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Our perception of how species interact with their
habitat depends on spatial scale, which can be charac-

terized by extent and grain (Wiens 1989). Extent, the overall
area covered by a study, sets the upper bound for generaliza-
tions. Grain, the size of sampling units, sets the lower limit for
the scale of detectable patterns. The variability that researchers
view in spatial data results from how the scale of measurement
filters reality (Atkinson and Tate 2000).

Because ecological patterns and processes are scale de-
pendent, an important undertaking is to identify particular
spatial scales at which species respond most strongly to the
amount and structure of habitat. These characteristic scales
of response may differ among species and may be related to
mobility and other natural-history traits (Wiens 1989, Levin
1992). Determining characteristic scales of species–habitat re-
lationships should allow researchers to identify probable
scales of critical processes, and to determine whether cross-
species generalizations and scaling rules can be developed
(Wiens 1989, Levin 1992) to facilitate predictions of species
responses to landscape change. One approach for evaluating
the spatial scaling of associations between organisms and
their environment is to conduct repeated regressions while
changing the scale of measurement (typically grain size). For

instance, such procedures have been used to investigate the
effects of grain size on the relationship between vegetation
composition or biomass and environmental variables (Bian
and Walsh 1993, Reed et al. 1993), between aphid densities and
the percentage of arable land (Thies et al. 2005), between bird
species richness and a suite of environmental correlates (van
Rensburg et al. 2002), and between beetle abundance and for-
est cover (Holland et al. 2005).

In a Biologist’s Toolbox article, Holland and colleagues
(2004) presented a multiscale approach and an associated
computer program (Focus) for detecting characteristic scales
at which species respond to habitat amount. The Focus ap-
proach is applicable to studies in which the effects of patch
context on species abundance are evaluated by measuring
habitat amount around sampling sites with variable-sized
circular buffers. A key aspect of the Focus approach is the use
of species–habitat regressions with a resampling procedure in
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which only sites with nonoverlapping buffers are selected at
each scale. Holland and colleagues (2004, 2005) consistently
refer to these nonoverlapping measurement areas as “spatially
independent sites”; however, nonoverlap of measurement
areas does not ensure spatial independence, which includes
a broader range of considerations than the one aspect that Hol-
land and colleagues emphasized.

My objectives are to highlight issues involving spatial
heterogeneity as they relate to determining characteristic
scales of species–habitat relations, and to suggest that the
Focus approach often will require some extensions to rem-
edy the important problem of spatial nonindependence. My
purpose is not to critique directly the research of Holland and
colleagues (2004, 2005) on cerambycid beetles and forest
structure. However, I am concerned that other researchers,
especially graduate students, might apply the Focus approach
blindly because of the availability of free software and the
strong encouragement from Holland and colleagues (2004)
to use Focus for mining existing data sets.

The Focus approach in brief 
Holland and colleagues (2004) used simple linear regression
to model the relationship between species abundance and
habitat amount for a range of scales, and defined the “char-
acteristic scale” as the scale with the strongest correlation
coefficient (r). The Focus program tests for nonlinear rela-
tionships by comparing models with and without polynomial
terms of the habitat predictor variable, but Holland and col-
leagues (2004, 2005) report results only for linear models.
Species abundances (counts of beetles caught in funnel traps)
were measured at multiple sample points, and habitat amount
(forest cover) was measured at each sampling point within a
circular area centered on the point. The spatial scale of mea-
surement was altered by using circles with different radii (19
sizes between 20 and 2000 meters [m]) to measure habitat
amount. Note that Holland and colleagues (2004) refer to the
circle radius as the extent of the predictor variable, but in land-
scape ecology the circle radius normally would be termed the
measurement grain of the study (Wiens 1989, Dungan et al.
2002, Wu et al. 2002). The problem underscored by Holland
and colleagues (2004) is that the circular measurement areas
can overlap, especially for larger radii, resulting in data points
that may be spatially dependent. Nonindependence of data
in regression analyses reduces the true degrees of freedom,
makes significance tests too liberal, and inflates measures of
correlation strength (Legendre et al. 2002, Lichstein et al.
2002, Haining 2003, Fortin and Dale 2005,Wagner and Fortin
2005). The Focus approach attempts to address this problem
of spatial nonindependence by conducting regressions for each
measurement scale using a random selection of sites in which
the circular areas do not overlap. The selection and regression
procedure is repeated a number of times for each scale, and
the mean value of r is used to assess association strength.

Spatial autocorrelation, dependence, 
and characteristic scales
Spatial heterogeneity is the spatial structuring of a variable due
to two main causes: spatial autocorrelation and spatial de-
pendence (Legendre et al. 2002,Wagner and Fortin 2005). Spa-
tial autocorrelation includes endogenous, biotic processes
such as dispersal and conspecific attraction that produce
patchiness in organism distributions (Wagner and Fortin
2005). When spatial autocorrelation is present, the value of
a response variable depends on values of that variable at
other surrounding sites (Legendre et al. 2002). Spatial de-
pendence is an exogenous process caused by species re-
sponding to environmental conditions that are spatially
structured by their own physical generating processes (Wag-
ner and Fortin 2005). These two types of spatial heterogene-
ity are difficult to distinguish in practice (Lichstein et al.
2002,Wagner and Fortin 2005), and both can affect inferences
about bivariate relationships (Legendre et al. 2002).

Data sets that might be used with the Focus approach
could include spatial heterogeneity in species abundances, in
habitat predictors, or both. The use of nonoverlapping mea-
surement areas for the predictor variable should reduce the
degree of autocorrelation, but geographic separation of sam-
pled areas does not guarantee statistical independence (Lich-
stein et al. 2002). Some range of spatial structure probably
exists in habitat variables such as forest cover, and nonover-
lapping areas still can be related by shared structure. Envi-
ronmental gradients in soil texture, soil moisture, topography,
and aspect can generate spatial heterogeneity in composition
and abundance of plant species at distances that exceed the
separation distance of sampling areas. Moreover, the Focus ap-
proach as currently applied (Holland et al. 2004, 2005) does
not explicitly consider positive autocorrelation of the re-
sponse variable. Holland and colleagues (2004) note that
constraints on site selection could be imposed so that sites need
not be significantly autocorrelated to be included in regres-
sions. This brief mention of autocorrelation understates a cen-
tral issue regarding spatial independence of samples in
landscape studies.

For correlation analysis that assesses the association between
two response variables (Wagner and Fortin 2005), a modified
t test for correlation coefficients is available that accounts
for levels of autocorrelation in each variable (Dutilleul 1993).
A modified test is necessary when there is autocorrelation in
both variables (Lennon 2000, Legendre et al. 2002). The pres-
ence of broadscale environmental structure can reduce the
power of the modified test, and good estimates of the spatial
autocorrelation are required so that large sample sizes (n ≥ 100)
may be needed for strongly autocorrelated data (Legendre et
al. 2002).

For models that analyze directional relationships, such as
species abundance–habitat regression models, the assumption
that must be tested is that model residuals are not autocor-
related (Lichstein et al. 2002, Haining 2003, Wagner and
Fortin 2005). Spatial autocorrelation of residuals from re-
gression models indicates autocorrelation of the response
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variable, or presence of an important, unmeasured environ-
mental variable that is spatially structured (Keitt et al. 2002,
Wagner and Fortin 2005). Haining (2003) emphasized the lat-
ter cause when he stated,“If unmeasured predictors are spa-
tially correlated this property will be inherited by the errors”
(p. 312).

Several approaches exist for analyzing data with positive 
autocorrelation via regression models, at least for certain re-
sponse distributions, but the details of these methods are
beyond the scope of this paper. In general, broadscale spatial
trends initially can be removed by using linear or polynomial
trend surfaces (Legendre et al. 2002, Lichstein et al. 2002).
Finer-scale autocorrelation, as expressed by model residuals,
can be accounted for by using autoregressive models, re-
gression models with spatially lagged predictors, or models
with spatially correlated errors (Keitt et al. 2002, Haining
2003, Fortin and Dale 2005). Ideally, a model should be based
on assumptions about generating processes (Wagner and
Fortin 2005).

Empirical example: Cactus bugs and habitat scaling 
Here I illustrate how spatial heterogeneity can complicate the
detection of characteristic scales of association between or-
ganisms and their environment. My data are from a study of
cactus bugs (Chelinidea vittiger) and their host plant, the
plains pricklypear (Opuntia polyacantha), conducted at Cen-
tral Plains Experimental Range in Colorado during October
1999. Cactus bugs feed only on O. polyacantha at the site, and
they reproduce within O. polyacantha patches, so definition
of suitable habitat is straightforward. Adult cactus bugs nor-
mally walk between patches of host plants and have limited
movement rates of no more than 2.5 m per day (Schooley and
Wiens 2004). I present data for nonmating adults, which
have the strongest association with O. polyacantha (hereafter
“cactus”) among the three life stages examined (Schooley
and Wiens 2005).

I established a transect (700 X 1 m) and then sampled
cactus and C. vittiger within 1400 contiguous quadrats. Each
quadrat was 0.5 m2 and represented my smallest grain of
measurement. I partitioned each quadrat into eight sub-
quadrats (0.25 X 0.25 m each) and then measured the fre-
quency of cactus per quadrat by recording the number of
subquadrats containing cactus (0 through 8). For quadrats
with cactus, I searched for and counted the number of C. vit-
tiger. I summed data on frequency of cactus and abundance
of C. vittiger from the 0.5-m2 quadrats to form data sets for
eight larger grain sizes (1, 2, 4, 6, 8, 12, 16, and 24 m2). Sam-
pling frames without cactus after data aggregation were con-
sidered “structural zeros” and removed before analysis, so I
evaluated the association between C. vittiger and cactus only
where suitable habitat was present.

I developed a simple, nonspatial regression model (Holland
et al. 2004) to analyze the relationship between abundance of
C. vittiger and cactus frequency separately for each of the nine
grain sizes. I used 95th-quantile regression (Cade et al. 1999)
to model the association, because previous research indi-

cated that C. vittiger and cactus exhibit a limiting-factor re-
lationship (Schooley and Wiens 2005). All associations be-
tween C. vittiger abundance and cactus frequency were
positive. I report R2 for quantile regressions as a measure of
association strength (McKean and Sievers 1987, Schooley
and Wiens 2005). I evaluated residuals from regression mod-
els for spatial autocorrelation using a Moran’s I coefficient
(Fortin 1999, Haining 2003, Wagner and Fortin 2005) for the
first lag distance (Qi and Wu 1996). Moran’s I is a measure of
autocorrelation that generally ranges from –1 (negative cor-
relation) to 1 (positive correlation) and is near 0 (E[I] = –[n
– 1]–1) for spatially uncorrelated raw data (Qi and Wu 1996,
Fortin 1999). Because residuals sum to zero, they have some
level of correlation even if they are spatially independent
(Lichstein et al. 2002). My purpose was to examine the rela-
tive autocorrelation strength of residuals across grain sizes, not
to test for significance.

The amount of variation explained by regression models
depended on grain size (figure 1). The degree of spatial au-
tocorrelation in model residuals also changed substantially
with grain size (figure 1). Most important, the pattern of au-
tocorrelation intensity across grain sizes closely mirrored
that observed for R2 values. Similar results were obtained
when trend surface terms were included in regression mod-
els. A naive interpretation of the simple species–habitat re-
gressions might lead one to conclude that the characteristic
scale for the association between cactus bugs and Opuntia
habitat was 24 m2, with a secondary peak at 12 m2. However,
this pattern partly reflects concurrent change in the intensity
of spatial autocorrelation in model residuals and its ability to
inflate R2 values. The problem of spatially correlated errors
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Figure 1. Effect of spatial scale (grain size of measure-
ment) on correlation strength (R2) and autocorrelation of
model residuals (Moran’s I) for separate quantile regres-
sion models relating the abundance of cactus bugs to the
frequency of habitat. After each regression model was fit,
residuals were evaluated for strength of spatial autocorre-
lation at the first lag distance (neighboring quadrats).



depends on grain size. This outcome exemplifies one dilemma
of data aggregation within what geographers call the “mod-
ifiable areal unit problem” (Dungan et al. 2002, Wu et al.
2002, Haining 2003). My results indicate spatial autocorre-
lation of cactus bug abundances due to movement behavior
and conspecific attraction, or to the presence of an unmea-
sured environmental variable such as plant quality that op-
erates on its own characteristic spatial scales. When spatial
grain filters reality, it filters both the measured and the un-
measured components.

My approach and that of Holland and colleagues (2004)
share many salient features: Both involve multigrain regres-
sions between species abundance and habitat amount, con-
ducted using potentially adjacent, nonoverlapping sampling
areas. However, I changed the grain size of measurement for
the predictor variable and for the response variable when
altering spatial scale, whereas Holland and colleagues (2004)
changed only the grain size of the predictor variable.
Although simultaneously altering both response and pre-
dictor grain sizes might create additional problems of spatial
heterogeneity, I think that the general issue applies to both de-
signs.With Focus, the level of autocorrelation in the measured
response variable could be altered by changing buffer sizes be-
cause of constraints imposed on the selection of sampling sites.
The use of larger buffers forces the selection of sampling
sites that are farther apart and less susceptible to strong pos-
itive autocorrelation in the response variable. Furthermore,
altering buffer sizes with Focus can directly change the degree
of spatial dependence of measured or unmeasured habitat
variables. The resulting spatial structuring in the error terms
of regression models should depend on grain sizes.

Additional issues 
Counts of species abundance at sampling sites often include
many counts of zero even when suitable habitat is present.
Linear regression that assumes a normal distribution often is
inappropriate for such count data. Generalized linear mod-
els such as zero-inflated Poisson regression or negative bi-
nomial regression might be better approximations for
abundance data. However, autoregressive models for Poisson
and negative binomial response distributions can model only
negative spatial dependence (Haining 2003, but see Kaiser and
Cressie 1997), which restricts their usefulness. Limiting-
factor approaches using quantile regression could be effective
for some data sets (Cade et al. 1999, Schooley and Wiens
2005), but quantile models for spatially correlated errors are
not well developed. I concur with Holland and colleagues
(2004) that researchers will need to “adapt the Focus program
to suit their particular needs and applications.”This advice per-
tains to statistical model formulation.

The Focus approach involves extensive data thinning,
because only sample sites with nonoverlapping measure-
ment areas are included in regressions. For instance, Holland
and colleagues (2004) limited all regressions to a sample size
of 16, because that was the number of nonoverlapping sam-
ple sites at their largest grain size. Although the data set was

used more fully because of the resampling procedure, each in-
dividual regression was based on a relatively small sample size,
even though 190 sites were sampled. Researchers should con-
sider the trade-offs between such a heavy data reduction
procedure and one that uses more of the data while explic-
itly modeling the spatial structure inherent in ecological pat-
terns and processes (Keitt et al. 2002, Legendre et al. 2002,
Lichstein et al. 2002, Haining 2003, Fortin and Dale 2005,Wag-
ner and Fortin 2005).

Multigrain correlations of species abundances and habitat,
like all correlative methods, describe patterns in nature.
Insights about actual scaling processes are most likely to be
gained from correlative studies in which a proposed set of
plausible mechanisms is defined a priori on the basis of
natural-history information. Scaling relationships often will
involve multiple explanatory variables describing different 
aspects of habitat amount, composition, and configuration,
with different predictors expressed most strongly within par-
ticular scale domains (Wiens 1989). Furthermore, changing
the spatial extent of a study also can greatly affect how spa-
tial heterogeneity is viewed (Wu et al. 2002). Such complica-
tions should be kept in mind by anyone contemplating a
data-mining endeavor using the Focus program.

Conclusions
The Focus approach is a useful tool for selecting nonover-
lapping sites, which is a problem for many landscape-level
studies. However, multigrain regression is a tricky business,
and nonoverlap of measurement areas does not ensure spa-
tial independence; thus Focus should not be the only tool in
a biologist’s toolbox for multiscale analysis. Whether or not
a data-thinning approach like Focus is used, researchers
should evaluate residuals of species–habitat regression mod-
els for spatial autocorrelation. If residual autocorrelation is 
present, it should be dealt with before inferences are made
about characteristic spatial scales of response.
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