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Spatial analysis in ecology

The first step in understanding ecological processes
is to identify patterns. Ecological data are usually
characterized by spatial structures due to spatial auto-
correlation. Spatial autocorrelation refers to the pat-
tern in which observations from nearby locations are
more likely to have similar magnitude than by chance
alone. The magnitude, intensity, as well as extent of
spatial autocorrelation can be quantified using spa-
tial statistics [3–5, 7]. Most ecological data exhibit
some degree of spatial autocorrelation, depending on
the scale at which the data were recorded and then
analyzed. Ecological phenomena are also character-
ized by the multiple ecological processes that act
upon them; these processes often operate at more
than one spatial scale. Ecological data are a compos-
ite of several spatial scales: trends at macroscales;
patches, gradients and patterns at meso- and local
scales; and random patterns at local and microscales.
The different processes and patterns at different
scales are not necessarily linear or additive, and this
contributes to the degree of spatial dependence in
the data.

Spatial autocorrelation can have four sources, of
which two are of direct scientific interest. There is a
distinction between spurious, interpolative, true and
induced autocorrelation [7]. Even when observations
are statistically independent, spurious autocorrelation
may be observed due to underlying processes affect-
ing the spatial arrangement of the data. Interpolative
autocorrelation arises when spatial response surfaces
are smoothed, interpolated, or extrapolated. True spa-
tial autocorrelation arises from causal interaction
among nearby sample locations. Finally, spatial auto-
correlation may be induced by a dependent variable
through a causal relationship with another spatially
autocorrelated variable. Spurious and interpolative
autocorrelation are a nuisance. True and induced spa-
tial autocorrelation arises from space–time processes
(e.g. dispersal, migration; see Point processes, spa-
tial–temporal) that are of direct scientific interest.
This causality motivated researchers to use spatial
autocorrelation as a clue or ‘signature’ left by the past
action of space–time processes. This inherent spa-
tial autocorrelation of ecological data has fundamen-
tal environmetric implications: it violates assump-
tions of independence required by many parametric
inferential tests. To ensure independent samples, the

use of a random sampling design is often recom-
mended (see Spatially constrained sampling); this,
however, will not remove true or induced spatial
autocorrelation.

Properties of Spatial Statistics

Spatial statistics are based on assumptions. The most
important one is the stationarity assumption, implying
that the data should be normally distributed with the
same mean and variance over the entire study area [3,
6, 7]. The spatial pattern should also be isotropic, i.e.
the pattern shows the same intensity in all directions.
A spatial pattern that varies according to direction is
anisotropic.

Furthermore, both the size (i.e. area) and shape
(e.g. rectangular rather than square) of the study plot
affect the ability of most spatial statistics to estimate
accurately the intensity, range and type of spatial pat-
tern as well as its significance. This problem is known
as the edge effect, where near the edge (boundary) of
the study plot there are fewer neighboring sampling
units than at the middle of the study plot. Hence,
spatial patterns estimated at small and large spatial
lags are based on fewer sampling units than those
for intermediate spatial lags, affecting the accuracy
of the estimated spatial pattern. Several corrections
for edge effects have been proposed and are specific
to the particularity of spatial statistical methods [3];
a simple rule of thumb is to compute a spatial pattern
for half to two-thirds of the smallest edge length of
the study plot [5].

Spatial Statistics: An Overview

Since the 1950s, several spatial methods of analysis
have been developed and modified to improve our abil-
ity to detect and characterize spatial patterns. These
stem from several fields of study (plant ecology,
animal ecology, geography, mining engineering), hav-
ing more or less different goals (explorative vs. infer-
ence), mathematical approaches (variance–covariance
vs. count-based methods) and underlying assumptions
(stationarity or pseudo-stationarity) [1–10].

Selection of appropriate methods for use with spa-
tial data can be established either by the research
objective (Table 1) or by the measurement types
and sampling designs of the data (Table 2). Spatial
statistics can also be classified according to the type
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Table 1 Spatial statistics classified by objective

Objective Spatial statistics

Exploration Nearest neighbor, k-nearest
neighbor

Ripley’s K (uni- and bivariate)
Join-count
Moran’s I, Geary’s c,

semivariance �
Mantel test (multivariate)

Inference Ripley’s K (uni- and bivariate)
Join-count
Moran’s I, Geary’s c,

semivariance �
Mantel test (multivariate)

Mapping
(interpolation)

Trend surface analysis, kriging,
splines, Voronoi polygons

of spatial structure that the methods are measuring
or estimating: (a) global spatial structure (e.g. vari-
ance/mean ratio and aggregated indices); (b) spatial
periodicity (e.g. spectral analysis, wavelet analy-
sis, fractal dimension); (c) spatial intensity and
range as a function of spatial lags (e.g. Ripley’s
K function, blocked quadrat variance methods, join-
count, Moran’s I, Geary’s c, Mantel test, semivari-
ance � , SADIE); and (d) spatial interpolation (e.g.
trend surface analysis, kriging, splines, Voronoi poly-
gons). Below, we present only a few of the spatial

statistics that are currently used in ecology. Sev-
eral excellent spatial statistics textbooks and review
articles are available for further detail about these
methods [1–10].

Nearest Neighbor Distance

Given the above definition of spatial autocorrelation,
it is expected that the x–y coordinates of ‘points’ (e.g.
individual plant stems) having a spatial structure are
more likely to be spatially close than expected by
chance alone. Following this simple idea, the near-
est neighbor method measures the mean nearest
distance for all points di, where i D 1 for the first
neighbor [3, 5, 10]. This analysis assumes that all the
points (e.g. individual trees) in the study plot are sur-
veyed and mapped. Then, the observed mean nearest
distance is compared to the expected mean nearest
distance. Under complete spatial randomness (CSR),
counts in local areas follow a Poisson distribution and
di follows a Weibull distribution, so that

E
di� D �i

(
A

n

)1/2


1�

where �i is a constant which varies as a function
of the ith neighbor analyzed, A is the total area
sampled, and n is the number of points mapped.

Table 2 Spatial statistics classified by data measurement type and sampling design

Data types

Sampling design Categorical/qualitative Numerical/quantitative

Exhaustive census
(x–y coordinates)

Nearest neighbors
k-Nearest neighbors
Ripley’s K (uni- and bivariate)
Join-count

Aggregation indices (e.g.
variance/mean, etc.)

Regular spacing (1D
and 2D)

Block variance quadrat
Spectral analysis
Wavelet analysis
Fractal dimension

Moran’s I, Geary’s c, Getis
(global and local)

Semivariance �
SADIE
Mantel test (multivariate)
Trend surface analysis, kriging,

splines

Irregular spacing (1D
and 2D)

Fractal dimension Moran’s I, Geary’s c, Getis
(global and local)

Semivariance �
SADIE
Mantel test (multivariate)
Trend surface analysis, kriging,

splines, Voronoi polygons
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The size (i.e. area) of the study plot, A, will affect
the expected nearest neighbor value. This technique
has been extended to higher neighbors, k-nearest
neighbors, and is also known as the refined nearest
neighbor method.

Ripley’s K Function

Following the spirit of the refined nearest neighbor
analysis, Ripley’s K function quantifies the spatial
pattern intensity of points for various sizes of a cir-
cular search window [3, 10]. As with the nearest
neighbor method, points correspond to the locations
of discrete events (e.g. individuals). All the events
of a given study plot need to be mapped (i.e. x–y
coordinate of each event). Ripley’s K function com-
putes the overall mean number of points lying within
a circular search window of radius t:

K̂
t� D
��1

∑n

iD1

∑n

jD1
It
ei, ej�

n
for i 6D j and t > 0 
2�

where the point intensity, �, is estimated as the
density n/A, It is an indicator function that takes
value 1 when ej is within distance t of event ei (and
0 otherwise), and n is the total number of events
(Figure 1a). By using a circular window, Ripley’s
K function is an isotropic cumulative count of all
points at distances from 0 to t. The expected number
of events under a CSR process is �t2.

To linearize and stabilize the variances [3], what
can be called Ripley’s L̂
t� should be used instead of
K̂
t�:

L̂
t� D
(

K̂
t�

�

)1/2

or L̂
t� D t �
(

K̂
t�

�

)1/2


3�

The expected value of L̂
t� under a Poisson pro-
cess is 0: positive values indicate spatial clustering,
while negative values indicate spatial segregation
(Figure 1a). Monte Carlo simulations of the Pois-
son point pattern process (i.e. CSR), or other more
realistic point processes (see Point processes, spa-
tial), are used to provide a confidence envelope of
this function [2].

Ripley’s K and L functions have been extended
to analyze the spatial relationship between points

from two event types where positive values indicate a
positive interaction between the two variables, while
negative values indicate spatial segregation or repul-
sion between them.

Blocked Quadrat Variance

Transects or grids of contiguous sampling units (e.g.
quadrats) are used typically in plant ecology to iden-
tify changes in spatial structure along a gradient.
The blocked quadrat variance methods [4] have
been developed to identify spatial pattern in data
of contiguous samples by computing the variance
using various sizes of blocks of units as the search
window. Several algorithms of this type have been
proposed: for example, two-term local quadrat vari-
ance (TTLQV), paired-quadrat variance, and three-
term local quadrat variance [4]. The TTLQV, for
example, computes the variance from pairs of adja-
cent blocks of b units each as

V2
b� D

∑nC1�2b

iD1

(∑iCb�1

jDi
xj �

∑iC2b�1

jDiCb
xj

)2

2b
n C 1 � 2b�

4�

for a range of values of b. This variance is plotted as
a function of b (Figure 1b) and peaks in the variance
are interpreted as indicating scales of spatial pattern
in the data [4].

Join-count Statistics

Spatial patterns for binary data (e.g. presence/
absence) from adjacent sampling units (e.g. quadrats)
or regions (e.g. counties) can be assessed using join-
count statistics [10]. For the binary case, the null
hypothesis states that neighboring regions are more
likely to be of the same category, say 0 (white) or
1 (black), and therefore not described by a pattern
of CSR. The observed join-count statistics (JBB
and JWW) count the number of join encounters
in adjacent regions having the same category; the
corresponding JBW statistic counts the number of
adjacent regions not having the same category. Hence
the JBB and JWW statistics assess the presence of
positive spatial autocorrelation, while JBW assesses
the presence of negative spatial autocorrelation.
Where the observation xi is 0 or 1, the count of
black–black (1–1) joins can be calculated as

JBB D
∑∑

wijYij, where Yij D xixj 
5�
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with wij a weight with value 1 if two samples, xi and
xj, are adjacent (‘joined’) and 0 for all other cases.
The count of black–white (1–0) joins is calculated as

JBW D
∑∑

wijYŁ
ij, where YŁ

ij D 1 � υ
xi, xj�


6�

with υ the Kronecker delta function. The significance
of the join-count statistics is achieved by computing a
standard normal deviate (i.e. subtracting the mean and

dividing by the standard error) using a two-tailed
test to detect positive or negative spatial autocor-
relation. Join-count statistics have been extended to
multiple category data [10].

Spatial Autocorrelation Coefficients

Spatial intensity and scale of quantitative data
from adjacent or noncontiguous sampling units (e.g.

(a)

Distance
0

L^

(b)

Y

X

Variance

Block size

Figure 1 (a) The left graph is the map of the x–y coordinates of point data (e.g. trees) where the circle is Ripley’s
K search window of radius t used to count the observed number of points. The right graph is the plot of observed L̂
t�
(plotted as small open circles) against distance (t). The expected L
t� is depicted by the heavy diagonal line. The two lines
above and below the diagonal line indicate the confidence envelope. At small distances the spatial pattern is significantly
aggregated, while at large distances the pattern is significantly segregated. (b) The left graph illustrates how point data
(e.g. trees) can be sampled using contiguous sampling units. The rectangle is the TTLQV search window of block size
b D 2 (see (4)). The right graph is the plot of the TTLQV variance against the block size. The first peak indicates the
scale of the first spatial aggregation of the data while the second weaker peak at larger distance indicates the periodicity
of the spatial structure. (c) The left graph illustrates how point data (e.g. trees) can be sampled using contiguous sampling
units. The circle illustrates the spatial distance class used in Moran’s I to compute spatial autocorrelation at increasing
spatial lags, d. Here, the observed Moran’s I at the spatial lag of d D 2 is computed using only the search region between
the dotted circle and the next solid circle (i.e. d > 1 and d D 2). The right graph is the spatial correlogram where for
small distances the spatial autocorrelation is positive and significant. The patch size is found just after the second distance
class, i.e. when the values of spatial autocorrelation switch from positive values at short distances to negative values at
intermediate and large distances. (d) The left graph is as in (c). The right graph is the experimental variogram where the
range (a) is, as for Moran’s I, between the second and third distance classes, hence where the sill starts. The nugget effect is
almost zero
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Figure 1 (Continued )

quadrats) can be estimated using spatial autocorrela-
tion coefficients such as Moran’s I and Geary’s c [3,
5, 7]. Moran’s I computes the degree of correlation
between the values of a variable as a function of spa-
tial lags. This coefficient is structurally comparable
to a Pearson’s product–moment correlation coeffi-
cient and computes the deviation between the values
of the variable and its mean (see below). Moran’s I
varies from �1 (negative autocorrelation) to 1 (posi-
tive autocorrelation), with an expected value close to
zero in the absence of spatial autocorrelation [specif-
ically, E
I� D �
n � 1��1]. Geary’s c, on the other
hand, measures the difference among values of a
variable at nearby locations. It behaves somewhat
like a distance measure and varies from 0 for per-
fect positive autocorrelation, to about 2 for a strong
negative autocorrelation. In the absence of signifi-
cant spatial autocorrelation, the expected value E(c)
is 1.

Moran’s I coefficient is computed for increasing
distance class of spatial lag d:

I
d� D

∑∑
wij
d�
xi � x�
xj � x�

W
d�∑

xi � x�2

n


7�

while Geary’s c coefficient is

c
d� D

∑∑
wij
d�
xi � xj�2

2W
d�∑

xi � x�2


n � 1�


8�

where wij
d� are elements of a weight matrix
for which a value of 1 indicates that a pair of
two samples, xi and xj, are in the same distance
class d and a value of 0 indicates all other cases.
W
d� is the sum of wij
d�. Outlier values affect
the estimation of spatial autocorrelation by these
coefficients. In the case of Moran’s I, outlier values
will bias estimation of the mean, and therefore either
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under- or overestimate the calculation of spatial
autocorrelation based on the deviation to that biased
mean. In the case of Geary’s c, biases occur when
outlying values of squared differences with other
values have more weight on the estimated values of
spatial autocorrelation.

The plot of Moran’s I or Geary’s c against the
distance classes d is called a spatial correlogram
(Figure 1c). The distance at which the value of spa-
tial autocorrelation crosses the expected value, E(I)
or E(c), indicates the range of the patch size or simply
the spatial range of the pattern. To assess statistical
significance, a test must take into account the fact
that individual coefficients of a spatial correlogram
are not independent of one another. Therefore, sig-
nificance is assessed by using a Bonferroni method
that approximates the adjusted significance probabil-
ity for multiple testing, in this case multiple distance
classes [7]. Under the Bonferroni adjustment, the
probability level, ˛0, used to test the entire spatial
correlogram is determined by dividing the proba-
bility level, say ˛ D 0.05, by the number of dis-
tance classes, say k D 6 (e.g. ˛0 D ˛/k D 0.05/6 D
0.0083). A correlogram is deemed significant if the
significance level of at least one individual coefficient
is lower than the ˛0 level.

Spatial autocorrelation coefficients provide an
averaged isotropic estimation of spatial autocorrela-
tion intensity at each distance class. When working
with plant spatial structures, however, most species
will show some degree of spatial anisotropy due
to differential response to environmental conditions.
Spatial anisotropy can be detected by calculating and
comparing the spatial autocorrelation for pairs of
locations grouped not only by distance class but also
by direction. Membership to the distance and direc-
tion classes is given by the weight matrix. Anisotropy
is identified when patch sizes vary according to
direction.

The spatial autocorrelation coefficients described
above are computed for the entire study plot, produc-
ing global statistics. There are cases, however, where
local estimation of the intensity of spatial autocor-
relation may reveal interesting insights on the local
spatial processes. One can then use a local index of
spatial association (LISA) [1]. For example, both
Moran’s coefficient and Geary’s c can be calculated
at each site i separately to give indices of local asso-
ciation or autocorrelation [1].

Experimental Variogram

Ecologists have shown an increasing interest in geo-
statistical methods to identify and model spatial
pattern [3, 6, 9]. One begins by estimating param-
eters that characterize the spatial structure of the
data in terms of spatial variance using an exper-
imental variogram, and then uses these parame-
ters to interpolate values at unsampled locations via
kriging.

Spatial pattern intensity and range are estimated
from the experimental variogram (Figure 1d), which
estimates the spatial semivariance function �
d�:

O�
d� D
∑∑

wij
d�
xi � xj�2

2W
d�

9�

Similar to Geary’s c autocorrelation coefficient, the
semivariance is a distance function; the difference
between these two coefficients lies mainly in the
fact that the semivariance lacks a denominator that
standardizes the spatial autocorrelation estimation.
The semivariance is therefore not bounded, making
comparisons among variables difficult. Geary’s c and
the semivariance are alike in their response to outlier
values since they are both based on the squared
differences among the values of a given variable.

As for the spatial correlogram, the shape of
the variogram obtained with sampled data – the
experimental variogram – allows the description of
the overall spatial pattern and the estimation of spatial
autocorrelation parameters: (a) the spatial range, a,
where the variable is spatially influenced by the
same underlying process; (b) the nugget effect, C0,
which is the estimate of the error inherent in the
measurements (sampling design and sampling unit
size) and environmental variability; and (c) the sill

C0 C C1� that quantifies the spatial pattern intensity,
where C1 is the spatial variance component [3, 6, 9].

Theoretical Variogram

According to the shape of the experimental vario-
gram, different theoretical variogram models can be
used to predict values at unmeasured locations, which
is known as kriging. The most commonly used
models include: the linear model, the exponential
model, the spherical model, and the Gaussian model.
Since most of the spatial variance signal is in the first
part of the variogram (up to the spatial range), high-
quality parameter fitting for short-distance lags is
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very important. Generalized least squares (see Least
squares, general), maximum likelihood estimation,
and restricted maximum likelihood methods can be
used to make the choice of theoretical variogram
models more objective [3, 6]. Optimal estimation
of these parameters is crucial for the subsequent
kriging steps and the resulting interpolated map.
Hence, a spatial range that is too short will result
in a spiky map: spatial autocorrelation structure will
be included only in interpolated locations near the
sampling points and all the other locations will have
the mean intensity value (the modeled sill value). Too
large a spatial range will conversely result in a very
smooth map.

Kriging

The kriging procedure, also known as BLUP (best
linear unbiased prediction), returning the observed
values at sampling locations, interpolates values using
the intensity and shape of the experimental and
modeled variogram of the data (using a neighborhood
and/or distance search radius), and provides the
standard errors of the interpolated values [3, 6, 9].
These prediction errors have often been used to
optimize sampling design by identifying areas where
sampling effort should be increased or decreased.
These errors are, however, a function of the selected
theoretical variogram model and not of the raw data.
Caution should therefore be taken in interpreting the
meaning of these estimation errors when optimizing
sampling design. Kriging is one type of spatial
interpolator. Other spatial interpolation techniques
exist that also produce smoothed interpolated maps
(see Tables 1 and 2).

Mantel Test

The spatial methods presented above compute the
spatial pattern for a single variable at a given time
or compare the relationship between the spatial
patterns of two variables. In some studies, it is
interesting to estimate the spatial structure of a set
of variables (e.g. in a community study). This can
be achieved by using the Mantel test [5, 7], which
is a linear estimate of the relationship between the
two square distance matrices based of the degree of
relationship of two sets of variables taken at the same
sampling locations. The Mantel statistic, Z, sums
the products between corresponding elements of the

distance matrices:

Z D
n∑

iD1

n∑
jD1

AijBij for i 6D i 
10�

where A is the variable distance matrix and B
comprises the actual Euclidean (spatial) distances
among the n sampling units (e.g. quadrats). The
Mantel statistic, Z, can be normalized into a prod-
uct–moment correlation coefficient, r, that varies
from �1 to 1. The normalized Mantel statistic cor-
responds to an averaged isotropic intensity of spatial
autocorrelation for this set of variables over the entire
study plot.

Significance is assessed either by using an
exact randomization technique to construct a
reference distribution, or by using an asymptotic
t-approximation [7]. Given that the relationship
between the two matrices is based on distance values
rather than on the raw data, the degree of relationship,
here spatial autocorrelation, is often weaker than what
would have been expected using the raw data. One
should therefore not be too concerned about gauging
the intensity of the relationship, but rather whether or
not significance is indicated.

Another way to compute the spatial autocorre-
lation with the Mantel test is to first classify the
Euclidean distances according to spatial distance
classes (d), as in Moran’s I, and then to compute
the normalized Mantel statistic, the variable dis-
tance matrix A and this new spatial distance class
matrix. The result is a multivariate spatial correlo-
gram (see [7] for more details).

More Spatial Statistics

The field of spatial statistics is a very active domain
of research in ecology. Many new methods (see
Tables 1 and 2) have been developed or modified
in the last few decades, and to have summarized
them here is beyond the scope of this entry. More
mathematical details can be found in the literature
(among others, [1]–[10]).
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