metrics)

and was deemed appropriate after examining pairwise

scatterplots among metrics (McGarigal et al. 2000).

To summarize the results of the PCA, we calculated

the number of PC’s required to account for [95% of

the variation in each data set, where each data set was

comprised of 264 sample landscapes at one of the two

window sizes for a single landscape model (e.g.,

DEM). We also conducted a Monte Carlo random-

ization test of significance of the eigenvalues from

each model. The Monte Carlo test involved randomly

shuffling each column of the data matrix to remove

Table 1 Patch mosaics created using categorical data obtained from the Turkish General Directory of Forestry (GDF), General

Directory of Mineral Research and Exploration (GDMRE), and General Directory of Rural Services (GDRS). All GDF land cover

maps were derived from aerial photographs (1:15,000) and field data. Geology and soils maps were from 1:25,000 scaled digital maps

from GDMRE and GDRS, respectively

Patch mosaic Description

Stand type (STND) Distinguished on the basis of crown closure, stand development stage and tree species. There are 191

classes

Stand development stage

(STG)

Based on average diameter at breast height of trees. There are 6 classes: youth and stick (1–7.9 cm), stick

and pole (8–19.9 cm), thin (20–35.9 cm), middle (36–51.9 cm), thick ([52 cm), and mixed diameter

stands

Crown closure (CLSR) Percent of the ground covered by tree canopy. There are 4 classes: \10%, 11–40, 41–70, and 70–100%

Site quality (QLTY) Ordinal scale index of site productivity based on factors such as climate, topography and soil. There are 5

classes: 1, 2, 3, 4, 5 (where 1 is the highest site quality)

Mixture code (MXTR) Based on the dominant tree species. There are 10 classes: uncovered, Pinus brutia, Pinus nigra, Abies sp.,

Cedrus libani, Pinus pinea, Fagus sp., Quercus sp., mixed coniferous stand, and mixed coniferous–

deciduous stand

Landuse and landcover

(LULC)

Based on the dominant human land use and the dominant life form of vegetation. There are 8 classes:

forest, degraded forest, grassland, agriculture, exposed rock and soil, water, marshland, and settlement

Geology (GEO) Based on the formation. There are 6 classes: neogene marine formation (e.g., granodiorite), metamorphic

rocks (e.g., marble, gneiss, schist, shale), orogenic rocks (e.g., serpantinite), volcanic rocks (e.g.,

andesite, dacite tuff, basalt), sedimentary rocks (e.g., sandstone, mudstones, limestone), and alluvial

deposits

Soils (SOIL) Based on soil type. There are 10 classes: alluvial soil, colluvial soil, non-calcic brown forest soil,

sediment deposited in beach, brown forest soils, rendzina, non-calcic brown soils, hydromorphic

alluvial soils, red-brown Mediterranean forest soils, high mountain pasture soils
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any real correlation structure, computing the eigen-

values for the randomly permuted data matrix,

repeating this process 1,000 times, and comparing

the original eigenvalue to the random distribution of

eigenvalues. This test provides the probability of

observing the original eigenvalue if in fact it was

derived from a data set without any real correlation

structure. Lastly, we constructed a cumulative scree

plot of the eigenvalues from each model, which

depicts the cumulative percentage of variance

explained by an increasing number of principal

components (McGarigal et al. 2000).

To identify groups of highly correlated surface

metrics for purposes of seeking a parsimonious

characterization of surface properties, we used poly-

thetic agglomerative hierarchical cluster analysis

(McGarigal et al. 2000). For each of the landscape

gradient models, we created a distance matrix repre-

senting the pairwise dissimilarities between landscape

metrics using the absolute value of their rank-based

correlations. Specifically, the ‘‘distance’’ between

each pair of metrics was defined as 1-abs(rho), where

rho is the Spearman rank correlation coefficient. In this

manner, two metrics had a distance of zero if they were

perfectly correlated, either positively or negatively,

and a distance of one if they were independent (i.e.,

rho = 0). We used Spearman’s rank correlation to

allow for nonlinear, but monotonic relationships

between landscape metrics. Hierarchical clustering

was conducted using Ward’s minimum-variance

fusion method, given our desire to identify discrete

clusters (McGarigal et al. 2000). To summarize the

results of the cluster analysis, we produced a scree plot

for each model, which depicts the dissimilarity at

which clusters fuse together. We also examined the

dendrogram from each model to identify which

metrics were grouping together and to get a sense of

the strength of the cluster solution. To quantify the

Table 2 Gradient surfaces created from 28.5-m-resolution Landsat ETM? and a Digital Elevation Model (DEM) at the same

resolution

Gradient surface Description

Digital elevation model (DEM) Based on a digital elevation model derived from 10 m-interval contours

on 1:25,000 topographic maps

Slope (SLP) Percent slope derived from the DEM

Topographic wetness (TWI) Based on Moore et al. (1993); accounts for the propensity of a site

to be wet or dry. Positive values tend towards wetter sites;

negative values tend towards drier sites

Topographic position index

(TPI500)

Based on Jenness (2005) using a 500 m neighborhood. Positive values

tend towards ridgetops, negative values tend toward valley bottoms,

and zero values tend toward flat areas and mid-slopes

Heat load index (HLI) Based on McCune and Keon (2002); accounts for potential solar radiation

as a function of latitude, aspect and slope. Larger values indicate

increased solar radiation

Normalized difference vegetation

index (NDVI)

Derived from ETM? and calculated as the ratio of the difference

between near infrared (r NIR) and red (r red) reflectance divided

by their sum (ERDAS 1999): (r NIR- r red)/(r NIR? r red).

NDVI values range between -1 and ?1, where negative values

generally indicate water, 0 indicates no green vegetation, and larger

positive values indicate increasing density/biomass of green

vegetation, with values typically ranging from 0.05 for sparse vegetative

cover to 0.7 for dense vegetative cover (Tucker 1979)

Tasseled cap brightness (TsBR) Derived from ETM? and calculated as:

brightness = 0.3037(TM1) ? 0.2793(TM2) ? 0.4743(TM3)

? 0.5585(TM4) ? 0.5082(TM5) ? 0.1863(TM7)

Tasseled cap greenness (TsGR) Derived from ETM? and calculated as: greenness = -0.2848(TM1)- 0.2435(TM2) -

0.5436(TM3) ? 0.7243(TM4) ? 0.0840(TM5) - 0.1800(TM7)

Tasseled cap wetness (TsWET) Derived from ETM? and calculated as:

wetness = 0.1509(TM1) ? 0.1973(TM2) ? 0.3279(TM3) ? 0.3406(TM4)

- 0.7112(TM5) - 0.4572(TM7)
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strength of the clustering structure, we also computed

the agglomeration coefficient (AC) for each model.

AC ranges from zero to one and approaches one as the

strength of the clustering structure increases. A strong

clustering structure is one in which within-cluster

similarity is very high and among-cluster similarity is

very low. Lastly, to examine the integrity of the final

clusters, we computed an index of cluster cohesive-

ness, using a four step approach. First, after examining

the scree plots and dendrograms, we determined the

final number of clusters to retain. Second, we

computed the proportion of models in which each

landscape metric co-occurred in the same cluster with

each other metric. Third, we assigned each metric to

the cluster that it most often fell into across the

different landscape models. Finally, we computed the

average proportion of co-occurrence among the met-

rics in each cluster. The resulting cohesiveness index

ranges from zero to one and equals one if the cluster

members (surface metrics) always co-occur with each

other across alternative models of landscape structure.

To aid in the ecological interpretation of the clusters

defined above, we created three patch mosaic models

each from the DEM and NDVI surfaces by classifying

them into 5, 10, and 15 classes (patch types) based on

natural breaks. The multiple classifications repre-

sented our uncertainty in how thematic resolution

would affect the correlation between surface and patch

metrics. Importantly, the corresponding gradient sur-

face and patch mosaics represented the same

underlying ecological heterogeneity (i.e., variation in

elevation or vegetation biomass), but did so in a very

different manner. We sought to compare the surface

metrics computed from the gradient surface with the

patch metrics computed from the corresponding patch

mosaics in order to better understand the ecological

meaning of the surface metrics given our experience

and understanding of patch metrics. To do so, we

computed the Spearman rank correlations between

each surface metric and each of the patch metrics for

the corresponding landscape models (e.g., the DEM

surface compared to the DEM patch mosaic based on 5

classes). After preliminary inspection of the results we

decided to average the correlations across the three

resolutions since the patterns were similar. Thus, we

ended up with an average Spearman rank correlation

between each surface metric and each patch metric for

the DEM models and for the NDVI models.

All statistical analyses were conducted using R (R

Development Core Team 2008), including basic

functions in the stats library and programs written

by the authors.

Results

Both patch and surface metrics exhibited a high

degree of redundancy based on PCA. Surface metrics

exhibited less redundancy than patch metrics, a

Table 3 Patch metrics computed using FRAGSTATS

(McGarigal et al. 2002). See FRAGSTATS manual for a

detailed description of each metric

Metric

Patch density (PD)

Largest patch index (LPI)

Edge density (ED)

Mean patch area (AREA_MN)

Area-weighted mean patch area (AREA_AM)

Coefficient of variation in patch area (AREA_CV)

Mean patch radius of gyration (GYRATE_MN)

Area-weighted mean patch radius of gyration (GYRATE_AM)

Coefficient of variation in patch radius of gyration

(GYRATE_CV)

Mean patch shape index (SHAPE_MN)

Area-weighted mean patch shape index (SHAPE_AM)

Coefficient of variation in patch shape index (SHAPE_CV)

Mean patch contiguity index (CONTIG_MN)

Area-weighted mean patch contiguity index (CONTIG_AM)

Coefficient of variation in patch contiguity index

(CONTIG_CV)

Mean Euclidean nearest neighbor distance (ENN_MN)

Area-weighted mean Euclidean nearest neighbor distance

(ENN_AM)

Coefficient of variation in Euclidean nearest neighbor distance

(ENN_CV)

Contrast-weighted edge density (CWED)

Total edge contrast index (TECI)

Mean patch edge contrast index (ECON_MN)

Area-weighted mean patch edge contrast index (ECON_AM)

Coefficient of variation in patch edge contrast index

(ECON_CV)

Contagion (CONTAG)

Patch richness density (PRD)

Simpson’s diversity index (SIDI)

Simpson’s evenness index (SIEI)

Aggregation index (AI)
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pattern consistent across alternative models of land-

scape structure. Among the 16 patch mosaic models

(8 mosaics 9 2 window sizes), it required an average

of 6 (range 4–8) principal components to account for

more than 95% of the total variance in all 28 patch

metrics, with an average of 2.25 (range 2–3) signif-

icant components based on the Monte Carlo test.

Among the 18 landscape gradient models (9 sur-

faces 9 2 window sizes), it required an average of 8

(range 7–9) principal components to account for more

than 95% of the total variance in all 17 surface

metrics, with an average of 3.7 (range 3–5) significant

components based on the Monte Carlo test. The high

level of redundancy among metrics in both sets of

models is apparent in the cumulative scree plots

(Fig. 2). The pronounced inverted elbow shape to the

curves reflects the high degree of redundancy among

metrics in both sets of models. The differences

between curves reflects the lower redundancy among

surface metrics compared to patch metrics, and the

narrow range of variation about both the median

curves reflects the high degree of consistency in

redundancy patterns across alternative landscape

models.

Surface metrics consistently aggregated into three

or four groups based on hierarchical clustering. The

scree plot shows a pronounced ‘‘elbow’’ at three or

possibly four clusters, a pattern that was highly

consistent across alternative landscape models

(Fig. 3). The hierarchical clustering of metrics is

better visualized as a dendrogram, as depicted in

Fig. 4 for a representative model. This particular

dendrogram reveals a strong three-cluster solution,

which was ubiquitous across landscape models, and a

weaker four-cluster solution, which was nearly

universal. The agglomeration coefficient averaged

0.91 (range 0.89–0.92) across landscape models

indicating a strong clustering structure. The cohe-

siveness of the four clusters varied somewhat

(Fig. 5). Both the first cluster (comprised of five

Fig. 2 Scree plot of principal components analysis of 28 patch

metrics (Table 3) and 17 surface metrics (Appendix—Elec-

tronic Supplementary Material) computed for 264 sample

landscapes for each of 16 different patch mosaic models (8

mosaics 9 2 window sizes) and 18 different landscape

gradient models (9 surfaces 9 2 window sizes). The scree

plot depicts the cumulative proportion of variance explained

(y-axis) by an increasing number of principal components (x-

axis) for each set of metrics. The thick solid and dotted lines
represent the medians and the thin dashed lines represent the

minimums and maximums across the 16 patch mosaic models

and 18 landscape gradient models, respectively

Fig. 3 Scree plot of an agglomerative hierarchical clustering

of 17 surface metrics (Appendix—Electronic Supplementary

Material) computed for 264 sample landscapes and 18 different

landscape gradient models (9 surfaces 9 2 window sizes). The

scree plot depicts the dissimilarity (y-axis) at which surface

metrics (and clusters) fuse, read right to left, to form a

decreasing number of clusters (x-axis). Dissimilarity was based

on Spearman rank correlation distance between surface metrics

and fusion was based on Ward’s minimum-variance method.

The solid line represents the median and the dotted lines
represent the minimum and maximum across the 18 landscape

gradient models
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metrics: Sa, Sq, S10z, Sdq, and Sdr) and the fourth

cluster (comprised of two metrics: Sfd and Srwi)

maintained perfect cohesiveness (cohesiveness

index = 1) across landscape models. In other words,

all metrics within each of these clusters always

clustered together regardless of the landscape model.

The second cluster, comprised of five metrics (Ssk,

Sku, Sbi, Sci, and Svi), maintained the lowest degree

of cohesiveness among clusters (cohesiveness

index = 0.69). The instability of this cluster was

largely due to Sku, which ‘‘bounced’’ around some-

what among clusters but more often than not was

associated with this cluster. Removing this metric

from the cluster increased its cohesiveness to 0.86.

The third cluster, comprised of four metrics (Std, Stdi,

Str20, and Str37), maintained a cohesiveness of 0.74

across models. A single metric, Sds, did not consis-

tently cluster with other metrics.

The four clusters of surface metrics varied mark-

edly in their relationships to the patch metrics. The

metrics in the first cluster (Sa, Sq, S10z, Sdq, and Sdr)

exhibited strong correlations with a number of patch

metrics, although the strength of the individual

correlations varied somewhat between the landscape

models under comparison. For example, Fig. 6a

depicts the average correlations between Sa (as a

representative of cluster 1) and each of the 28 patch

metrics across the three patch mosaic models derived

from the DEM (left-hand figure) and across the three

patch mosaic models derived from NDVI (right-hand

figure). The patch metrics are depicted in rank order

from largest positive correlation to largest negative

correlation for each of the models. While the exact

ordering of patch metrics varies somewhat between

the DEM and NDVI models, there is general

consistency among the most strongly correlated

metrics. In general, the first cluster represents a

gradient in overall surface diversity (i.e., vertical

variability in the surface), analogous to a gradient in

patch richness under the patch model, and spatial

heterogeneity and contrast (i.e., horizontal variability

in the surface), analogous to a gradient in patchiness

and edge contrast under the patch model. Unlike the

metrics in the first cluster, the metrics in the

remaining three clusters did not exhibit strong and

consistent correlations with the patch metrics

Fig. 4 Dendrogram of an

agglomerative hierarchical

clustering of 17 surface

metrics (Appendix—

Electronic Supplementary

Material) computed for 264

sample landscapes

representing the Tasseled

cap greenness index (TsGR)

derived from Landsat

ETM? (see Table 2).

Clustering was based on

Spearman rank correlation

distances between surface

metrics and Ward’s

minimum-variance fusion.

The leaves of the

dendrogram represent

individual surface metrics

and the hierarchical manner

by which they agglomerate

into increasingly fewer and

larger clusters is given by

the height (y-axis) at which

they are joined together.

The gray boxes show the

four-cluster solution
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(Fig. 6b–d), suggesting that these components of

surface structure do not have analogs in patch

mosaics, at least based on the patch metrics consid-

ered here.

Discussion

Landscape models: from patch mosaics to

landscape gradients

One of the preeminent challenges in the study and

management of landscapes is characterizing spatial

heterogeneity in a manner and at a scale meaningful

to the phenomenon under consideration (Li and Wu

2004). Given the nearly ubiquitous use of the patch

mosaic model of landscape structure, much of this

difficulty is centered on the choice of an appropriate

classification of the landscape. In most applications, a

single map is created to represent the structure of the

landscape and the analysis of pattern–process rela-

tionship proceeds with little or no attention to

uncertainty in the landscape model—the patch

mosaic is taken as correct. One of the critical issues

in defining the patch mosaic is selecting an appro-

priate thematic resolution (i.e., the number of discrete

classes to represent). More often than not, the choice

of resolution(s) is arbitrary, as only rarely are there

ecological data to inform the choice of optimal

resolution(s) (Thompson and McGarigal 2002).

Moreover, in many applications the final patch

mosaic is created by classifying data that is contin-

uous in origin. For example, land cover maps are

commonly created by classifying remotely sensed

imagery (e.g., Landsat TM/ETM?) and ecological

land unit maps are often created by classifying

continuous terrain data (e.g., elevation, topographic

position, topographic wetness, etc.). In some cases,

the classification may be justified by the discrete

nature of the spatial heterogeneity (e.g., landscapes

with an abundance of human land use practices), but

more often than not the classification cannot be

justified on grounds other than conventionality and

ease of use with existing analytical tools (e.g.,

FRAGSTATS).

As illustrated in this study, the landscape gradient

model offers an alternative to the patch mosaic model

when the raw spatial data is continuously scaled.

The advent of surface pattern metrics eliminates the

necessity of discretely classifying landscapes for the

purpose of quantifying landscape patterns, and in so

doing eliminates the errors and arbitrariness of the

classification process. Given the increasing availabil-

ity of remotely sensed data, there are almost an

Fig. 5 Ordered cluster cohesiveness matrix depicting the

proportion of models in which each surface metric co-occurred

in the same cluster with each other metric based on a four-

cluster solution. Clustering was based on agglomerative

hierarchical clustering of 17 surface metrics (Appendix—

Electronic Supplementary Material) computed for 264 sample

landscapes and 18 different landscape gradient models (9

surfaces 9 2 window sizes) using Spearman rank correlation

distance between surface metrics and Ward’s minimum-

variance fusion. The cluster cohesiveness index is the average

proportion of co-occurrence among the metrics in each

designated cluster. An index of one means the constituent

metrics co-occur in the same cluster across all landscape

models
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Fig. 6 Histogram of the average pairwise Spearman rank

correlations (in rank order from largest positive correlation to

largest negative correlation) between a surface roughness, b
surface skewness, c dominant texture direction, and d radial

wavelength index (Appendix—Electronic Supplementary

Material) and each of the 28 patch metrics (Table 3) for two

different landscape model comparisons. The DEM. mean

represents the average correlation between the corresponding

surface metric derived from the DEM surface (Table 2) and

each patch metric across three patch mosaics derived from the

DEM (5, 10, and 15 elevation classes), and similarly for NDVI
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unlimited number of ways to represent landscape

gradients, making it easy to construct alternative

landscape gradient models and incorporate model

uncertainty into analyses. To demonstrate this flex-

ibility, in this study we constructed nine different

landscape gradient models based on Landsat ETM?

and digital elevation data. Each of these models

represented an alternative perspective on the under-

lying spatial heterogeneity of the landscape. Because

there was little work involved in preparing these

Fig. 6 continued
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surfaces and virtually no subjectivity, they allowed us

to readily examine uncertainty in our representation

of the landscape—in this case, uncertainty in the

redundancy and behavior of various surface metrics.

Attributes of surface patterns

Based on our examination of 17 surface metrics

applied to 18 landscape gradient models (9 gradient

surfaces 9 2 window sizes), a number of character-

istics of surface patterns stand out. First, like patch

mosaics, landscape gradients have both nonspatial

and spatial components. The nonspatial components

refer solely to the vertical variability in the surface,

whereas the spatial components refer to the horizon-

tal (and vertical) variability in the surface. More

specifically, the nonspatial components refer to

variability in the overall height distribution of the

surface, but not the spatial arrangement, location or

distribution of surface peaks and valleys. As such, the

nonspatial surface metrics (Appendix—Electronic

Supplementary Material) measure aspects of land-

scape composition, not configuration, and are akin to

measures of patch type diversity in the patch mosaic

paradigm. Conversely, the spatial components refer

to the arrangement, location or distribution of surface

peaks and valleys. As such, the spatial surface metrics

(Appendix—Electronic Supplementary Material)

measure aspects of landscape configuration.

Second, in contrast to the suite of available patch

metrics, the available surface metrics (including those

investigated here) are all ‘‘structural’’ metrics. Struc-

tural metrics measure physical properties of the

landscape pattern independent of the process under

investigation, and thus do not require any additional

user parameterization (McGarigal 2002). In contrast,

many of the patch metrics are functional (e.g., edge

contrast and core area), requiring user parameteriza-

tion that renders them functionally related to the

process under consideration (McGarigal 2002). While

this difference is noteworthy, it may simply be a

reflection of the early stage of development of surface

metrics intended for ecological application.

Third, as with patch mosaics, there are several

structural components of landscape gradients. We

observed four relatively distinct components of

landscape structure based on empirical relationships

among the 17 surface metrics across the 18 landscape

gradient models.

Surface roughness

The dominant structural component of the surfaces

we examined was actually a combination of two

distinct sub-components: (1) the overall variability in

surface height and (2) the local variability in slope.

The first sub-component refers to the nonspatial

(composition) aspect of the vertical height profile;

that is, the overall variation in the height of the

surface without reference to the horizontal variability

in the surface, and is represented by three surface

amplitude metrics: average roughness (Sa), root mean

square roughness (Sq), and ten-point height (S10z)

(Appendix—Electronic Supplementary Material).

These metrics are analogous to the patch type

diversity measures (e.g., Simpson’s diversity index)

in the patch mosaic paradigm, whereby greater

variation in surface height equates to greater land-

scape diversity. Importantly, while these metrics

reflect overall variability in surface height, they say

nothing about the spatial heterogeneity in the surface.

The second sub-component refers to the spatial

(configuration) aspect of surface roughness with

respect to local variability in height (or steepness of

slope), and includes two surface metrics: surface

area ratio (Sdr) and root mean square slope (Sdq)

(Appendix—Electronic Supplementary Material).

These metrics are analogous to the edge density and

contrast metrics (e.g., contrast-weighted edge density,

total edge contrast index) in the patch mosaic

paradigm, whereby greater local slope variation

equates to greater density and contrast of edges.

Interestingly, while these surface metrics reflect

something akin to edge contrast, they do so without

the need to supply edge contrast weights because they

are structural metrics. These two metrics appear to

have the greatest overall analogy to the patch-based

measures of spatial heterogeneity and overall patch-

iness. A fine-grained patch mosaic (as represented by

any number of common patch metrics, such as mean

patch size or density) is conceptually equivalent to a

rough surface with high local variability.

On conceptual and theoretical grounds, these

spatial and nonspatial aspects of surface roughness

are independent components of landscape structure;

however, in the landscape gradients we examined

these two aspects were highly correlated empirically.

This distinction between conceptually and/or theo-

retically related metrics and groupings based on their
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empirical behavior has also been demonstrated for

patch metrics (Neel et al. 2004).

Shape of the surface height distribution

Another important nonspatial (composition) compo-

nent of the surfaces we examined was the shape of the

surface height distribution. This component was

comprised of five metrics: skewness (Ssk), kurtosis

(Sku), surface bearing index (Sbi), valley fluid reten-

tion index (Svi), and core fluid retention index (Sci).

All of these metrics measure departure from a

Gaussian distribution of surface heights, but empha-

size different aspects of departure from normality

(Appendix—Electronic Supplementary Material).

Ssk and Sku measure the familiar skewness and

kurtosis of the surface height distribution, while the

surface bearing metrics, Sbi, Sci, and Svi, measure

different aspects of the surface height distribution in

its cumulative form (Fig. 7). This component was

universally present across landscape models, but the

composition of metrics varied somewhat among

models reflecting the complexities inherent in mea-

suring non-parametric shape distributions. There were

no strong patch mosaic analogs to these surface

metrics (Fig. 6b); however, departure from a Gaussian

distribution of surface heights was weakly correlated

with, and conceptually most closely related to, patch-

based measures of landscape dominance (or its

compliment, evenness) such as Simpson’s evenness

index (SIEI) and largest patch index (LPI). Impor-

tantly, these five surface metrics measure the ‘shape’

of the surface height distribution and are not affected

by the surface roughness (as defined earlier) per se.

Angular texture

A third prominent component of the surfaces we

examined was the angular orientation (direction) of

the surface texture and its magnitude. This

Fig. 7 Surface bearing area curve (also called the Abbott

curve) representing the cumulative form of the surface height

distribution. a An arbitrarily selected landscape represented

with the DEM landscape gradient model. b The surface height

distribution shown as a frequency distribution (bars) and as a

cumulative frequency (line). c The surface bearing area curve

is the inverted cumulative height distribution; it is divided into

zones to highlight different parts of the height profile.

Generally, the ‘‘peak’’ zone corresponds to the top 5% of the

surface height range, the ‘‘core’’ zone corresponds to the 5–

80% height range, and the ‘‘valley’’ zone corresponds to the

bottom 20% of the height range. The void volume (area above

the bearing area curve) in the ‘core’ zone (shown in light

stippling) is used in the core fluid retention index (Sci).
Similarly, the void volume in the ‘valley’ zone (shown in dark

stippling) is used in the valley fluid retention index (Svi)
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component is inherently spatial, since the arrange-

ment of surface peaks and valleys determines whether

the surface has a particular orientation or not, and is

represented by four spatial metrics: dominant texture

direction (Std), texture direction index (Stdi), and two

texture aspect ratios (Str20 and Str37). The compu-

tational methods behind these metrics are too

complex to describe here (but see Appendix—Elec-

tronic Supplementary Material), but are based on

common geostatistical methods (Fourier spectral

analysis and autocorrelation functions) that determine

the degree of anisotropy (orientation) in the surface.

Not surprisingly given our knowledge of the study

landscape, we did not observe sample landscapes

with a strong texture orientation. We did observe

mild levels of texture orientation in some landscapes,

but many were without apparent orientation (Fig. 8).

Importantly, the measurement of texture direction has

no obvious analog in the patch mosaic paradigm;

indeed, we observed no pairwise correlation greater

than ± 0.22 between any of these four surface

metrics and any of the 28 patch metrics (Fig. 6c).

Radial texture

The fourth prominent component of the surfaces we

examined was the radial texture of the surface and its

magnitude. Radial texture refers to repeated patterns of

variation in surface height radiating outward in

concentric circles from any location. Like angular

texture, this component is inherently spatial, since the

arrangement of surface peaks and valleys determines

whether the surface has any radial texture or not, and is

represent by three spatial metrics: dominant radial

wavelength (Srw), radial wave index (Srwi), and

fractal dimension (Sfd). Again, the computational

methods behind these metrics are based on common

geostatistical methods (see Appendix—Electronic

Supplementary Material). A limitation of these and

other metrics based on Fourier spectral analysis and

Fig. 8 Angular texture can

be calculated from the

Fourier spectrum (see

Appendix—Electronic

Supplementary Material).

The angular spectrum

(shown below and to the

right of each image) depicts

the relative amplitudes for

M equally spaced angles.

A larger amplitude in one

direction indicates a

dominant lay or orientation

in the surface. The sample

landscapes shown here

based on the NDVI

landscape gradient model

illustrate the differences in

angular texture we

observed: a no texture

orientation (Std = 0;

Stdi = 0.93); b mild texture

orientation (Stdi = 0.83) at

approximately 89�
(Std = 89.37)
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autocorrelation functions is that they are only sensitive

to repeated, regular patterns. We observed that in the

absence of a prominent radial texture, the dominant

radial wavelength (Srw) ends up being equal to the

diameter of the sample landscape. As a result, in some

of our landscape gradient models we observed too

little variation in this metric and were forced to drop it

from the final analyses. Despite these limitations, we

observed sample landscapes with varying degrees of

radial texture based on the other two metrics (Fig. 9).

In contrast to angular texture, the measurement of

radial texture has at least one conceptual analog in

the patch mosaic paradigm—mean and variability in

nearest neighbor distance. On conceptual grounds, Srw

should equate to mean nearest neighbor distance, and

Srwi and Sfd should equate to the coefficient of

variation in nearest neighbor distance. However, in our

study the corresponding pairwise correlations did not

exceed ± 0.22, nor were there any pairwise correla-

tions greater than ± 0.40 between either of these

surface metrics and any of the 28 patch metrics

(Fig. 6d).

Conclusions

The quantification of landscape structure is generally

considered prerequisite to the study of pattern–

process relationships. In this paper, we described a

variety of surface metrics that allow for the quanti-

fication of landscape gradients, paving the way for an

expanded landscape ecology that encompasses con-

tinuous as well as categorical representations of

spatial heterogeneity. Among other findings, we

demonstrated that landscape gradient surfaces are

multivariate, similar to patch mosaics, and thus

cannot be characterized by any single metric. We

Fig. 9 Radial texture can be calculated from the Fourier

spectrum (see Appendix—Electronic Supplementary Material).

The radial spectrum (shown to the right of each image) depicts

the relative amplitudes (intensity) for M/(2–1) equidistantly

separated semicircles. A larger amplitude at one distance

(wavelength) indicates a dominant radial pattern in the surface.

The sample landscapes shown here based on the NDVI

landscape gradient model illustrate the differences in radial

texture we observed: a weak radial texture (Srwi = 0.58); b
strong radial texture (Srwi = 0.24). Both sample landscapes

have a dominant radial texture at very short wavelengths (i.e.,

distances) indicating a relatively fine-scale to the peaks and

valleys
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identified four distinct structural components that

were universally present across 18 different land-

scape gradient models and suggest these represent a

minimum set of structural components for landscape

gradients. In addition, we demonstrated that land-

scape gradients have properties that do not have

obvious analogs in patch mosaics. Thus, the land-

scape gradient model has the potential to reveal

unique insights into pattern–process relationships.

While our study demonstrates the feasibility of

quantifying the structure of landscape gradients using

surface metrics well known in the field of surface

metrology, several critical challenges remain. While

we examined the behavior of surface metrics com-

puted at two window sizes (i.e., landscape extents), a

thorough examination of the scaling behavior of these

metrics (across both grain and extent, as in Wu et al.

2002) remains a priority for future research. Most

importantly, it remains to be widely demonstrated that

surface metrics can be useful in ecological applica-

tions relating landscape pattern to process. It is

insufficient to be able to quantify surface patterns;

the measured surface patterns must be shown to have a

clear relationship with ecological process for the

metrics to be deemed useful (Li and Wu 2004).

However, the stage is set for landscape ecologists to

critically evaluate the gradient model and surface

metrics for their utility in studying and managing

heterogeneous landscapes. One recent application

used 11 surface metrics derived from a DEM as

predictor variables in tree occurrence models (Evans

and Cushman submitted). A practical obstacle to

meeting this challenge is the lack of accessible

software. While several software packages exist for

quantifying surface patterns (SPIPTM, TrueMapTM,

MountainsMapTM, GLCMSurfTM, and OmnisurfTM;

see reference Gadelmawla (2004), most are expensive,

difficult to use and poorly documented. Consequently,

it remains a priority to implement these methods in

tools such as FRAGSTATS that are readily available

and familiar to landscape ecologists. Otherwise, the

computational demands of surface metrics are gener-

ally comparable to those of patch metrics.
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Appendix. Brief description of some common surface metrics applied in this study. Metrics are 1

grouped into “families” based on the surface properties measured; names, acronyms and 2

descriptions follow that given in the SPIP software program (SPIP). See the program 3

documentation for formulas. See SPIP documentation and Gadelmawla et al (2002) for 4

additional surface metrics. Note, all of these metrics can be calculated with or without correcting 5

for the overall mean height of the surface or a plane (of any order) fit to the surface. In the 6

descriptions, where it matters we define and interpret these metrics based on a correction for the 7

overall mean. 8

Metric Name Description

Amplitude Metrics: measure vertical characteristics of the surface deviations. These metrics 

are sensitive to variability in the overall height distribution, but not the spatial arrangement, 

location or distribution of surface peaks and valleys. As such, these parameters measure 

aspects of landscape composition, not configuration.
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Average roughness 

(Sa)

The average absolute deviation of the surface heights from the mean. 

This is a general measure of overall surface variability and can be 

interpreted as a nonspatial measure of landscape diversity, analogous 

to the patch-based diversity metrics. Larger values represent an 

increasing range of values in the surface attribute (akin to increasing 

patch richness) and/or an increasing spread in the distribution of area 

among levels (heights) of the surface attribute (akin to increasing patch 

evenness). Importantly, this metric does not differentiate among 

different shapes of the surface height profile.

Root mean-square 

roughness (Sq)

The standard deviation of the distribution of surface heights. This is a 

general measure of overall surface variability like Sa, but it is more 

sensitive than Sa to large deviations from the surface mean. Otherwise, 

this metric has the same general interpretation as Sa and is likely to be 

highly correlated with Sa in real-world applications.

Ten-point height 

(S10z)

Average height above the mean height of the surface of the five highest 

local maximums plus the average height below the mean height of the 

surface of the five lowest local minimums. This is a general measure of 

overall surface variability like Sa and Sq, but it is particularly sensitive 

to occasional high peaks or deep valleys. Otherwise, this metric has the 

same general interpretation as Sa and Sq and is likely to be correlated 

with them in real-world applications.
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Surface skewness 

(Ssk)

Asymmetry of the surface height distribution. This is a measure of the 

symmetry of the surface height profile about the mean. It is sensitive to 

occasional deep valleys or high peaks. A surface with as many peaks 

as valleys has zero skewness. Profiles with peaks removed or 

occasional deep valleys have negative skewness; profiles with valleys 

filled in or occasional high peaks have positive skewness. 

Consequently, the value of skewness depends on whether the bulk of 

the surface is above (negative skewed) or below (positive skewed) the 

mean surface height. High skewness, either positive or negative, 

indicates a landscape with a dominant surface height, akin to having a 

‘matrix’ under the patch mosaic model of landscape structure. Thus, 

this metric can be interpreted as a measure of landscape dominance (or 

its complement, evenness), akin to the patch-based evenness metrics.
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Surface kurtosis 

(Sku)

Peaked-ness of the surface distribution. Like Ssk, this is a measure of 

the shape of the surface height profile about the mean line and is 

likewise sensitive to occasional deep valleys or high peaks. A surface 

with a relatively even distribution of heights above and below the 

mean has low kurtosis and is said to by platykurtic (Sku < 3). A surface 

with relatively little area high above or below the mean has high 

kurtosis and is said to be leptokurtic (Sku > 3). Consequently, high 

kurtosis indicates a landscape with a dominant surface height, akin to a 

‘matrix’ under the patch mosaic model of landscape structure; whereas, 

low kurtosis indicates a landscape with an even distribution among 

surface heights. Thus, like Ssk, this metric can be interpreted as a 

measure of landscape dominance (or its complement, evenness). 

Interpreted in combination, surface skewness and kurtosis indicate the 

degree of landscape dominance and the nature of that dominance.
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Surface Bearing Metrics: measure vertical characteristics of the surface deviations like the 

amplitude metrics above, but these metrics are based on the surface bearing area ratio curve 

(also called the Abbott curve) computed by inversion of the cumulative height distribution 

histogram (Fig. 7). The bearing area curve represents the cumulative form of the surface 

height distribution used in the amplitude metrics. Generally, the bearing area curve is divided 

into three zones, called the “peak” zone, corresponding to the top 5% of the surface height 

range, “core” zone, corresponding to the 5% - 80% height range, and “valley” zone, which 

corresponds to the bottom 20% of the height range of the surface. Like the amplitude metrics, 

these metrics are sensitive to variability in the overall height distribution, but not the spatial 

arrangement, location or distribution of surface peaks and valleys. As such, these parameters 

likewise measure aspects of landscape composition, not configuration.
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Surface bearing 

index (Sbi)

Ratio of the root mean square roughness (Sq) to the height from the top 

of the surface to the height at 5% bearing area (Fig. 7). Like Ssk and 

Sku, this too is a measure of the shape of the surface height profile. 

However, Sbi is particularly sensitive to occasional high peaks and not 

occasional deep valleys. For a Gaussian height distribution Sbi

approaches 0.608. A surface with relatively few high peaks has a low 

surface bearing index (Sbi < 0.608). A surface with relatively many 

high peaks or without high peaks at all has a high surface bearing 

index (Sbi > 0.608). Consequently, like Ssk and Sku, this metric can be 

interpreted as a measure of landscape dominance (or its complement, 

evenness), but with additional information as to the nature of the 

surface composition. 
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Valley fluid 

retention index (Svi)

Void volume (area above the Abbott curve) in the ‘valley’ zone (Fig. 

7). Like Ssk and Sku, this too is a measure of the shape of the surface 

height profile. In contrast to Sbi, Svi is particularly sensitive to 

occasional deep valleys and not occasional high peaks. For a Gaussian 

height distribution Svi approaches 0.11. A surface with relatively few 

deep valleys has a low valley fluid retention index (Svi < 0.11). A 

surface with relatively many deep valleys has a high valley fluid 

retention index (Svi > 0.11). Consequently, like Ssk and Sku, this 

metric can be interpreted as a measure of landscape dominance (or its 

complement, evenness), but with additional information as to the 

nature of the surface composition. 
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Core fluid retention 

index (Sci)

Void volume (area above the bearing area curve) in the ‘core’ zone 

(Fig. 7). Like Ssk and Sku, this too is a measure of the shape of the 

surface height profile. In contrast to Sbi and Svi, Sci is sensitive to both 

occasional high peaks and occasional deep valleys. For a Gaussian 

height distribution Sci approaches 1.56. A surface with relatively few 

high peaks and/or low valleys has a high core fluid retention index (Sci 

> 1.56). A surface with relatively many high peaks and/or low valleys 

has a low core fluid retention index (Sci < 1.56). Consequently, like 

Ssk, Sku and the other surface bearing metrics, this metric can be 

interpreted as a measure of landscape dominance (or its complement, 

evenness), but with additional information as to the nature of the 

surface composition. 

Spatial Metrics: measure combined horizontal and vertical characteristics of the surface 

deviations. These metrics describe the density of summits, orientation (direction) of the 

surface texture (based on the Fourier spectrum), and slope gradients of the local surface. These 

metrics are sensitive to variability in the overall height distribution as well as the spatial 

arrangement, location or distribution of surface peaks and valleys. As such, these parameters 

measure aspects of landscape configuration.
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Summit density 

(Sds)

Number of local peaks per area. This is a simple measure of overall 

spatial variability in surface height and is analogous to patch density in 

the world of patch metrics. Larger values represent increasing spatial 

heterogeneity in the surface attribute, but the parameter is sensitive to 

noisy peaks so it should be interpreted carefully.

Surface area ratio 

(Sdr)

Ratio between the surface area to the area of the flat plane with the 

same x-y dimensions. For a totally flat surface, the surface area and the 

area of the xy plane are the same and Sdr = 0 %. Sdr increases as the 

local slope variability increases. This metric is somewhat analogous to 

the contrast-weighted edge density metric in the world of patch 

metrics, because increasing variability and steepness of local slopes is 

analogous to increasing density of edges and the magnitude contrast 

between abutting patches along those edges.

Root mean square 

slope (Sdq)

Variance in the local slope across the surface. This is a general 

measure of surface contrast like Sdr, but it is more sensitive than Sdr to 

very steep slopes (i.e., abrupt edge-like changes in surface height). 

Otherwise, this metric has the same general interpretation as Sdr and is 

likely to be highly correlated with Sdr in real-world applications.
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Dominant texture 

direction (Std)

Angle of the dominating texture in the image calculated from the 

Fourier spectrum. The relative amplitudes for the different angles are 

found by summation of the amplitudes along M equiangularly 

separated radial lines, as shown in figure 8. The result is called the 

angular spectrum. Std is scaled to give the angle with the maximum 

amplitude sum and ranges between 0-180. Note, this parameter is only 

meaningful if there is a dominating direction on the sample, and is 

given as 0 for areas without a dominant texture direction (e.g., flat 

areas). Importantly, this parameter has no analog in the world of patch 

metrics.

Texture direction 

index (Stdi)

Relative dominance of Std over other directions of texture, defined as 

the average amplitude sum over all directions divided by the amplitude 

sum of the dominating direction. Stdi ranges from 0 to 1. Surfaces with 

very dominant directions will have Stdi values close to zero and if the 

amplitude sum of all directions are similar, Stdi is close to 1. Like Std, 

this metric has no analog in the world of patch metrics.
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Dominant radial 

wavelength (Srw)1

Dominating wavelength found in the radial Fourier spectrum. The 

radial spectrum is calculated by summation of amplitude values around 

M/(2 -1) equidistantly separated semicircles as indicated in figure 9. 

The result is called the radial spectrum. Srw gives the radial distance 

with the maximum amplitude sum. Because this metric is based on the 

Fourier spectrum, it is only sensitive to regular patterns of radial 

variation in surface heights. In practice, in the absence of regular radial 

patterns, this metric returns a wavelength equal to the diameter of the 

landscape. Importantly, this parameter has no direct analog in the 

world of patch metrics, although it is conceptually akin to the mean 

distance between patches (i.e., mean nearest neighbor distance) when 

the spacing between patches is somewhat uniform; that is, when the 

coefficient of variation in nearest neighbor distances is very small.
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Radial wavelength 

index (Srwi)

Relative dominance of Srw over other radial distances, defined as the 

average amplitude sum over all radial distances divided by the 

amplitude sum of the dominating wavelength. Srwi ranges from 0 to 1. 

Surfaces with very dominant radial wavelengths will have Srdi values 

close to zero and if there is no dominating wavelength, Srwi is close to 

1. Like Srw, this metric has no direct analog in the world of patch 

metrics, although it is conceptually related to the coefficient of 

variation in nearest neighbor distance since smaller values imply 

increasing regularity in the spacing of surface height deviations.



13

Texture aspect ratio 

(Str20 & Str37)

Defined as the ratio of the fastest to slowest decay to correlation 20% 

and 37% (by convention) of the autocorrelation function, respectively. 

Briefly, the autocorrelation of a surface is a surface itself, indicating 

the spatial autocorrelation in all directions. The autocorrelation surface 

always includes a central peak with a standard amplitude of 1. The 

form of the central peak is an indicator of the isotropy of the surface. 

Str is calculated by thresholding the central peak at a specified level, 

e.g., 0.2 and 0.37. The minimum and maximum radii are sought on the 

image of the central lobe remaining after thresholding. If the surface 

presents the same characteristics in every direction the central lobe will 

be approximately circular and the min and max radii will be 

approximately equal. If the surface presents a strong orientation, the 

central lobe will be stretched out and the max radius will be much 

greater than the min radius. Thus, Str ranges from 0 to 1. For a surface 

with a dominant lay, Str will tend towards zero, whereas a spatially 

isotropic texture will result in a Str value of 1. This metric has no 

direct analog in the world of patch metrics.
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Fractal dimension 

(Sfd)

Calculated for the different angles of the angular spectrum by 

analyzing the Fourier amplitude spectrum (see Std); for different 

angles the Fourier profile is extracted and the logarithm of the 

frequency and amplitude coordinates calculated. The fractal dimension 

for each direction is then calculated as 2.0 minus the slope of the log -

log curves. Sfd ranges from 2 to 4; larger values indicate a fractal 

surface with an increasing dominant radial wavelength.

1Srw is included in the table for completeness, but it was not included in the analyses reported in 9

this paper. 10
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