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Abstract

Models of landscape change may serve a variety of purposes, from exploring the interaction of natural
processes to evaluating proposed management treatments. These models can be categorized as either whole
landseape models, distributional landscape models, or spatial landscape models, depending on the amount
of detail included in the models. Distributional models, while widely used, exclude spatial detail important
for most landscape ecological research. Spatial models require substantial data, now more readily available,
via remote sensing, and more easily manipulated, in geographical information systems. In spite of these tech-
nical advances, spatial modelling is poorly developed, largely because landscape change itself is poorly un-
derstood.

To facilitate further development of landscape models I suggest (1) empirical multivariate studies of land-
scape change, (2) modelling of individual landscape processes, (3) explicit study of the effect of model scale
on model behavior, and (4) ‘scaling-up’ results of studies, on smaller land areas, that have landscape rele-
vance.

Introduction

Landscape structure and composition may change
dramatically over time in a variety of landscapes. In
managed landscapes, for example, changes in the
size and spatial configuration of remnant forest
patches may have important ramifications for spe-
cies that utilize these patches (Burgess and Sharpe
1981; Harris 1984). In more natural landscapes,
disturbances, such as fires, insect attacks, and
windstorms may alter the age, size, and spatial
structure of patches (Pickett  and White 1985).

Empirical studies of the landscape change pro-
cess are invaluable, but for some research questions
there is also a need for models. For example, studies
using experimental manipulations of landscapes

may be impractical, due to the large land area re-
quired and the long time needed to recover from a
single experiment. As another example, global cli-
matic change or other environmental changes may
affect landscape structure indirectly, through -
changes in disturbance regimes, and directly,
through effects on the growth and survival of par-
ticular species (e.g., Emanuel et al. 1985). To antici-
pate these changes, landscape models that are sensi-
tive to environmental fluctuation are needed.

Models of landscape change have been reviewed
previously (Shugart and West 1980; Loucks  et al.
1981; Weinstein and Shugart 1983; Shugart 1984;
Risser et al. 1984; Shugart and Seagle 1985). My
purpose here is (1) to review the assumptions, limi-
tations, and possible applications of a broad spec-
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Fig. 1. Data monitored by three kinds of models of landscape change, distinguished by their level of data aggregation. Landscape ele-
ments or states may be defined by aggregating similar grid cells. Models may, then, be: (a) whole landscape models, (b) distributional
landscape models, or (c) spatial landscape models, depending on the level of aggregation. Models may also be univariate, or include
more than one variable.

trum of models of landscape change, (2) to classify
the kinds of models, and (3) to suggest possible ex-
tensions of these models, based on models devel-
oped in other fields. Such cross-disciplinary review,
while by no means comprehensive, may suggest
new approaches. I will particularly draw on plant
and animal population models, and on a variety of
geographical models, as these models have par-
ticular relevance to certain aspects of landscape
change.

As this is a review of models useful for landscape
ecological research (cf.  Risser et al. 1984; Naveh
and Lieberman 1984; Former and Godron 1986;
Risser 1987),  I will focus on models of processes on
the landscape scale. There is no absolute lower
physical limit to this scale, but, generally, the land-
scape scale is one that contains a few interacting
ecosystems, and thus is on the scale of kilometers,

rather than meters or hundreds of meters (Forman
and Godron 1986).

A taxonomy of models of landscape change

A variety of criteria could be used to distinguish
models of landscape change. Perhaps the most im-
portant are: (1) the level of aggregation, and (2) the
use of continuous or discrete mathematics. Models
could also be distinguished by the kind of data
source, the method of defining states, the kind of
output, and a number of other criteria.

The level of aggregation criterion refers to the
level of detail with which the landscape change
process is modelled. A convenient way to think
about modelling landscape change is to imagine
that the landscape consists of a variety of spatially



arranged ‘landscape elements’ (Forman  and God-
ron 1988, p. 12) underlain by a system of grid lines,
so that there are boxes or ‘grid cells’ formed by the
grid lines (Fig. lc). These grid cells are analogous to
the pixels in a digital satellite image (Lillesand and
Kiefer 1979) or the grid cells in a raster-based ge-
ographical information system (Burrough 1986).

A distinguish three kinds of models, based on the
level of aggregation criterion (Fig. 1). First, are
whole landscape models (Fig. la), in which the
value of a variable in some landscape area is
modelled. One might, for example, model the num-
ber of landscape elements in a particular township
over time. Second, are distributional landscape
models (Fig. lb), in which the distribution of values
of a variable in some landscape area is modelled.
One might, for example, model the distribution of
land area among the landscape elements in a partic-
ular township over time. Finally, and most detail-
ed, are spatial landscape models (Fig. lc), where the
fate of individual subareas of the landscape, and
their configuration is modelled, using a set of either
whole landscape models or distributional landscape
models as submodels. In such spatial models, for
example, the number of landscape elements in a
configuration of townships could be modelled,
using a set of whole landscape submodels. Similar-
ly, the distribution of land area among landscape
elements in a configuration of townships could be
modelled, using a set of distributional landscape
submodels.

This three-part classification differs from other
classifications of ecological models (e.g., DeAnge-
lis .et al. 1985; DeAngelis and Waterhouse 1987).
First, these authors referred to some models, that I
have classified as distributional models (e.g., Levin
1976),  as spatial models. But, here I require that
spatial models explicitly make use of the location
and configuration of landscape subareas. The
models of Levin and others are thus, in my classifi-
cation, non-spatial, because the patch dynamics are
modelled without location and configuration. This
distinction is important, now that geographical in-
formation systems (Burrough 1986),  which will
facilitate spatial modelling, are becoming widely
available. Second, DeAngelis et al. distinguish
equilibrium and non-equilibrium models, a useful
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Table 1. Kinds of models of landscape change.

Whole landscape models: Models of landscape phenomena, in
aggregate, for the landscape as a whole (e.g., total number of
landscape elements in a township)

Distributional landscape models: Models of the distribution of
land area among classes of landscape phenomena (e.g., dis-
tribution of land area among five landscape elements in a
township)

Differential equation models: Continuous time models
Continuous state space models
Discrete state space models

Difference equation models: Discrete time models
Markov chain models
Semi-Markov models
Projection models

Spatial landscape models: Models of the spatial location and
configuration of landscape phenomena (e.g., spatial location
and configuration of five landscape elements in a township)

Mosaic models: Models composed of a spatial mosaic of
subareas, each having its own submodel.

Whole mosaic models
Distributional mosaic models

Element models: Models composed of a configuration of
land scape  elements, each having its own submodel.

distinction for their purposes, but the literature
commonly follows lines of development related to
the kind of mathematical treatment, and review is
facilitated by following these lines.

Models may use either continuous mathematics
or discrete mathematics, in two ways. First, time
may be a continuous or discrete variable. Second,
the state space of the models may be either continu-
ous or discrete. I distinguish models (Table l), with-
in each of the three main types (above), first using -
the treatment of time and then the treatment of the
state space.

Model components

The basic components of all_models of landscape
change are: (1) an initial configuration, (2) birth,
death, and change functions, and (3) an output con-
figuration. The initial configuration is simply a
starting value in whole landscape models, a starting
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distribution of land area among states in distribu-
tional landscape models, and a complete raster of
grid cell values in a spatial landscape model. These
initial configurations may be derived from a variety
of sources, including published land use data, per-
manent plots or monitoring data, or remotely-
sensed data.

Birth, death, and change functions are the most
important parts of the models. Birth functions add
land area to, and death functions remove land area
from the landscape being modelled. Since many
landscape change processes are modelled on a fixed
land area, birth and death functions are often ab-
sent. The change function modifies the output of a
whole landscape model, changes the distribution of
land area in a distributional landscape model, and
alters the subarea values in a spatial landscape
model. The change function may be as simple as a
single linear differential or difference equation, but
could also be a set of complex nonlinear equations
with interactions.

Outputs from whole landscape models are noth-
ing more than a value for each variable. Output
from distributional landscape models may include
summary values for variables, as in whole land-
scape models, but the more important output is a
univariate or .multivariate distribution of land area.
Spatial landscape models can output whole land-
scape summary statistics, distributional landscape
data, or individual subarea values. One can ag-
gregate data, in other words, in more detailed
models, and produce several kinds of output. Spa-
tial models, in this sense, are the most flexible.

Whole landscape models

Whole landscape models focus on the value of a
variable or several variables in a particular land
area as a whole. Values of variables can be output
directly (continuous state space) or can be classified
into states (discrete state space). The time dimen-
sion in these models can be formulated using con-
tinuous or discrete mathematics. The basic dif-
ferential equation, in the case of continuous
mathematics, is

dX/dt  = f(X) (1)

where X is some landscape variable of interest, f(X)
is some function of X, and t is time. The basic
difference equation, using discrete mathematics, is

X t+1 = fW,) (2)

where X, t, and f(X,)  are as in equation 1. The
function, f(X), may have a variety of forms, allow-
ing for changes in the value of X to be some func-
tion of X itself, or other endogenous or exogenous
variables. Comparable models have been applied in
a variety of other fields (e.g., Freedman 1980; Nis-
bet and Gurney 1982; Edelstein-Keshet 1988) too,
numerous to review here.

Whole landscape models have received no use, so
far as I am aware, except as submodels in spatial
models, and they are mentioned here only for com-
pleteness and to set the stage for discussion of spa-
tial models. Nonetheless, changes in landscape at-
tributes, such as diversity and connectivity (Forman
and Godron 1986) could certainly be modelled over
time as a function of various endogenous and exo-
genous variables in a whole landscape modelling
framework. The completely general equations (1
and 2) undoubtedly will be refined if such models
are developed.

Distributional landscape models

Distributional landscape models all focus on
changes in the distribution of land area among
values of a variable or variables. Although the
state-space can be continuous, more typically the
state-space is discrete. Discrete states might include
a variety of landscape elements or types such as
forest types, land-use types, age-classes, or succes-
sional states. Distributional models do not provide
information on the actual location or configuration
of states in the landscape, and thus are less-
detailed, but also simpler to develop and use, than
are spatial models.

There are several ways to determine the states
used in a distributional model. The states may be
defined a priori, and somewhat subjectively, using
information in the literature (Shugart et al. 1973;
Sharpe et al. 198 1). The number and kinds of states
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may also be constrained or determined by the data
source. Only a certain number and kind of states,
for example, can currently be distinguished in
remotely-rensed data (Hall et al. 1987),  and avail-
able land-use records may also restrict state defini-
tion (Shugart et al. 1973). Where fewer restrictions
apply, a variety of multivariate quantitative meth-
ods can be used to more objectively classify states
(Johnson and Sharpe 1976; Noordwijk-Puijk et al.
1979; Austin and Belbin 1981; Usher 1981; Kachi et
al. 1986),  though these methods do not objectively
determine the number of states. Vandermeer (1978)
suggested that the optimum number of states can be
determined by a method that minimizes the trade-
off between a ‘sample error’, that increases as the
narrowness of states (and the number of states) in-
creases, and an ‘error of distribution’, that in-
creases as the narrowness of states (and the number
of states) decreases. As the number of states in-
creases, the computational burden and data re-
quirements for these models increase exponentially.

Both continuous and discrete mathematics have
been used for the time dimension in these models,
but there may be little difference in the utility of
these two approaches. For example, the average
response of a stationary Markov chain can be
matched by a corresponding linear, constant-coef-
ficient differential equation (Shugart et al. 1973).
Differences in the development of the supporting
literature may influence the choice between these
two approaches, but differential equations may no
longer be a better framework for the use of non-
stationary transitions (Johnson and Sharpe 1976),
and computational advantages (Shugart et al. 1973)
may be less important now, due to recent computer
developments. The matrix approach may still pro-
vide an easier framework for modelling changes in
variance along with changes in mean (Shugart et al.
1973). In most cases, empirically-based models of
landscape change use estimates of change deter-
mined by resampling the landscape at discrete inter-
vals. In this case, discrete mathematics may be
more congruent with the modelling approach, but
in more theoretically-based models, either ap-
proach may be appropriate.

Differential equation models

Continuous state space models:
In the simplest univariate case, these models can be
formulated as a single partial differential equation.
Where the distribution variable is age, the equation
may be a derivative of the McKendrick-Von Foer-
ster equation (McKendrick 1926; Von Foerster
1959) used to model biological populations:

aN(a, t) + aN(a, t)
aa

~ = - p(a, t)*N(a,t)
at (3)

where N(a, t) is a function describing the age dis-
tribution of individuals (or land area, in a land-
scape model), p(a, t) is a mortality function describ-
ing the loss of individuals (or land area) by age, a
is age, and t is time. This equation has been general-
ized for modelling size distributions of populations
(DeAngelis and Mattice  1979). The McKendrick-
Von Foerster equation is quite general, and does
not, for example, require constant coefficients. The
p(a, t) function could also be a time-varying func-
tion of endogenous or exogenous variables affect-
ing landscape change. Reviews of extensions of
these models, in population research, are available
(e.g., Gurtin and MacCamy  1979; Nisbet and Gur-
ney 1982; Gyllenberg 1984).

Continuous state space differential equation
models may also be multivariate. Multivariate ver-
sions were developed for modelling joint age-size
distributions of animal populations (e.g., Sinko
and Streifer 1967, 1969; Streifer 1974; Oster and
Takahashi 1974). The equation in this case is

Ww,m) + aW,a,m)  + aN(t,a,m)
at aa am *MW,m)*

W,a,m)l  = - ~Mw)*N(t,a,m) (4)

where N(t,a,m) is a function describing the age-size
distribution of individuals at time t, g(t,a,m) is the
average rate of growth for an animal of age a and
mass m at time t, and &a,m)  is the death rate for
animals of age a and mass m at time t.

The multivariate version of these models can also
be applied to landscape change. The model in this
case describes the changing age-size distribution of
patches, where the patches in the original concep-
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tion (Levin and Paine 1974; Levin 1976) may be of
any size, including those on the landscape scale.
The equation, then, is identical to equation 4, but
N(t,a,m) is the age-size distribution of patches at
time t, g(t,a,m) is the average rate of growth for a
patch of age a and size m at time t, while p(t,a,m)
is the death rate for patches of age a and size m at
time t. The model has been applied, not on the land-
scape scale, to the dynamics of small patches (< 40
m*)  in intertidal mussel beds along the Washington
coast (Paine and Levin 1981),  but could equally
well be used to model multivariate dynamics of dis-
turbance patches in landscapes.

Discrete state space models:
These models all consist of a system of ordinary
differential equations. In the univariate case, the
models contain one equation for each state. The
system may thus have the form

dX,/dt  G f,(X,, . . . X,)

dX,/dt  = fi(X1,  . . . X,)

dX,/dt  = f,(Xr, . . . Xn) (5)

where Xi is the ith of n states.
Such systems of equations have been used to

model interspecific competition for space in a
patchy environment (Horn and MacArthur 1972;
Slatkin  1974; Hastings 1980),  as well as the dynam-
ics of multispecies tree populations (Turnbull 1983;
Lynch and Moser 1986). Both applications included
endogenous effects, but neither modelled the in-
fluence of exogenous variables.

A well-developed group of multivariate differen-
tial equation, discrete state space models are the
JABOWA (Botkin et al. 1972) and FORET (Shu-
gart and West 1977) models and their derivatives.
These models have been used widely in modelling
forests, and could be used as submodels in spatial
landscape models (discussed later), and thus are
worthy of brief review (cf. Shugart 1984 for more
thorough review). The JABOWA/FORET models
contain a set of differential equations for diameter
growth of individual trees by species (the discrete
states). Additional variables (e.g., leaf area index,
biomass, and basal area on the plot as a whole) are
derived from these primary variables. The models
contain explicit natality and mortality functions,
and tree growth is dependent on exogenous (tern-
perature and moisture), and endogenous (the
shade-related height profile of trees on the plot)
conditions. This means that the models are respon-
sive to climatic changes, spatial variation in en-
vironment, and shading effects within the plot. The
models can also be modified to incorporate natural
or anthropogenic disturbances. Although these
models contain numerous desirable features, they
were designed to model species composition on
rather small plots (typically 0.1 ha), and would re-
quire modification to be useful at the landscape
scale.

A single univariate study (Johnson and Sharpe Multivariate models have been designed for
1976) has been conducted at the landscape scale. modelling change at the landscape scale. Shugart et
These authors developed a compartment model of al. (1973) developed a compartment model of suc-
succession among 10 forest types in the northern cession among 15 forest types in the western Great
Piedmont of Georgia. They used the rates of Lakes region. The model is bivariate in that each of
change between types found in 928 ‘Continuous the 15 forest types is divided into 3 size-classes, so
Forest Inventory’ plots sampled by the U.S. Forest that the total system contains 45 ordinary differen-
Service in 1961 and 1972. Although the plots were tial equations. These authors used published data
rather small, they were regional in extent, so that on the percentage of forest land of each type, in
Johnson and Sharpe felt that the model represented Michigan in 1966, to initialize the model and esti-
regional dynamics of change. But, such an extrap- mate rate coefficients. The accuracy of the model’s

olative approach may miss potentially important
interactions between contiguous land areas.

The mathematics of these models have been ex-
tended to the multivariate case (Slobodkin 1953).
Multivariate extensions of Horn and MacArthur’s
(1972) model have been developed for competitive
and predator-prey interactions in patchy environ-
ments (Levin 1974, 1976).
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coefficients and initial conditions, and model valid-
ity were challenged (Hahn and Leary 1974),  but the
model still illustrated a new modelling approach
(Shugart et al. 1974). A comparable model was ap-
plied to succession among 11 forest types with 3
size-classes in the North Carolina Piedmont (John-
son 1977),  but Johnson also simulated the effects of
harvesting and natural disturbances (e.g., wind, in-
sects). Johnson’s model has since been modified
and coupled directly with a model of gypsy moth in-
festation (Byrne et al. 1987). All three modelling ef-
forts required substantial estimation, as direct esti-
mates of transfer coefficients were unavailable.
Moreover, these models did not include the effect
of exogenous variables, though such variables
could be incorporated in the equations. Nonethe-
less, these models represent a potentially useful ap-
proach to modelling landscapescale change in a
non-spatial format.

Difference equation models

There are no landscape models that use difference
equations and a continuous state space. All differ-
ence equation, distributional models, using discrete
state spaces, can be expressed in their simplest
form, in matrix notation, as:

*t+1 = Pn, (6)

where nt is a column vector, n = (nr . . . n,),
whose elements are the fraction of land area in each
of m states at time t, and P is an m X m matrix,
whose elements, pij, incorporate the birth, death,
and change rates of each state during the time inter-
val (or ‘time-step’) from t to t + 1. All the models
thus project an initial distribution of land area
among states forward to an output distribution by
means of a projection, or ‘transition’, matrix.

Three kinds of difference equation distributional
models, relevant to landscape modelling, can be
distinguished, based upon model assumptions.
First, are Markov chain models, which are stochas-
tic models with fixed sojourn times (explained be-
low). Second, are semi-Markov models, which are
also stochastic models, but with variable sojourn

deterministic, and that can be called projection
models.

Markov chain models:
Markov chain models have several assumptions and
limitations. I have derived the following discussion
from texts in applied mathematics (Kemeny and
Snell 1960; Feller 1968; Bhat 1984) and review ar-
ticles in several fields (Collins et al. 1974; Collins
1975; Hulst 1979; Pickles 1980). First, these models
are stochastic, as opposed to deterministic, because
model output, which is the distribution among
states, is based on the probability of transition, pij,
between states i and j. Since the transitions are
probabilities, it follows that

j!l Pij =  ’ i = 1,2,  . . . m (7)

The transition probabilities are usually derived
from a sample of transitions occurring during some
time interval. Maximum likelihood estimates of the
transition probabilities (Anderson and Goodman
1957) are, then:

pij = nij / E nij
j=l

(8)

where pij is as in equation 7 and nij is the number
of transitions from state i to state j. Second, it often
is assumed that the Markov chain is a first-order
process, which means that the probability of a par-
ticular set of outcomes depends only on the current
distribution among states and the transition proba-
bilities, so that history has no effect. An explicit test
of this assumption, and tests to determine the order
in general, require transition estimates from two or
more time intervals (Anderson and Goodman 1957;
Robinson 1978). Third, is the assumption of sta-
tionarity of transition probabilities over time. A
test of this assumption also requires estimates from
two or more time intervals (Anderson and Good-
man 1957). Markov chain models can still be used
when these assumptions are not met, as I will dis-
cuss below.

Simple first-order stationary Markov chains have
been used in a variety of fields. They have been

times. Third, is a general group of models, that are used, for example, to model changes in animal
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populations (Usher and Parr 1977),  succession as a Table 2. Markov chain models of change in land use and change

plant-plant replacement process (Anderson 1966; in natural landscapes.

Horn 1975),  changes in diameter distributions of
forest trees (e.g., Roberts and Hruska 1986),  and
migration of people (e.g., Brown 1970). But,
although the methods employed in these studies are
comparable, more relevant to landscape modelling
are applications in modelling changes in vegetation
types and land use.

Author States Location

Land use
Drewett 1969
Bourne 1971
Bell 1974
Bell and Hinojosa

1 9 7 7
Robinson 1978

10 levels of urbanization Reading
10 levels of urban land use Toronto

6 land-use types San Juan Is.
6 land-use types San Juan Is.

Markov chains have been used to model changes
in vegetation types on a variety of spatial scales.
Changes on small areas of less than a few hectares
(Austin 1980; Austin and Belbin 1981; Kachi et al.
1986) or on a single small plot (Lough et al. 1987)
have been modelled. There are also many studies of
changes in vegetation on areas of less than a few
hundred hectares, based upon changes in scattered
plots or transects within the area (e.g., Williams et
al. 1969; Stephens and Waggoner 1970; Noordwijk-
Puijk et al. 1979; Hobbs 1983; Gibson et al. 1983;
Lippe et al. 1985; Rejmanek et al. 1987). Some of
these were conducted on areas approaching the
landscape scale, but even when very large areas are
considered, using small plots to estimate regional
changes (e.g., Bellefleur 1981) obscures interac-
tions between contiguous land areas that are an im-
portant aspect of the landscape ecological ap-
proach.

Explicit consideration of landscape-scale changes
is common in studies of changes in land use in
human-modified land areas, and changes in land-
scapes in more ‘natural’ areas. The literature on
these two subjects is often separated in spite of
similarities in method and approach. Changes in a
wide variety of landscapes, from predominantly
urban (e.g., Bourne 1971) to wilderness landscapes
(e.g., Marsden 1983; Hall et al. 1987; Baker, in
press) have been modelled (Table 2). All of these
models are first-order Markov chain models,
though the order of the chain has only been formal-
ly tested in a few instances (Bell 1974; Robinson
1978). Stationarity has usually also been assumed,
but in the few instances where it has been tested
(Bourne 1971; Bell 1974; Bell and Hinojosa 1977)
the transitions were not, in fact, stationary. Non-
stationary transitions have also been found for

Finn 1985
Jahan 1986

4 urban-fringe land-use Akron, Ohio
types

13 land-use types Massachusetts
5 urban-fringe land-use Ontario cities

t y p e s

Natural landscapes
Henderson and 12 vegetation succession Tasmania

Wilkins 1975; stages
Wilkins 1977

Marsden  1983 650 forest age-classes and Montana
fires

Rejmanek et al. 5 levels of marsh open Louisiana
1 9 8 7 water

Hall et al. 1987 5 vegetation succession N. Minnesota
stages

Jenkins and Wright 6 vegetation succession Montana
1 9 8 7 stages river

Baker, in press 7 forest age classes N. Minnesota

Markov chain models of vegetation dynamics on
smaller land areas (Binkley 1980; Austin and Belbin
1981; Gibson et al. 1983; Lippe et al. 1985; Rejma-
nek et al. 1987). But, even if transitions are in reali-
ty nonstationary, stationarity can be assumed as a
heuristic device, to provide answers to ‘what if’
kinds of questions (Baker, in press). Moreover,
nonstationarity alone does not preclude the use of
a Markov chain approach.

Markov chain models are often thoughtto have
limited utility because they cannot accommodate
higher-order effects, the influence ofbexogenous  or
endogenous variables, spatial effects, or heter-
ogeneity (e.g., Barringer and Robinson 1981; Alig
1985). In fact, all of these can be, and have been
modelled using Markov chains in other fields, and
all could be incorporated into Markov chain
models of landscape dynamics.

Higher-order effects can be modelled by rede-
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fining the state space so that the new states are de-
fined by both present and preceding states (Massy
et al. 1970). A second-order model would thus in-
clude m*  states instead of the m states in a first-
order model. Estimating the transitions for such a
model would require substantial data, derived from
observations during at least two time intervals fol-
lowing the initial observation.

The contribution of exogenous or endogenous
variables to the transitions, and thus nonstationary
transitions, can be modelled using two approaches.
In the first approach, equation 6 is modified to be:

nt+1 = PWln, (9)

so that

pij = b,X, + b,X,  + . . . + b,X, (10)

where pij is an element of matrix P, and b,, . . . b,
are parameters relating the pij to the variables X,,
. . . X,.  The variables X,, . . . X, may be exogenous
variables (Ginsberg 1972b) or endogenous variables
(Conlisk 1976). Such an approach has been taken in
modelling the effects of temperature and density on
mite population dynamics (Woolhouse and Harm-
sen 1987). In the case of landscape models, exo-
genous variables, such as socioeconomic factors or
climatic conditions, and endogenous variables,
such as landscape age-class structure or composi-
tion might be included. A variety of linear and non-
linear functions can be derived for equation 10.
Such functions can be either theoretical or empiri-
cal. In two applications of this approach in land-
scape modelling (Henderson and Wilkins 1975;
Marsden 1983),  transitions between successional
stages following fires were made a function of the
fire frequency associated with each stage. Marsden
(1983) also incorporated an exogenous variable, the
probability of insect attack. Another approach to
modelling nonstationarity is to switch between
different stationary transition matrices (Harary et
al. 1970; Horn 1975; Rejmanek et al. 1987). But, in
this case, the process driving the switch must still be
modelled.

Landscapes may be heterogenous, so that transi-
tions of individual pixels in a particular state may
vary, depending on the location of the pixel. It is
impossible to correctly specify the order of a Mar-
kov chain for an aggregate of heterogenous pixels
or, in the human realm, heterogenous individuals
(Massy et al. 1970). Two remedies to this problem
have been proposed, based on research on human
migrations. The first is to disaggregate the popula-
tion (or land area, in the case of landscape models)
into homogenous subunits, with each subunit then
having its own transition matrix (Ginsberg 1973).
Ultimately, the population could be disaggregated
to the level of individuals (pixels or grid cells in the
landscape case) and individual transition matrices
determined (Spilerman 1972). This approach will be
discussed further in the spatial modelling section.
The second approach is to explicitly model how the
aggregate population (land area) is distributed over
the transition values (Ginsberg 1973). One method
of doing this is to assume the heterogeneity has a
particular distribution, such as a beta distribution
(Massy et al. 1970). Another method is to attempt
to recover the underlying form of the distribution
by using the behavior of the transition matrix over
time to estimate the moments of the distribution,
from which its form may be derived (Ginsberg
1973).

I have suggested here some possible extensions of
simple first-order Markov chain models that might
be used in landscape modelling. There are many
other extensions. The interested reader may wish to -
explore further the literature in fields with long his-
tories of applied Markov chain modelling. Model-
ling of migration (e.g., Pickles 1980) and buying be-
havior (e.g., Massy et al. 1970) are two areas with
such histories.

Semi-Markov models:
It has been widely noted that transitions have a There are a variety of landscape-scale phenomena

spatial dependence that is not accounted for in sim- for which the probability of transition from state i
ple constant-transition Markov chains (Bell and to state j during the time interval from t to t + 1 de-
Hinojosa 1977; Austin 1980; Austin and Belbin pends not only on i and j, but also how long the

1981; Usher 1981; Lippe et al. 1985). Models that
explicitly account for this spatial dependence have
been developed, and are discussed with other spa-
tial models later in the paper.
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landscape feature (or pixel) has been in state i. Such
phenomena are thus non-Markovian, and Markov
chain models may be inappropriate. Examples of
such phenomena might include forests whose fire
probability increases with time since fire and urban
structures more likely to be either torn down or, al-
ternatively, preserved as historical features, as their
age increases.

The effect of this varying ‘duration-of-stay’ or
‘sojourn time’ can be dealt with in two ways. The
first way is to redefine the state space so that each
previous “state includes several duration classes
(e.g., McGinnis 1968). The resulting model may
then be Markovian.‘The second way (Ginsberg
1971, 1972a) is to use a semi-Markov model. In
such a model movements among states are govern-
ed by a constant-transition Markov chain, with
transition matrix P = ( pij ) , while sojourn times
have distribution Fij(t),  which depend only on i and
j. In a Markov chain the sojourn times are constant,
while in the semi-Markov model the distribution
Fij(t)  may take any form. The matrix Q = pij*Fij(t)
is, then, a matrix of transition distributions for the
semi-Markov process. Transition probabilities for
the process and the expected distribution among
states at any time t can be derived from the Q matrix
(Ginsberg 1971; see Gilbert 1972 for a worked
example). The pij of matrix P can be made func-
tions of exogenous or endogenous variables, just as
in Markov chain models (Ginsberg 1972b). Addi-
tional details of semi-Markov models are in these
references and in most texts on stochastic processes
(e.g., Bhat 1984).

Semi-Markov models have received little use in
biogeography. A semi-Markov model of tropical
forest succession has been developed (Acevedo
1981). I believe that the only application of semi-
Markov models to landscape change is a model of
the effects of fires on the Tasmanian landscape
(Henderson and Wilkins 1975; Wilkins 1977).
These authors experimented with two Gamma dis-
tributions for Fij(t),  but found that the most realis-
tic of the two did not produce results much differ-
ent from those obtained by using a simpler Markov
chain model. Nonetheless, semi-Markov models
my have potential for improved modelling of cer-
tain landscape change processes.

Projection models:
An extensive literature has arisen in the modelling
of biological populations using deterministic pro-
jection models (e.g., Leslie 1945; Lefkovitch 1965;
Usher 1966),  and derivatives of such models have
been used in landscape modelling. These deter-
ministic projection models again have the general
form of equation 6, but the P matrix may be dif-
ferent from that used in Markov chain models.

Researchers in many fields have preferred deter-
ministic projection models over stochastic models,
such as Markov chains, in part because the transi-
tion rates being modelled may not always be true
probabilities (Rees 1986). Moreover, there are few
advantages and some disadvantages in meeting the
more stringent assumptions of the Markov frame-
work. The mathematics of fully-developed projec-
tion models may require the skills of an accountant
(Rees and Wilson 1977),  but are simpler conceptu-
ally than are corresponding stochastic models. In a
utilitarian sense, there may be little real difference
in projection results using the two approaches, as
nearly equivalent models can be, and have been de-
veloped. This is particularly true, since many of the
limitations thought to be inherent in the Markov
chain framework have been overcome, as was dis-
cussed earlier in the paper. The choice between the
two modelling frameworks appears to be based in
part on the tradition in a particular discipline.

The Leslie model and its derivatives, as well as
more generic projection models, have long been
used to model plant and animal, as well as human
population dynamics. While the Leslie models have
explicit birth functions designed for biological
populations, it is a simple matter to adapt exten-
sions of these models and other projection models
for landscape use. Developments in deterministic
projection modelling are too extensive to review in
detail here (see Rees and Wilson 1977; Usher 1972,
1981; Rees 1986). But, there are few limits in these
models in incorporating higher-order effects (Leslie
1959),  nonstationary transitions and effects of en-
dogenous or exogenous variables (e.g., Pennycuick
et al. 1968; Solbrig et al. 1988),  harvesting (Double-
day 1975),  spatial effects (Rees and Wilson 1977),
and heterogeneity. Fully elaborated models may
bear little resemblance to the original Leslie model



121

(e.g., Ek 1974). As an example of how extensive
these models can become, the Census Bureau uses
a model with ‘142 economic equations for 51 geo-
graphic units, or over 7000 endogenous equations
with over 10,000 endogenous and exogenous varia-
bles, . . . 26,000 migration flows, and . . . over 500
age-sex groups’ (Long and McMillen 1987, p. 170).

Projection models for land use and landscape
change are, by comparison, much less developed.
Simple first-order stationary projection models
with no exogenous or endogenous variables, or
other effects, have been used to model the dynamics
of vegetation types and the effects of human land
uses in the mountains of France (Godron and
Lepart 1975; Debussche et al. 1977). A similar
model has been applied to project the percentages
of land in five different forest types on industrial
forest land in the southeastern United States (Alig
1985; Alig and Wyant 1985).

Spatial landscape models

In’many senses spatial models embody the essence
of the landscape ecological approach. In contrast to
distributional models, spatial models use the loca-
tion and configuration of landscape elements in
projecting change, and can thus explicitly output
maps of these changing spatial configurations. In
developing a spatial model one must choose (1)
raster or vector format; (2) variables to include in
the model; (3) pixel size in raster-based models or
resolution in vector-based models, and (4) the
change algorithm.

Data storage and representation can be in either
a raster or vector format. Many spatial models use
a two-dimensional raster-format of grid cells or
pixels (Fig. lc) like that in many geographical infor-
mation systems, although a vector-based model can
also be used (Burrough 1986). In raster-format
models, each pixel represents a rectangular location
in space, while in vector-based models the locations
of entities (e.g., landscape elements) are specified
by x and y coordinates of points, lines, and poly-
gons outlining the entity. Models may be univari-
ate, which can be conceptualized as a single plane
of pixels (vectors) or multivariate, with multiple

planes of pixels (vectors). Pixel values in a single or
several planes can be classified into states, and thus
distributional output can be derived from a single
or several planes of pixel values. In vector-based
models, landscape elements are the states, and these
must be defined a priori. One advantage of a pixel-
based spatial model is that states need not be de-
fined at all, or can be defined as needed.

Because landscape elements have characteristic
sizes, choice of variables and choice of pixel size are
linked. Errors that arise in ‘rasterizing’ a landscape
may be substantial (Burrough 1986),  particularly if
pixels are larger than the landscape elements of in-
terest. Clearly, small pixel sizes provide more ac-
curate representations of boundaries and areas of
landscape elements, but using small pixels also in-
creases the data-handling requirements. Similarly,
polygon outlines can be digitized as a series of vec-
tors, with the number of vectors determining the ac-
curacy of the outline. Again, a large number of vec-
tors means greater accuracy, but also greater
data-handling requirements.

Two basic kinds of spatial models are (1) mosaic
models, in which change in a mosaic of individual
subareas in modelled and (2) element models, in
which change in individual landscape elements is
modelled.

Mosaic models

In many cases it is convenient to divide the land-
scape into (1) a two-dimensional grid or raster of
equal-area square or rectangular pixels or grid-
cells, or (2) a mosaic of equal- or unequal-area poly-
gonal subareas. I will refer to the subareas in either
case by the generic term ‘cells’ and the collection of
cells by the generic term ‘mosaic’, recognizing that
in practice most mosaic models will use a raster of
grid-cells, and can be called ‘grid-cell’ models, a
subset of ‘mosaic’ models. In the simplest univari-
ate case, with a single plane of cells, each cell has
a single value (continuous state space) or is in a
single state (discrete state space). Multivariate
models, with multiple planes of cells, are also pos-
sible. In any event, the location, configuration,
shape, and size of landscape elements are not
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modelled explicitly, but are built up from the con-
figuration of cells of the same value, or in the same
state, on the output map.

The models can thus be conceptualized as a
mosaic of submodels (Fig. 2),  with each submodel
a whole landscape model or distributional land-
scape model in itself. Although the submodels illus-
trated in Fig. 2 are grid-cell models using discrete
mathematics, other submodels could be used, in-
cluding differential equation or matrix models of a
variety of forms (e.g., equations l-6,8  and 9). The
models are thus flexible enough to allow incorpora-
tion of higher-order effects, effects ~of  endogenous
or exogenous variables, variable sojourn times, and
a variety of other effects.

Spatial models, such as these, are obviously par-
ticularly appropriate for modelling spatial depen-
dence, which is a common feature of many land-
scapes. Landsat data, for example, which are now
an important source of data for landscape change
modelling, tend to have spatial autocorrelations
that can be described by a (1 ,O,l)  autoregressive-
integrated-moving average process (Craig and
Labovitz 1980). This autocorrelation is derived
from both equipment sources and geophysical vari-
ation, and this latter source may vary both tem-
porally and spatially in remotely sensed data. The
spatial dependence may thus be complex, but if it
could be specified, then transitions could be
modelled as endogenous functions, using equations
9 and 10, with the function specified for some fixed
or perhaps varying ‘window’ around each grid cell
or pixel. Turner (1987) experimented with this ap-
proach, and found that four-neighbor windows did
better than eight-neighbor windows at replicating
actual land-use transitions. Additional research is
needed on the patterns of spatial dependence in
landscapes, as well as on functional relationships
with transitions. Ideas for indices of spatial depen-
dence in landscapes could be borrowed from com-
parable, but smaller-scale indices designed to meas-
ure the growth-dependence of individual plants on
the configuration of surrounding plants (reviewed
by Johnson 1973 and Alemdag 1978).

Spatial models obviously also may explicitly ac-
count for spatial heterogeneity in the landscape.
One approach to this problem might be to disag-

gregate  the landscape into homogenous subareas,
and then model changes on these individual poly-
gonal subareas. The overall response of the land-
scape would then be the sum of the responses in the
subareas. This approach has not been used in land-
scape modelling, but a comparable disaggregation
approach has been suggested as one means to deal
with heterogeneity in human populations (Ginsberg
1973).

Two kinds of mosaic models can be distin-
guished. In whole mosaic models, the submodel  in
each cell is a whole landscape model. In distribu-
tional mosaic models, the submodel  in each cell is
a distributional landscape model.

Whole mosaic models:
While the submodel  in each cell of a whole mosaic
model is a whole landscape model, the essential dis-
tinguishing feature of these models is that each cell
has only one value (continuous state-space) or is in
only one state (discrete state-space). The landscape
as a whole may contain cells in several states. Often,
these models are simple two-state ‘checkerboard’
models (e.g., occupied-not occupied, land-water,
forest-clearcut), which, because of their conceptui
al simplicity, have substantial utility in certain
kinds of simulation study.

Whole mosaic models are not very developed,
perhaps because distributional mosaic models are
nearly as easy to develop and use. In what was ap-
parently the first application, Browder et al. (1985)
simulated, using a grid-cell model, the spatial con-
figuration of land and water, and the length of the
land-water interface in disintegrating marshes in
Louisiana. The disintegration function in the model
included the effect of surrounding pixels and the
configuration of the marsh in relation to exogenous
environment. Franklin and Forman (1987) deve-
loped hypothetical grid-cell models of changes in
the proportion of forest and clearcut  patches under
several levels of cutting and several types of cutting
system. Turner (1987) used a grid-cell algorithm in-
corporating four- and eight-neighbor influences to
simulate changes in five land-use types in a pied-
mont county in Georiga. Wilkie and Finn (1988)
used a 2,OOO~cell  grid-cell model to simulate land-
clearing and secondary forest succession for four
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Fig. 2. Example of a mosaic model for a 3 x 3 grid. Change in each cell is modelled  by separate equations, “ij, ,+ I = Pij * mj, ,, where
llij,  r is a column vector, n = (n, . . n,,,)  whose elements are the fraction of land area in each  of m states at time t in the grid cell in
row i and column j, and Pij is an m X m matrix, whose elements, pij, incorporate the birth, death, and change rates of each state in
the grid cell in row i and column j during the time interval from t to t + 1.

‘shifting horticulturalist’ villages in the rain forests
of Zaire. These authors explored the effects of
population growth and changes in land-tenure on
landscape pattern.

tions, and a global grid of points, generally 2-5” of

A special type of whole mosaic model has been
proposed as a ‘neutral’ model for landscape pattern
studies (Gardner et ai 1987). The neutral models
are randomly-generated mosaics of occupied or
not-occupied cells, whose generation and analysis is
based upon percolation theory (Stauffer 1985). The
random patterns can be used as ‘null’ models to test
hypotheses about landscape pattern, but Turner et
al. (1988) also used them to simulate the effects of
landscape pattern on the spread of disturbance.

Distributional mosaic models:
In these models each cell has a distributional land-
scape submodel, which can be univariate or mul-
tivariate, use continuous or discrete mathematics,
and include a variety of processes and effects. Any
of the distributional landscape models discussed in
this paper could serve as a submodel  in a mosaic
model, but all would benefit from some modifica-
tion to incorporate interactions between cells,
which is facilitated by the spatial modelling frame-
work.

Certainly among the most complex mosaic
models are the general circulation models of the at-
mosphere (Simmons and Bengtsson 1984). These
models use a continuous state-space for as many as
two dozen variables, a series of differential equa-

latitude or longitude apart. These models often
have explicit links to exogenous variables, including
ocean conditions and terrestrial surface conditions,
such as topography and albedo. An increasing ap-
preciation of the importance of land-surface condi-
tions (e.g., Mintz 1984) has resulted in further de-
velopment of models of biosphere-atmosphere
interactions (Sellers et al. 1986, Wilson et al. 1987),
though currently these models are non-interactive,
including only the effect of biosphere on the at-
mosphere, and not the reverse. Moreover, the
biosphere submodels lack direct integration of
landscape-level processes, and are driven instead by
static or periodically-updated archival data on land
cover (Thomas and Henderson-Sellers 1987). But,
accurate projections of future land-surface condi-
tions will require direct modelling of landscape
processes, particularly in view of the apparent de-
pendence of many landscape-altering disturbance
regimes (e.g., fires, floods, wind) on climatic condi-
tions (e.g., Hubbard 1980). This atmosphere-bio-
sphere link at the landscape scale is a particularly
fertile area for future landscape modelling re-
search. ..\

Aside from these very complex differential equa-
tion models, deterministic projection models are
also well-developed, and take a variety of forms.
The most extensive literature and most elaborate
models of this type are in the area of multi-regional
human population projection models (Rogers 1975,
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1985; Rees and Wilson 1977; Woods and Rees 1986;
Long and McMillen 1987). Fully developed popula-
tion models may incorporate thousands of en-
dogenous and exogenous variables in tens of geo-
graphic units (e.g., Long and McMillen 1987).
Comparable, but much less complex spatial projec-
tion models have been applied in modelling other
animal and plant populations (e.g., Usher and Wil-
liamson 1970; Cuff and Hardman  1980; Hobbs and
Hobbs 1987) at small spatial scales. As will be dis-
cussed below, these spatial population models can
also be applied at the landscape scale.

Building on multi-regional population models
there is also a very extensive spatial modelling liter-
ature relating to urban systems (reviewed by Ber-
tuglia et al. 1987). Based in large part on urban
‘spatial interaction’ models pioneered by Lowry
(1964) and Wilson (1974),  these models now typi-
cally include submodels for population growth,
residential location, workplace location, the de-
velopment of infrastructure and transport systems,
job location, location of services, and economic de-
velopment (e.g.,, Wilson 1987). Models such as
these, modified for rural settings, could help in un-
derstanding how landscape structure develops in
human-modified landscapes.

A major impetus for the development of land-
scape-level models of natural systems came from
the realization that spatial environmental hetero-
geneity results in spatial variation in the population
dynamics of plants and animals (e.g., Smith 1980).
Some authors (Shugart and Noble 1981; Dale and
Gardner 1987),  for example, have used differential
equation distributional models, modified from the
original JABOWA model (Botkin et al. 1972),  to
simulate landscape-level spatial variation in forest
growth and disturbance effects. But, the JABOWA
model and its derivatives were designed for small
plots (typically 0.1 ha), and the landscape-level
simulations involve simply altering the boundary
conditions to replicate spatial variation in the en-
vironment at distinct locations over a region. Pearl-
stine et al. (1985) used this approach on a smaller
land area, but even on small areas such approaches
omit plot-to-plot (cell-to-cell) interactions that are
fundamental to landscape ecological research.

Models like the JABOWA model could be used

as submodels in a spatially contiguous mosaic, but
even at a minimum landscape scale (at least a few
km2), several hundred to several thousand JABO-
WA submodels would need to be linked, and the
models modified to incorporate spatial interac-
tions. This linkage has been proposed, but not im-
plemented (Botkin et al. 1985),  but although it
would be possible, the amount of detail in each sub-
model means that substantial computer time would
be needed to run such models. For larger-scale
landscape processes, such as fires in northern tem-
perate forests, which may affect hundreds of km”,
the cell size of these models may be much too small
for practical use. Nonetheless, the JABOWA
model and its derivatives do incorporate the in-
fluence of exogenous and endogenous variables,
natural disturbances, and species-specific responses
to environmental change-all desirable features for
many landscape modelling questions.

Several models have been applied at the land-
scape scale, utilizing larger cell sizes, simpler sub-
models, and with explicit treatment of cell-to-cell
interactions. A set of distributional projection sub-
models has been linked in a mosaic model of the
changing age-structure of small mammals in ad-
joining woodlots  in an agricultural landscape
(Fahrig et al. 1983; Lefkovitch and Fahrig 1985;
Fahrig and Merriam 1985). This model is compar-
able to the multi-regional human population pro-
jection models discussed above. Similarly, but on a
larger spatial scale, the distribution of forest
patches of different ages in a fire-prone forest
region has been modelled using a mosaic of Markov
chain submodels (Baker, in press). Both of these
matrix models incorporated non-constant transi-
tions by linking a temporal series of different ma- _
trices,  but neither explicitly developed a functional
link with exogenous or endogenous variables.

In one of the most interesting landscape-model-
ling approaches to date, Sklar et al. (1985) modelled
multivariate changes in the enyironment and ex-
pected changes in habitat conditions in a Louisiana
coastal marsh, using a mosaic model containing
differential equation submodels. These authors
used a grid of 1 km2 cells, and allowed for external
forcing by river and tidal flows, as well as cell-to-
cell exchanges of water and materials. Changes in
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water volume, salinity, and sediments were used to
predict changes in marsh habitats. Sklar and Con-
stanza (1986) then tested their modelling approach
by predicting 1978 habitat distributions over a
mosaic of 2479 cells from 1956 distributions and
weekly data on changes in environment.

Similarly comprehensive mosaic models of land-
scape change have been developed, for terrestrial
landscapes, by Kessell and his coworkers (Kessell
1976, 1977, 1979a,  1979b; Kessell and Cattelino
1978; Potter et al. 1979; Potter and Kessell 1980;
Kessell et al. 1984). These models have been applied
in the coniferous forests of Glacier National Park,
Montana (Kesselll976, 1977, 1979a),  in the chapar-
ral of southern California (Kessell and Cattelino
1978),  and in a variety of ecosystems in Australian
parks and nature reserves (Kessell and Good 1982;
Kessell et al. 1984). A very general version of the
models, called FORPLAN,  has also been developed
and applied (Potter et al. 1979; Potter and Kessell
1980).

All of Kessell et al. ‘s models operate from a grid-
cell based resource inventory, stored and manipu-
lated, in the most recent versions (Kessell et al.
1984),  as part of a geographical information system
(GIS). Vegetation and fuels data are estimated for
each grid-cell from its environmental location by
using gradient models that relate species composi-
tion and fuel levels to environment location. A
major strength of Kessell et al. ‘s models is their ex-
plicit modelling of fire behavior and post-fire suc-
cession on the landscape in relation to the landscape
data in the GE. The fire behavior model has usual-
ly been Rothermel’s (1972),  and it has been linked
explicitly, in some cases, with a weather model
(e.g., Kessell 1979a). The post-fire succession
models have been deterministic models, based on
habitat types (Kessell 1979a) or life-history traits of
each species (e.g., Cattelino et al. 1979). Separate
models have also been developed, on a more limited
basis, for predicting the response of large and small
mammals to changes in landscape structure (Kessell
1979a; Potter and Kessell 1980; Kessell et al. 1984).

In some senses the strength of Kessell et al.‘s
models is the simplicity of the submodels, which al-
lows very large arrays of small cells (as small as 0.01
ha in the Glacier National Park model) to be

modelled with reasonable computer time. Kessell
(1979a,  1979b) has some useful comments on the
tradeoffs between resolution, usefulness, and cost.
Useful additions to these models would be explicit
modelling of plant dispersal (Kessell 1979a),  the ef-
fects of other kinds of disturbances (e.g., insect at-
tacks), and species-specific response to climate
change. Certainly, there are an almost unlimited
number of other subroutines that would be desir-
able for specific modelling purposes, but, inevi-
tably, models of this complexity are limited by fis-
cal constraints, computer capabilities, available
data, and scientific knowledge. Kessell et al.‘s
models are exemplary in incorporating real-world
environmental and vegetational data with explicit
modelling of landscape-scale natural disturbances
in a GIS framework useful for resource managers.

Finally, a relatively unexplored modelling area,
in terms of landscape dynamics is the possibility of
using space-time autoregressive integrated moving-
average (STARIMA) models (e.g., Pfeifer and
Deutsch 1980). Such models have been applied in
hydrologic forecasting (Deutsch and Ramos 1986),
and have been suggested for use in, but not applied
to landscape modelling (Barringer and Robinson
1981). One difficulty of such models may be that
they do not allow direct incorporation of ex-
ogenous variables. But, STARIMA models may be
valuable when coupled with other models. For ex-
ample, a STARIMA model could be built for the
autoregressive-moving average process in a tem-
poral series of remotely-sensed images, with the
residuals from this model subsequently used in a
mosaic model.

Element models

Beginning in the 1960’s and 1970’s with forest trees
(e.g., Bella 1971),  a number of models have been
developed that focus on the response of individual
organisms to the spatial configuration, character,
and density of neighbors. Such models, using a
grid-cell or vector data base of mapped organism
locations, often use spatial-influence, or compe-
tition-indices to quantify neighborhood effects
(Bella 1971; Pacala and Silander 1985) and may
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also include dispersal functions (e.g., Weiner and
Conte 1981) and a mechanism for lateral growth
(e.g., Tongeren and Prentice 1986). Models of this
type have been developed for trees (e.g., Bella
1971),  annual plants (Weiner and Conte 1981;
Pacala and Silander 1985),  shrubs (Tongeren and
Prentice 1986),  and sessile marine organisms
(Maguire and Porter 1977; Karlson.1981; Eston et
al. 1986).

Such individual organism models are not land-
scape models, but they may have some relevance to
modelling landscape change. First, it is possible
that analogous individual landscape ‘element’
models could be developed, particularly in land-
scapes where ecosystem-to-ecosystem interactions
are significant, or disturbance patches are the
major landscape elements (Forman  and Godron
1986). Although individual organism models have
focused on the growth of the organism, individual
landscape elements, which are landscape analogs of
individual organisms, may not grow, or their
growth may be of less interest than changes in other
properties, such as their composition, age, or physi-
cal characteristics. It is unclear, however, just how
such element models might be constructed and
whether they would have advantages over mosaic
models. In contrast, in landscapes with disturbance
patches, individual patch models can be developed
that describe the birth, growth, and mortality of
patches. Such disturbance-patch models have been
developed for fires in urban landscapes (Hira-
bayashi and Kasahara 1987) and in forested land-
scapes (Kessell 1979a),  and for the oak-wilt disease
in midwestern forests (Menges and Loucks 1984).
Second, the overall character of ecosystems, which
constitute most landscape elements in natural land-
scapes, is determined in part by organism-to-
organism interactions within the ecosystem. The
deciduous forest landscape element in eastern Unit-
ed States landscapes, for example, was changed
dramatically by the decline of the chestnut (Mackey
and Sivec 1973). As another example, the spread of
patch-creating insect attacks and diseases may de-
pend upon tree-to-tree spatial relations that can be
modelled (e.g., Menges and Loucks 1984). Where
biotic interactions strongly control the character of
landscape elements or create patches, spatial in-

dividual organism or individual patch models may
be appropriate as submodels in a mosaic model.
Obviously, such models may require immense
quantities of data and substantial computer re-
sources, and could, as a result, be impractical for
many landscapes.

Discussion

There is no perfect landscape change model, but
models have been developed to serve a variety of
purposes. Whole landscape models, which focus on
aggregate phenomena of the landscape as a whole,
have not been developed, perhaps because distribu-
tional and spatial data are usually desired. Certain-
ly the most widely used models of landscape change
have been distributional models, which are models
whose output is the percentage of land area in a set
of classes or element types. Distributional models
are popular largely because of their simplicity and
utility, in addition to a well-established history of
use. Spatial models, models that focus on the loca-
tion and configuration of landscape elements, have
not been widely developed and used, in spite of the
necessity of spatial data for answering many land-
scape ecological questions. This lack of devel-
opment is probably because the data and com-
putational requirements have, in the past, been
prohibitive.

Data and computational limits are becoming less
significant, at least for some purposes, due to ad-
vances in remote sensing for change detection (e.g.,
Price 1986) and in the incorporation of remotely-
sensed data and auxiliary data into geographical in-
formation systems (Burrough 1986). But, although
there are substantial data on how much and what
kind of landscape change has occurred, remote
sensing change-detection studies seldom include ex-
plicit modelling of change processes. Similarly, for
modelling important landscape eco,logical  process-
es, the CJIS  data management framework is increas-
ingly essential, and is receiving substantial research
attention, but spatial models of landscape processes
using a GIS have only been developed in a few
cases. It appears, then, that the rate of development
of remote sensing and GIS technology greatly ex-
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ceeds  the rate of development of models of land-
scape change.

The most important present limit to the develop-
ment of better models of landscape change may be
a lack of knowledge of how and why the landscape
changes, and how to incorporate such knowledge in
useful models, rather than a lack of technology to
develop and operate models of landscape change. I
suggest four possible approaches to alleviate this
problem.

First, multivariate analyses of possible exoge-
nous and endogenous contributions to empirically-
derived (perhaps from historical sequences of aerial
photographs) rates of landscape change may help
to refine our understanding of the causes of land-
scape change (e.g., Alig 1986). This may be particu-
larly true if such studies employ carefully designed
‘natural experiments’ (Diamond 1986) to limit pos-
sible outcomes. Nonetheless, multivariate analysis
is no panacea, and has its own limits (e.g., Green
1979). Modelling itself is another route to identifi-
cation of key variables controlling landscape
processes.

Second, modelling of individual , Jandscape
change processes could lead to general modules that
could be exchanged among models. A good exam-
ple of this is Rothermal’s (1972) model of fire
spread. Some kinds of landscape change process,
such as those driven by certain natural disturb-
ances, are more amenable to a modular approach
than others. Nonetheless, even such processes as
economically-driven changes in farm woodlot sizes
could conceivably be modelled in this way.

Third, careful attention to the scale of the models
may be important. Landscape processes operate on
a variety of spatial and temporal scales (Meen-
temeyer and Box 1987; Baker, in press), but spatial
models typically use a single grid-cell size or vector
resolution. Models, like plot samples, thus have a
limited ability to capture multiscale processes, so
that modelling results need to be explicitly inter-
preted in view of model scale. Complicating the
matter is the presence of many processes operating
at different scales in the same landscape. Explicit
study of the effects of scale on model behavior may
help (e.g., Baker, in press).

Finally, a variety of processes, that have been

studied on small areas, have important ramifica-
tions on the landscape scale that have not been well-
studied. A good example of this is the dieback
process in certain forests (Mueller-Dombois 1987).
Whether such dieback  is due to anthropogenic
causes, such as air pollution and the introduction of
exotic pathogens,or  ‘cohort senescence’ (Mueller-
Dombois 1987),  large-scale diebacks alter many
aspects of the landscape, including its diversity,
age-class structure and patch structure. These alter-
ations, while important in themselves, also have im-
portant ramifications for the spread of subsequent
disturbances. Thus, some increase in understanding
landscape processes might come from ‘scaling-up’
from more detailed studies that have already been
completed on smaller land areas.

Landscape change modelling is also p”artly limit-
ed by available data. Aerial photography is avail-
able for many parts of the world only from the
1930’s and 1940’s,  and satellite data are limited to
the period since the 1970’s (Lillesand and Kiefer
1979). These data sources thus are of little value for
studying longer-term landscape change processes.
Longer-term studies may require use of a variety of
historical data sources (e.g., Vale 1982),  including
maps, historical accounts, and original land survey
records, among others. A good example of this
multi-source approach is Iverson and Risser’s
(1987) combined analysis, using a GIS, of original
land survey records, U.S. Forest Service inventory
data, and Landsat data. Very long-term studies of
landscape change may be facilitated by analysis of
pollen or macrofossils in a network of close prox-
imity sites (e.g., Dodson et al. 1986).

Finally, temporal data limits are, in some cases,
less important than the limited availability of un- -
altered landscapes needed for some kinds of con-
temporary process studies. The important link be-
tween climatic change and changes in disturbance
regimes in natural landscapes, for example, is be-
coming increasingly difficult to study in many areas
as forested landscapes are fragmented, and as their
disturbance regimes come under increasing human
control. Moreover, many large nature reserves were
not designed to perpetuate landscape-level process-
es and structures (Baker, in press), or retain effects
of previously-altered disturbance regimes, and thus
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have limited value for some kinds of studies. I have
argued in this paper that models of landscape
change may be the only means we have to under-
stand some landscape processes, but useful models
cannot be developed without appropriate empirical
data. An important prerequisite to developing use-
ful models of landscape change is that landscape
processes be perpetuated in some of the remaining
relatively unaltered landscapes, and that these pro-
cesses be studied over time.
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