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Abstract

Spatial simulation models were developed to predict tempora changes in land use patterns in a piedmont
county in Georgia (USA). Five land use categories were included: urban, cropland, abandoned cropland,
pasture, and forest. Land use data were obtained from historical aerial photography and digitized into a
matrix based on a 1 hagrid cell format. Three different types of spatial simulation were compared: (1) ran-
dom simulations based solely on transition probabilities; (2) spatial simulations in which the four nearest
neighbors (adjacent cells only) influence transitions; and (3) spatial simulations in which the eight nearest
neighbors (adjacent and diagonal cells) influence transitions. Models and data were compared using the mean
number and size of patches, fractal dimension of patches, and amount of edge between land uses. The ran-
dom model simulated a highly fragmented landscape having numerous, smal patches with relaively complex
shapes. The two versions of the spatial model simulated cropland well, but simulated patches of forest and
abandoned cropland were fewer, larger, and more simple than those in the real landscape. Severa possible
modifications of model structure are proposed. The modeling approach presented here is a potentialy general

one for smulating human-influenced landscapes.

Introduction

The patterns of landscape development in time and
space are the result of complex interactions of phys-
ical, biological, and social forces. Most landscapes
have been influenced by human land use, and the
resulting landscape mosaic is a mixture of natural
and human-managed patches that vary in size,
shape, and arrangement (e.g., Bowen and Burgess
1981, Burgess and Sharpe 1981, Forman and
Godron 1981, 1986, Krummel et al. 1987). Land use
patterns can influence a variety of ecologica phe-
nomena, including animal movements (e.g., Fahrig
and Merriam 1985, Henderson et al. 1985, Free-
mark and Merriam 1986), water runoff and erosion

(e.g., White et al. 1981, Peterjohn and Correll
1984, Kesner 1984) or the spread of disturbance
(e.g., Turner in press (a@)). Thus, the ability to
predict the spatial patterns of land use may be cru-
cia to our understanding of landscape dynamics.

The expansion of ecosystem analyses, such as
simulation modeling, to include the spatia heter-
ogeneity of landscapes represents a powerful new
approach to ecological research (Risser in press);
most ecologica modeling has only focused on tem-
poral changes (Costanza and Sklar 1985). Tran-
sition models have frequently been used to predict
changes in vegetation (e.g., Debussche et al. 1977,
Van Hulst 1979, Usher 198 1, Lippe et al. 1985, Hall
et al. in press) or land use (e.g., Hett 1971, Burn-
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ham 1973, Johnson 1977) through time. However,
these models have not been spatialy explicit, and
there is no standard approach to incorporate spatia
dynamics into transition models.

In this paper, | compare three types of spatial
transition model that simulate changes in land use
patterns in Georgia. Spatial influences are modeled
in two ways and results are compared to random
simulations and to actua landscape data. Simu-
lated and actual land use patterns are compared
using statistical descriptors of spatial pattern in-
cluding: (1) mean number and size of patches; (2)
fractal dimension of patches; and (3) amount of
edge between land uses.

Methods
Sudy area and data collection

Georgia (southeastern USA) encompasses three
major physiographic regions, each of which has
undergone substantial changes in land use during
the past two centuries (Nelson 1957, Brender
1974, Hedy 1985). These regions include the
mountains (1,470,3 10 ha), piedmont (4,606,139
ha) and coastal plain (8,971,206 ha). The piedmont
region experienced the most dramatic land use
changes during the past 50 years (Turner 1987), and
a piedmont county (Oglethorpe) was selected as the
initial study area for model development. Data and
simulaions from Oglethorpe County will be used in
the remainder of this paper to demonstrate model
behavior.

Net rates of land use transitions in Oglethorpe
County were obtained from published statistics in-
cluding the Census of Agriculture (e.g., USDA
1982) and Forest Service Surveys (e.g., Tansey
1983). Data on the spatid patterns of land use were
obtained from historical black and white aerial
photography for each of three time periods (1942,
1955, and 1980) beginning with the earliest photo-
graphy available. Photos from 1942 and 1955 were
a the 1:20,000 scale, and photos from 1980 were at
the 1:40,000 scale. Six sample areas were studied,
each of which was 2,116 ha (4.6 km on a side), the
area of an aerial photograph at the 1:20,000 scale.

The six samples were contiguous, and the total sam-
ple landscape of 12,696 ha represented approxi-
mately 12% of the county.

Five land uses were identified on the photo-
graphs. (1) urban; (2) cropland; (3) abandoned
cropland (transitional land); (4) pasture; and (5)
forest. Patches (contiguous areas of the same type)
of each land use were delineated, and a square grid
representing 1 ha cells was then overlaid on the pat-
tern. Cells were considered to be wholly in one or
another of the discrete land uses, and land use pat-
terns were digitized to form aland use matrix. The
descriptors of spatial pattern were calculated for
each land use matrix, and the 1942 landscape pat-
terns served as initial conditions for simulations.

Model devel opment

There are several challenges in smulating changes
in land use patterns. First, land use changes are not

grictly Markovian: i.e., the change of state of a cell

is not simply a function of its current state but is in-

fluenced by surrounding cells. For example, a patch-
of abandoned land adjacent to an urban area is
more likely to become urban than a similar patch
that is further away. Thus, there are spatial neigh-
borhood effects. Second, the transition rates are
not constant through time. The rate of cropland
abandonment in Georgia, e.g., has decreased sub-
stantially since the early part of the century (John-
son and Sharpe 1976, Turner 1987). Dynamic tran-

sition probabilities are thus required. Third, the
causation of land use transition may be largely eco-

nomic rather than natural (Burnham 1973, Alig
1986), and the use of empirical transition rates
masks this causality. Finally, there are practica
difficulties with the approach, including defining
the states and obtaining the transition probabilities
by independent measurement, rather than’inference
(Lippe et al. 1985).

Given these constraints, | developed a land use
transition model using empirically estimated transi-
tion probabilities. Simulations were done a ran-
dom and with spatial influences. In the random
simulation, the transition of a cell in the land use
matrix was only a function of the transition prob-



Table 7. Transition probabilities? used in the simulations of
land use changes in Oglethorpe County, Georgia

First time period (1942-1955)
Urban  Crop  Trans.  Pasture Forest

Urban 100

Crop .80 19 .01

Trans. .01 77 22
Pasture 1.00

Forest 1.00

Second time period (1955-1980)
Urban  Crop Trans. Pasture Forest

Urban .00

Trans. 430 .570

Trans. .008 212 780
Pasture 1.00

Forest .00

“p, indicates the probability of making a transition from land
use i to land use j.

Note: Trans. refers to trandtiona land, primarily abandoned

cropland.

ability. Spatial influences were then simula{ed in
two ways, one in which the four adjacent neighbors
influenced the transition, and one in which eight
neighbors (adjacent and diagonal) influenced the
transition. The spatial influence algorithm using
eight neighbors has been described in detail else-
where (Turner in press (b)), and will only be sum-

marized briefly here:

The four or eight neighbors of each cell in the
land use matrix are examined, and a transition in-
dex is caculated for each cell. The index is a func-
tion of the number of neighbors of state j (n;) and
the probability of i going toj (p, j), and is equa to
the maximum vaue of %D, 5, wherej =1,...,
number of states. The cell in the land use matrix
that has the highest transition index is then changed
to the appropriate new state. The transition indices
are then recaculated, alowing a ‘domino effect’ to
occur where patches can grow or shrink. If there are
no neighbors of type j to effect a particular i, j tran-
sition, cells of type i are selected at random and
changed to j. This may occur, for example, when
urban land appears for the first time. During a
simulation interval, a cell can be changed only
once. When the number of transitions reaches the
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Direction of Land Use Transitions:
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cropland
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Fig. 1. Direction of net land use changes in Oglethorpe County,
Georgia

allowable number, the new land use matrix is out-
put and the spatial pattern analyzed.

Simulations

Simulations of Oglethorpe county were begun with
the land use patterns from the 1942 photographs.
Land use changes were simulated for two itera-
tions, representing the 1942-1955 period and the
1955 1980 period. Each 2,116 ha sample area was
simulated separately (n = 6). Transition probabili-
ties for each interval (Table 1) were derived empiri-
cally from net changes in land use for the county
from sources other than the aerial photos, such as
the Census of Agriculture and Forest Service Sur-
veys. Trangition probabilities were established such
that urban, pasture and forest lands were sinks (the
probability of changing from one of these states to
any other was zero), all gains to urban and' forest
land came from abandoned land, and cropland
could be abandoned or converted to pasture; thus,
transition  probabilities only represented net
changes (Fig. 1). The same probabilities were used
in each of the simulations.

Analysis of landscape pattern

Descriptive statistics of spatial pattern are neces-
sary to evaluate the behavior of the models and to
identify temporal trends in landscape pattern.
Although there are a variety of measures that can
be used, | will focus on the following descriptors of
gpatial pattern: (1) the number and mean size of
patches of each land use; (2) the fractal dimension
of patches of each land use; and (3) the amount of
edge between different land uses.



32

Table 2. Actua and simulated proportionsa of land area by land use, Oglethorpe County, Georgia

Land use 1942 1955 1980

Actud Actud Simulated Actual Simulated®
Urban .00 (.30) .00 (.01) .01 (.00) .01 {.02) .01 (.00)
Cropland 44 (.09) 35 (11) 34 (.07) 15 (.07) 15 (.03)
Abandoned  cropland .43 (.06) 41 (.110) .42 (.03) .28 (.07) -28 (.04)
Pasture .00 (.00) 01 (.01) .01 (.00) .01 (.01) .01 (.00)
Forest 13 (.05) 22 (.05) 21 (.05) 54 (.05) 55 (.07)

& Mean (standard deviation); n = 6 sample aress.

® The same proportions of land uses were simulated in the random and spatial models.

A patch was defined as contiguous, adjacent cells
of the same land use; diagonal neighbors were not
included as part of the same patch. Each patch in
the land use matrix was located and its size (S) and
perimeter (P) were recorded. Mean numbers of
patches and patch sizes were caculated using SAS
(SAS Institute 1982). The size and perimeter data
were also used to calculate the fractal dimension
(Mandelbrot 1977, 1983) of each land use, which
was used to measure the complexity of patch peri-
meters. In this analysis, the fractal dimension can
range from 1.0-2.0, with 1.0 representing the
perimeter of a perfect square and 2.0 representing
a very complex perimeter encompassing the same
area. For grid cell data, the fractal is calculated us-
ing an edge to area relationship (Burrough 1986,
Krummel et al. 1987) where (P/4) is the length scale
used in measuring P. For each land use in a matrix,
linear regression anaysis of log (P/4) against log
(S) of each patch was done using SAS. The fracta
dimension of the patch perimeters is equal to twice
the dope of the regression line. It can then be used
to compare the geometry of landscape mosaics
(Milne in press).

The amount of edge between each land use was
determined by summing the number of interfaces
between adjacent cells of different land uses, then
multiplying by 100 m (the length of a cell). These
data were then analyzed with SAS using ANOVA,
and means were differentiated using Bonferroni
t tests.

Results

The proportion of land in different land uses
changed between 1942 and 1980 in the actual and
simulated landscapes (Table 2). In the rea land-
scape, forests increase from 13% to 54%, urban
and pasture both increased from 0% to 1%, and
cropland declined from 44% to 15%. There was
close agreement between the simulated and actua
landscapes in the proportion of area in each land
use. Given that the proportions were adequately
simulated, were the spatial patterns similar?

The mean number and size of patches of major
land uses are shown in Figs. 2 and 3. For al land
uses, the random model simulated two to three
times as many patches as occurred in the real land-
scape (Fig. 2) with the average patch size signifi-
cantly smaller than in the real landscpe (Fig. 3).

The mean number and size of cropland patches
declined during the study period (Figs. 2 and 3,
top), and both spatial models appeared to simulate
this adequately. For abandoned cropland, how-
ever, the spatial simulations predicted fewer, larger
patches than were observed in the landscape (Figs.
2 and 3, center). Mean patch size of these transi-
tional lands did not change in the actual landscape,
remaining at approximately 10 ha. Both spatid
models, however, projected an increase in patch
size to approximately 17 ha.

The spatial models yielded different results for
forests. Both simulated too few patches of forest,
but the 4-neighbor simulation was closer to the ac-
tual data than the &neighbor simulation (Fig. 2,
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Fig. 2. Simulation results and actual data for mean number
of patches of maor land uses, Oglethorpe County, Georgia
(n = 6). Transitional-land is primarily abandoned cropland.

bottom). Mean forest patch size was also better
smulated by the 4-neighbor smulation (Fig. 3, bot-
tom). The S-neighbor model simulated forest
patches that were as much as five times larger (1955)
than actual.

Determinations of the fractal dimensions were all
highly significant (p < .0001) with r? values rang-
ing between 0.96 and 0.98. Fractal dimensions (D)
of patches varied by simulation (Fig. 4). For crop-
land, D was 1.35 in 1942 and remained fairly con-
stant through 1955 and 1980. In the random simula-
tion, D increased rapidly to 1.45, indicating more
complexly shaped boundaries of cropland patches.
The 4- and S-neighbor models simulated cropland
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Fi g. 3 Smulation results and actual data for mean size of
patches of magor land uses, Oglethorpe County, Georgia. Error
bars ae + two standard errors, n = 6. Transitional land is

primarily —abandoned  cropland.

patches with D approximately 1.35 in 1955, de-
clining to 1.31 (4-neighbor simulation) and 1.29
(S-neighbor simulation) by 1980. This suggests that
the perimeters of simulated cropland patches were
dightly less complex than in the actual landscape.

The fractal dimension of forestsin the real land-
scape was 1.32 in 1942, declining to 1.28 in 1980. In
forest patches that were simulated at random, the
fractd dimension increased to 1.44 by 1980, similar
to the cropland patches. The spatialy influenced
models both simulated forest patches with low
fractal dimensions, 1.20 (4-neighbors) and 1.22
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Fig. 4 Simulation results and actual data for fractal dimension
of cropland and forest patches, Oglethorpe County, Georgia
The fractal dimension can range from 1.0 to 2.0, with 1.0
representing the perimeter of a perfect square and 2.0 represent-
ing a very complex perimeter encompassing the same area

(Sneighbors) in 1980. This suggests that boundary
shapes of the simulated forest patches were much
less complex than those of the actual patches. The
8-neighbor simulation represented forest boundary
complexity better than the 4-neighbor simulation.
Edges in the landscape were aways higher in the
random simulations than in the actual landscape or
the gspatial simulations (Table 3). The spatia
models were more successful in simulating edges
between some land use combinations than others.
The cropland-abandoned cropland edge and the
cropland-forest edge showed no significant differ-
ence in the spatial smulations and the real land-
scape (Table 3). Thus, these boundaries were ade-
quately represented in the models. However, the
forest-abandoned cropland edge varied by simula-
tion in 1955, and in 1980 there were significant
differences between therandom and spatial simula-
tions and the real data. The spatia simulations un-
derrepresented this edge by as much as 50%.
Total edge in the landscape (Table 3) was best

Table 3. Simulated and actual edge (km) between land uses in a
2,116 ha area of Oglethorpe County, Georgia

Cropland = Abandoned cropland

1955 Random Red Sim-4 Sim-8
920 5.1 530 461

1980 Random Sim-4 Red Sim-8
493 168 139 89

Cropland - Forest

1955 Random Red Sim-4 Sim-8
301 258 217 21.0

1980 Random Sim-8 Red Sim-4
437 21 276 231

Forest - Abandoned cropland

1955 Random Red Sim-4 Sim-8
146 515 309 286

1980 Random Red Sim-4 Sim-8
103.1 481 309 29

Total edge between land uses

1955 Random Red Sim-4 Sim-8
2036 1353 117 1034

1980 Random Red Sim-4 Sim-8
2045 %4 845 69.8

Underlined means do not differ (p < .05, Bonferoni t tests,
n = 6).

Notation

Sim-4 = spatid model with 4-neighors influencing the transi-

tions, Sim-8 = spatid model with g-neighbors influencing the

trangtions; Random = random simulation; Red = actud data

represented by the 4-neighbor spatial simulation,
which did not differ from the actua landscape. The
g-neighbor model simulated approximately 20%
less edge than the real landscape, and the random
model simulated 100% more edge.

Discussion
The random simulation model produced highly

fragmented |landscape patterns that were quite dif-
ferent from the actual landscape. This difference



supports the non-Markovian nature of land use
changes, suggesting there are contagion effects.
Differences between random simulations and ac-
tual landscapes may be useful in identifying land-
scape effects (Gardner et al. 1987, this journal).

The spatiad models ssimulated the clustering of
certain land uses, such as cropland, reasonably
well. However, for other land uses, the spatia ar-
rangement of patches was not as complex as in the
actual landscape. This variation in simulation ade-
quacy by land use suggests that different factors
may influence particular land use transitions. Crop-
land in the piedmont was generally abandoned
from the outside margins inward, and the spatial
models adequately captured this shrinking pattern.
Abandoned cropland exhibited a geometry similar
to that of cropland. However, the boundary be-
tween abandoned cropland and forest was not ade-
quately modeled, suggesting that this transition was
more complex than the ‘domino effect’. Informa-
tion about topography or other edaphic conditions
is probably necessary to differentially weight the
neighborhood effects that influence forest develop-
ment. Incorporation of edaphic factors should im-
prove the model’s representation of the complex
boundary between the forest and transitional lands.

The scale of transitions may also vary by land
use. Different scales may affect managed and
natural patches (Krummel et al. 1987) since a
primary influence of humans is to rescale patterns
in time and space (Urban et al. 1987). It would be
useful to incorporate variable scales of land use
trangitions into the model.

An dternative modeling approach is the develop-
ment of mechanistic models that run simultaneous-
ly in the célls of a landscape matrix (e.g., Sklar
et al. 1985, Sklar and Costanza 1986). This ap-
proach has been successful in a physically driven
wetland environment, but it is difficult to trandate
to land use patterns. To be predictive in a human-
dominated landscape, the economic or socia mech-
anisms driving land use trangitions should be incor-
porated into the model. Such dynamically gener-
ated transition probabilities would be preferable to
empirical ones and might allow for greater cyclic
change between land uses.

The modeling approach described here has the
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potential to adequately represent changing land-
scapes patterns statistically. To predict the course
of an individual parcel of land, much additiona in-
formation would be necessary. However, this type
of gpatial transition model can provide the basis for

simulating flows across landscape boundaries
(Wiens et al. 1985), provided the edges are ade-
quately represented. Flows might include the dis-
persal of organisms, movement of water and dis-
solved chemicals, or the spread of disturbance. The

modeling approach is thus a potentially general one
for simulating pattern and function in ‘human-
influenced landscapes.
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