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Understanding the processes and patterns of gene flow

and local adaptation requires a detailed knowledge of

how landscape characteristics structure populations.

This understanding is crucial, not only for improving

ecological knowledge, but also for managing properly

the genetic diversity of threatened and endangered

populations. For nearly 80 years, population geneticists

have investigated how physiognomy and other land-

scape features have influenced genetic variation within

and between populations. They have relied on sampling

populations that have been identified beforehand

because most population genetics methods have

required discrete populations. However, a new approach

has emerged for analyzing spatial genetic data without

requiring that discrete populations be identified in

advance. This approach, landscape genetics, promises to

facilitate our understanding of how geographical and

environmental features structure genetic variation at

both the population and individual levels, and has impli-

cations for ecology, evolution and conservation biology.

It differs from other genetic approaches, such as phylo-

geography, in that it tends to focus on processes at finer

spatial and temporal scales. Here, we discuss, from a

population genetic perspective, the current tools avail-

able for conducting studies of landscape genetics.

The recent improvements in molecular genetic tools,
combined with existing or new statistical tools (e.g. geo-
statistics, maximum likelihood and Bayesian approaches)
and powerful computers has led to the emergence of the
field of landscape genetics, which is an amalgamation of
molecular population genetics and LANDSCAPE ECOLOGY

[1] (Box 1) (see Glossary). This discipline aims to provide
information about the interaction between landscape
features and microevolutionary processes, such as gene
flow, genetic drift and selection. It will also aid in
identifying cryptic boundaries, which are either breaks
in the gene flow across populations without any obvious
cause, or secondary contact among previously isolated
populations. Landscape genetics can resolve population
substructure across different geographical scales at fine
taxonomic levels [2]; thus, it is different from the existing

disciplines of biogeography, which focuses mainly on species
diversity patterns at broad temporal and spatial scales [3],
and PHYLOGEOGRAPHY, which combines phylogenetics and
biogeography(Box1).Landscapegeneticsdata, collectedata
finer scale than that typical of phylogenetics, will help our

Glossary

Assignment test: statistical approach that assigns an individual to the

population from which its multilocus genotypes is most likely to be derived.

Cline: a character gradient; continuous variation in a character through a series

of contiguous or adjacent populations. In population genetics, the character

could be multi-locus genotypes (at the individual level) or single locus allelic

frequencies.

Conservation unit: refers to either evolutionary significant unit or manage-

ment unit, or any geographical units that managers feel important to conserve.

Environmental feature (or variable): biotic, climatic, edaphic and other

conditions that comprise the immediate habitat of an organism.

Evolutionary significant unit: a collection of individuals or populations of a

given species with a unique evolutionary history and genetic discreteness that

makes them worthwhile to protect. The uniqueness is often inferred from

phylogenies ideally combined with ecological data.

Genetic discontinuity: geographic zone of sharp genetic change.

Fst: measure of the level of population genetic differentiation at single loci,

which reflects the proportion of allelic variation that occurs between

populations.

Interpolation: (in a GIS sense) a process to estimate values at a geographical

location for which no measurement data exists.

Isolation by distance: when genetic differentiation between individuals (or

populations) increases with their geographical distance (because gene flow

declines at larger distances).

Landscape ecology: study of interaction between spatial patterns and

ecological processes; concerned with spatial extent and configuration at

which ecological processes and patterns occur.

Management unit: populations with significant divergence of allele frequen-

cies at nuclear or mitochondrial loci regardless of the phylogenetic distinct-

ness of the alleles, (i.e. demographically distinct populations that should be

managed to ensure the viability of the larger evolutionary significant unit,

subspecies, or regional populations.

Mantel’s test: measures association between elements of two matrices; can

assess significance of this association by random permutations of the

matrices.

Metapopulation: a group of subpopulations that exchange occasional

migrants and that might be subject to local extinction and recolonization. In

population genetics, a metapopulation is commonly modeled using the island

model (all subpopulations exchange migrants equally) or the stepping stone

model (only adjacent subpopulations exchange migrants).

Phylogeography: the examination of the geographic distributions of evol-

utionary lineages to understand the evolutionary history of a taxon.

Random pattern: spatial distribution pattern in which the presence of one

individual has no influence on the distribution of other individuals.

Synthesis map: the distribution of synthetic variables obtained by multivariate

analysis (e.g. PCA) with the objective to synthesize the information for a large

number of loci and alleles, and display it across a map to facilitate visual

interpretation of patterns.
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understanding of the microevolutionary processes that
generate genetic structure across space.

The two key steps of landscape genetics are the detection
of GENETIC DISCONTINUITIES and the correlation of these
discontinuities with landscape and ENVIRONMENTAL FEA-

TURES, such as barriers (e.g. mountains, gradient of
humidity).Thisapproachprovides informationthat isuseful
across many disciplines. For instance, detecting genetic
discontinuities is necessary for evolutionary biologists and
ecologists tounderstandhow the movementof individualsor
even gametes influences the genetic structure of a popu-
lation. Understanding gene flow is also fundamental for
ascertaining factors that enable or prevent local adaptation,
and fordescribingdynamicsthat facilitate thespread ofnew,
beneficial mutations [4,5]. However, the aim of many
conservation biologists and managers is to determine what
constitutes a natural break in, or between, populations. For
example, the ability to delineate EVOLUTIONARY SIGNIFI-

CANT UNITS, MANAGEMENT UNITS, or CONSERVATION UNITS is
dependent on detecting population subdivision [6,7]. Thus,
both academics and natural-resource managers can use
landscape genetics widely.

The landscape genetics approach

Landscape genetics has emerged as the result of research-
ers explaining observed spatial genetic patterns by using
landscape variables (Table 1). The most common spatial
patterns described in the literature are: CLINES [8],
ISOLATION BY DISTANCE [9], genetic boundaries (disconti-
nuities) to gene flow [10,11], METAPOPULATIONS [12] and
RANDOM PATTERNS [13]. The identification of these spatial
genetic patterns requires the collection of genetic data
from many individuals (or populations) whose exact
geographical location is known. Ideally, in a landscape
genetics approach, the individual is the operational unit of
study. However, this can be extended to populations (using
allele frequencies) if enough populations can be sampled.
The advantages of using individuals as the operational
unit are to avoid potential bias in identifying populations
in advance and to conduct studies at a finer scale. After
sampling, genetic and statistical tools are used to
determine the spatial genetic pattern and to correlate it
with landscape or environmental features (Table 1).

Genetic tools facilitating landscape genetics

Technological advances have enabled researchers to use
markers with varying temporal or spatial resolution
(e.g. mitochondrial DNA, microsatellites, amplified frag-
ment length polymorphisms and Y chromosomes). Dozens
of markers are available for numerous taxa (e.g. ungulates
[14], mammals carnivores [15], birds [16] and fish [17]).
The next major advance involves increased numbers of
markers [including single nucleotide polymorphisms
(SNPs), mapped loci and candidate genes] combined with a
changetoapopulationgenomics framework[18].Population
genomics involves sampling many loci across the genome, in
addition to the sampling of many individuals from each
population. Italso uses many loci from functional genes with
known map locations. An important reason to sample many
loci is to increase power to identify ‘outlier’ loci that might be
underselection[19].Fromalandscapegeneticperspective, it
is important to identify these selected loci because: (1)
selected loci are not optimal for inferring population
demographic history or for estimating population par-
ameters, such as migration rates, genetic distance or
substructure, because selection biases parameter esti-
mation; (2) comparing distributions of neutral and selected
markers [20], and/or quantitative characters [21] could help
us to understand the mechanisms generating spatial
patterns; and (3) the identification of loci under selection
can help us to understand the genetic basis of local
adaptation, adaptive differentiation and speciation [22].

Examining data in a landscape context will assist in
detecting loci under selection by focusing sampling across
potential selection gradients (e.g. temperature, humidity,
soil quality, altitude etc.) and identifying the potential
causes and consequences of selection (e.g. the geographical
location of selection gradients or barriers, and the
environmental or spatial variables correlated with the
selected loci). For example, Lenormand et al. [23] studied
two loci of pesticide resistance in the mosquito Culex
pipiens along a north–south transect that crossed
organophosphate-treated and nontreated areas in southern
France. They found a decrease in pesticide resistance with
increasing distance from the treated zone. This cline can be
interpreted as a consequence of local adaptation when
migration and selection act as antagonistic forces.

Box 1. Historical perspectives of landscape genetics

The roots of landscape genetics can be traced back to the botanist and

early biogeographer Augustin-Pyramus de Candolle (1778–1841) and

Alfred Russel Wallace (1823–1913). De Candolle noted that there are

differences in the pattern of distribution of organisms (taxa) across the

landscape, which depend upon both ‘physical causes’ that are currently

in action and other forces that no longer exist [63]. These forces, which

operate on different timescales, are now studied in the fields of

ecological and historical biogeography [3,64]. Similarly, during Walla-

ce’s journey throughout the Malay Archipelago, he noted a break

(‘boundary’) in the fauna between the Australian Region and the

Oriental Region [65].

Recently, there has been growing interest in combining the tools of

molecular genetics with the principles of ecological biogeography and

landscape ecology. This approach enables the spatial mapping of allele

frequencies from one or more species (or populations) and, sub-

sequently the correlation of such patterns with the current landscape.

This represents a ‘landscape genetic approach’, which has been limited

by the unavailability of enough molecular markers (or highly poly-

morphic markers) to examine biogeography at a fine spatial and

temporal scale. The recent combination of spatial statistics, geographic

information systems and numerous informative molecular markers will

enable the amalgamation of ecological biogeography with molecular

ecology to better understand population biology and evolution,

especially at fine spatial scales. Most exciting might be our newfound

ability to test some of the basic tenets of biogeography, and the chance

to discover new, finer scale ‘Wallace lines’, or undetected breaks in

distributions of subpopulations, individual groups or even family

lineages.
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Statistical tools to identify spatial genetic patterns

In some situations, it is easy to define subpopulations or
demes on the basis of spatial clustering of individuals
(e.g. ponds of fish in isolated lakes or birds nesting on
archipelago islands). When this is the case, methods such
as Wright’s FST or methods derived from ASSIGNMENT TESTS

[24] might be preferred. However, individuals are often not
arranged in a clustered distribution, but are uniformly
distributed across space. This is when the landscape
approach is most valuable.

From the perspective of landscape genetics, spatial
genetic patterns would be assessed at an individual
level without defining populations in advance. The idea
of a method to assess spatial genetic patterns at an
individual level dates back to Wright’s concept of the
neighbourhood in a continuously distributed population
[25]. He considered that the basic unit of population
structure is the ‘neighborhood’, its size defined as
4pDs2, where D is the population density and s2 is the
mean axial square of parent–offspring dispersal rate.

Table 1. Examples of studies assessing spatial patterns and landscape boundaries using genetic data

Spatial pattern Species Location Landscape

feature/

barrier

Genetic

marker

No of pop.

or individ.

Methodsa Results Refs

Random Lily

Ornithogalum

montanum

Italy None 11 allozymes

(36 alleles)

13 pop. Spatial

autocorrelation;

Mantel tests

(between genetic

and geographic

distance);

Monmonier

algorithm

No association

between

environmental

parameters

and allele

frequencies

[13]

Boundary to

gene flow

Brook char

Salvenus

fontinalis

Maine

(USA)

Waterfalls 6 microsats 30 pop. Linear regression

between genetic

(Fst) and

environmental

(chord) distance;

Mantel test

Genetically more

isolated at

higher altitudes

(i.e. above

impassable

waterfalls);

unidirectional

gene flow

downstream

[41]

Red grouse

Lagopus

lagopus

Scotland Matrix of

poor

habitat

7 microsats 14 pop. GIS, PCA Interpolation of

PC1 scores

implied matrix

of poor-habitat

restricted gene

flow between

populations

[10]

Alpine butterfly

Parnassus

smintheus

Kanasaskis

region

(Canada)

Forests Mantel and

partial Mantel

test (between

genetic and

environmental

distance)

Forests are

barriers to

gene flow

[11]

Clinal Humans

Homo

sapiens

Japan Maritime,

montane,

dialect

15 protein

systems

(24 alleles)

1125 pop. Spatial

autocorrelation;

Interpolation of

allele frequencies;

Wombling

Some loci

demonstrated

clinal patterns

along major

axis of Japanese

archipelago;

7 genetic

boundaries

coincide with

landscape

boundaries

[8]

Isolation by

distance

Prickly forest skink

Gnypetoscincus

queenslandiae

Atherton

Tabeland

forest

(Australia)

Forest 10 microsats 144 ind. Regression of the

genetic and

geographical

distances

between pairs of

individuals

Significant

isolation by

distance

pattern

[28]

Meta-population Black-tailed

prairie dog

Cynomys

ludovicianus

Northern

Colorado

(USA)

None 7 microsats 13 pop.,

155 ind.

Assignment tests Populations undergo

regular extinctions,

which are

recolonized by

individuals from

multiple source

colonies

[56]

aAbbreviations: GIS, geographical information system; PCA, principle components analysis; Monmonier algorithm and Wombling: see Box 2.
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This size enables the estimation of dispersal distances
if density is known [25].

Here, we describe six methods that provide the statistical
cornerstone of the landscape genetics approach (Table 2).

Mantel’s test and regression analysis

For continuously distributed populations, Rousset [26]
derived an individual-based method to detect an isolation-
by-distance pattern and to estimate neighbourhood size
using regression analyses. A MANTEL’S TEST [27] between
the genetic differentiation and geographical distance tests
for the presence of an isolation-by-distance pattern between
individuals (Table 2). A regression of the genetic differen-
tiation (e.g. relatedness) between pairs of individuals and
their geographical distance enables an estimation of the
neighbourhood size to be made. For example, in the case of

the prickly forest skink Gnypetoscincus queenslandiae, a
significant isolation-by-distance was found using the Man-
tel’s test between the individual values of differentiation
(based on relatedness) and the geographical distance of
individuals [28] (Table 1). Subsequently, the authors used
the neighbourhood size and demographic density esti-
mates to calculate skink average dispersal distance.

Spatial autocorrelation methods

Spatial autocorrelation methods have been widely used in
genetics since the late 1970s [29] to assess associations
between the genetic relatedness of pairs of individuals and
the geographical distance (Table 1). These methods test
whether the observed genotype of an individual at one loca-
lity (quantified by allele frequencies, genetic-distance,
morphometric traits, etc.) is dependent on the genotype of

Table 2. Examples of methods used to identify genetic spatial patterns and to test for correlation between genetic and

environmental variables

Method Spatial pattern

identified

Conditions of

applicatione

Software and Web addressf Refs

Linear regression

between genetic

differentiationa

and logarithm

of distance

Isolation by

distance

Continuous populations Genpop (http://www.cefe.cnrs-mop.fr/) [57]

Bayesian clustering

assignment

Population

units

Hardy-Weinberg and

linkage equilibrium

in each population;

independence among

loci; each population

has same probability

of being origin;

population of origin

is sampled

Structure (http://pritch.bsd.uchicago.edu/) [31]

Partition

(http://www.univ-montp2.fr/~genetix/partition/partition.htm) [32]

Spatial autocorrelation

and correlogramb

Cline, isolation

by distance,

Random

Defining arbitrary

distances classes

AIDA

(http://www.unife.it/genetica/Giorgio/giorgio_soft.

html#AIDA)

[58]

SGS

(http://kourou.cirad.fr/genetique/software.html)

[59]g

R

(http://www.fas.umontreal.ca/biol/casgrain/fr/labo/R/index.html)

SPAGeDi

(http://www.ulb.ac.be/sciences/lagev/software.html)

[60]

GenAlEx

(http://www.anu.edu.au/BoZo/GenAlEx/)

[61]

Interpolation Genetic

boundary

No free software known

Wombling or

Monmonier algorithm

Genetic

boundary

No developed software known

Synthesis map Visual insight

on pattern

concerned

Use of multivariate

analysis (PCA)

and interpolation

before drawing map

No free software known

Mantel test Test

correlationsc

Genpop (http://www.cefe.cnrs-mop.fr/) [57]g

R

(http://www.fas.umontreal.ca/biol/casgrain/fr/labo/R/index.html)

GenAlEx

(http://www.anu.edu.au/BoZo/GenAlEx/) [61]g

Partial mantel test Test partial

correlationd

R

(http://www.fas.umontreal.ca/biol/casgrain/fr/labo/R/index.html)

FSTAT (http://www.unil.ch/izea/softwares/fstat.html) [62]

aGenetic differentiation is a multilocus estimator of an Fst/(1 2 Fst) analogue between pairs of individuals.
bOnly the scale of the pattern is identified rather than the exact location of the pattern.
cBetween pairwise genetic distances and one geographical distance or one ‘ecological’ distance along waterways, valleys, and so on.
dBetween pairwise genetic distances and geographical distances and/or ‘ecological’ distances along water ways, valleys, and so on.
eData required are geographical and genetic data from a single sampling.
fWebsites are subject to change; this list is not inclusive.
gDeveloped by P. Casgrain and P. Legendre.
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an individual at a neighbouring locality. Then a spatial
correlogram evaluates the behavior of autocorrelation as a
function of distance (Fig. 1a). For example, Cassens et al. [9]
usedspatial autocorrelation toanalyzemitochondrial haplo-
types of 129 individual of European otters Lutra lutra across
Europe. They showed that geographical distance is the main
determinant of spatial genetic structure in the eastern
German otter populations. This result is important for the
conservation of the otter by enabling conservationists to
determine the proper spatial scale for management and
demographic studies. Spatial autocorrelations can also help
identify clines [8] (Table1).Smouse and Peakall [2] extended
the classic spatial autocorrelation measures that used one
allele at a time to a multiallelic and multilocus approach.
They applied their method to the orchid Caladenia
tentaculata, and showed that the multiallelic treatment
(to assess the spatial pattern) reduced the variation among
alleles in comparison to the single allelic analysis. Although
spatial autocorrelation can determine the scaleof the spatial
pattern, it cannot identify the specific location of a genetic
discontinuity (such as a river, mountain, etc) [30].

Bayesian clustering approaches

Bayesian clustering approaches are derived from tra-
ditional assignment tests that use individual multilocus
genotypes to assign individuals to populations [24]. These
approaches identify a population (i.e. random mating
groups) with minimal assumptions about the location of
population boundaries [31,32]. These methods first
attempt to group individuals into sets (populations) of
randommatingindividualsthatminimizeHardy–Weinberg
(HW) and gametic disequilibrium (GD) across the data set.
Departure from HW and GD leads to the splitting of the
population into subpopulations. Subsequently, all individ-
uals of unknown origin can then be assigned to potential
populations of origin taking into consideration the
probability of them belonging to each population sampled,
as determined by the genetic data.

Knowing the spatial coordinates of the sampling
location of the assigned individual enables the dispersal
distance for the individual to be estimated. Using this
approach, Stow et al. [33] showed that adult Cunning-
ham’s skinks Egernia cunninghami disperse shorter
distances in a cleared site than they do in a forested site,
which suggests that deforestation would result in the
fragmentation and isolation of such skink populations.

Although these Bayesian approaches have enormous
potential, they also have limits; the assumption of random
mating excludes the use of them on species that are
partially or wholly selfing or asexual. Furthermore, there
are events other than population subdivision that lead to
gametic disequilibrium and departures from HW pro-
portions, such as small populations sizes, bottlenecks,
inbreeding and admixture. Lastly, using this method to
assign individuals of unknown origin to populations
requires that the true population of origin be sampled [34].

Multivariate analyses and synthesis maps

Another approach to the identification of spatial patterns is
the use of multivariate analyses, such as principal com-
ponentanalysis (PCA).PCAsummarizesall thevariation for
many loci in the study area. It is usually conducted with
populations as the study unit, but can accommodate indi-
viduals as the operational unit. The INTERPOLATION of the
major principal components derived from PCA leads to a
SYNTHESIS MAP. Thisapproach does not test the presence ofa
spatial pattern, but gives insight into the concerned spatial
pattern. Piertney et al. [10] used PCA to cluster allele
frequencies of spatially referenced populations of red grouse
Lagopus lagopus scoticus. The first two principal com-
ponents derived from PCAwere then interpolated to obtain
a synthesis map (Table 1). Synthesis maps have been
widely used to visualize clines from allozyme data in
human populations [35,36] and, more recently, for micro-
satellite data from live stock in Africa [37] (Fig. 1b).

Monmonier’s algorithm and wombling

Barbujani [30] reviewed two specific methods to infer
genetic boundaries from allele frequency spatial distri-
butions: Monmonier’s algorithm [38] and wombling [39,40].
Principles of both methods are given in Box 2. Both have
great potential to delineate genetic boundaries.

Fig. 1. Statistical tools to identify spatial genetic patterns. (a) A correlogram inter-

preted as a pattern of isolation by distance. Shaded circles represent autocorrela-

tion coefficient and open circles are nonsignificant coefficients. (b) A synthetic

map illustrating the geographical variation of the first principal component (PC1),

which accounts for 38% of the total allelic variation (183 microsatellite allele fre-

quencies) in cattle across Africa [37]. The PC1 component follows a gradient that

peaks (darkest shading) in central East Africa and correlates with known introgres-

sion of alleles from recently introduced Indian Bos indicus cattle into African

B. taurus cattle. Reproduced, with permission, from [37].
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Correlating genetic patterns with landscape and

environmental features

Once a spatial genetic pattern is identified, it is possible to
test for correlations with environmental or landscape
variables. Here, we describe statistical tests that correlate
geneticpatterns with environmentalvariables, and a visual
approach that provides insight into the correlations.

Mantel’s test

Mantel’s test can also measure the association between
genetic distance and an environmental variable, such as
forest cover or temperature [11,41,42] (Table 1). Although

the standard Mantel test enables only a comparison
between two variables to be made, a partial Mantel test
can be used to compare three or more variables. For
example, Riginos and Nachman [43] analyzed the
mitochondrial DNA haplotype differentiation in relation
to habitat variables for 105 blennoid fish Axoclinus
nigricaudus. After conducting a standard multiple
regression between genetic distance and predictors of
landscape and environmental variables (i.e. biogeography,
geographical distance, habitat discontinuities because of
sandy shores or deep open water), they assessed the
significance of the predictive variables by comparing each

Box 2. Principle of the Womble and Monmonier methods to localize genetic boundaries in the landscape

The maximum difference Monmonier algorithm

The objective of Monmonier algorithm is to visualize data contained in a

genetic distance matrix on a geographical map to identify boundaries

[38,66,67].

(1) Samples (i.e. individuals) are located on a map according to their

relative geographical position.

(2) The Delaunay triangulation approach [68] is used to connect the

adjacent geographical positions of the samples on the map (Fig. I),

resulting in a network that connects all the samples.

(3) Genetic distances between neighbouring samples are calculated

and associated to each edge (corresponding to the neighbouring

sample) of the network (Fig. I).

(4) Monmonier’s [38] maximum – difference algorithm is then used

to identify boundaries:

† The edge of the network with the largest associated distance is

selected and used to begin extending a boundary (arrows in Fig. I)

perpendicular to the edges of the network.

† The edge directly adjacent to the growing boundary with the largest

genetic distance is selected to extend the boundary.

† The two previous steps are repeated until the growing boundary

meets another boundary or reaches the edge of the area under study.

The Womble approach

The Womble approach locates boundaries across a surface for an

interpolated variable (i.e. allele frequency surface) by searching for

regions in which the absolute value of the surface slope is large [39].

Barbujani and Sokal [69] extended the concept to assess both the

magnitude and the direction of slope surfaces.

(1) The values of a continuous variable (i.e. allelic frequencies) are

transformed into a continuous distribution by interpolation and/or

construction of a regular lattice (where samples are on the node of

the lattice). A surface or a lattice is then obtained for each allele.

(2) The partial derivative of the considered variable (i.e. allele

frequencies) is computed at each lattice point (or surface),

recording both the magnitude and the direction of the maximum

slope. The magnitude and slope angles at each lattice point are

averaged for all allele frequency surfaces, resulting in a ‘systemic

function’ in which each lattice point is represented by a vector

characterized by magnitude and direction (Fig. II).

(3) Testing the significance of the slope magnitude is analogous to

hypothesis testing in statistics. Barbujani and Sokal [69] chose to

consider only lattice points whose magnitude fell in the highest

5% of all simulated slopes. In addition, they imposed a

connectedness criterion among high magnitude lattice points:

their direction does not differ by .308.

Fig. I. Example of a hypothetic Delaunay triangulation. The tops of the triangles

correspond to the geographical position of the samples and are connected by

the Delaunay triangulation approach. Genetic distance between two samples is

given by the number indicated on each edge of the triangles. The first bound-

ary is drawn with arrows, following Monmonier algorithm described in the

Box 2 [38].
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Fig. II. Example of a hypothetical Womble approach. Data (white and green cir-

cles) consist of allele frequencies (e.g. at one locus) calculated in different

localities (with at least 20 individuals in each). Allele frequencies were trans-

formed by interpolation (not shown) and the interpolated surface was then

subject to the Womble method described in Box 2. The partial derivative of the

allele frequencies is computed (at each grid point) and the magnitude of the

resulting slope is proportional to the length of the rods on the figure. Only

magnitudes significant at 5% are shown (Box 2). The direction of the slopes is

indicated by the direction of the rods. The 1 indicates rods that could be con-

nected by a genetic discontinuity between green and white localities (large

rod) because their direction does not differ by .308. The 2 corresponds to

noise.
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coefficient of the regression against those generated by
permuting the predictive variables. The partial coefficients
of threeof thepredictivevariables (biogeography,geographi-
cal distance and water discontinuities) were significantly
greater than that expected if they have been randomly
associated. The authors concluded that the level of genetic
differentiation among populations of A. nigricaudus was
due to the combined influences of biogeography, geo-
graphical distance and habitat discontinuities.

Canonical correspondence analysis

In spite of their usefulness, the Mantel or partial Mantel
tests cannot be used to quantify the amount of variation
explained by environmental factors. Canonical correspon-
dence analysis (CCA) has been used as an alternative
because it enables genetic diversity to be related to
environmental factors and can test for environmental
factors that contribute significantly to the explanation of
the variations in genetic diversity [44,45]. Angers et al.
[44] applied a CCA to analyze simultaneously the
contribution of drainage pattern, altitude and human-
induced factors (e.g. sport fishing and stocking of domestic
brook charr Salvelinus fontinalus) on the genetic diversity
of brook charr using five microsatellites. They detected an
influence of these three factors on the pattern of genetic
diversity (population divergence) among and within
populations, which is helpful for the conservation of this
species and the planning of further experiments.

Geographical information systems

In parallel to statistical tests, geographical information
systems (GIS) can be used to visualize spatial genetic
patterns (e.g. boundaries) and also to generate hypotheses
about the cause of genetic boundaries, because GIS
enables landscape variables to be overlaid onto genetic
data. GIS leads to the creation of synthesis maps providing
various geostatistical tools for interpolation (e.g. [46,47]).
For example, Piertney et al. [10] analyzed microsatellite
allele frequencies of 14 populations of red grouse from
northeast Scotland through the use of PCA. Using PC1
scores, the authors found zones where the slope of the
interpolated genetic surface was significantly higher than
other areas and suggested that these zones were potential
barriers. These putative barriers were overlain onto a
variety of land maps that corresponded to areas of
unsuitable grouse habitat (Table 1).

Testing correlation between two maps

Piazzaetal. [47] foundasignificantcorrelationbetweengene
frequency gradients in humans and archaeological dates of
the first Neolithic European farmers by using a Pearson’s
correlation coefficient modified for spatial data. This study
suggests that the greatest influence on European genetic
variation corresponds to the migration of Neolithic farmers
from the area of origin of agriculture in the Middle East.
A statistical test has also been developed to test whether
two boundaries occur in exactly the same place [48].

Prospects

We have reviewed some advances in the analyses of genetic
spatial patterns and their correlation with landscape and

environmental features. The largest advance is the move-
ment towards methods that do not require assumptions of
population boundaries beforehand. The development of
the fast-moving field of landscape genetics has benefited
from the recent development of molecular tools and the
new and existing statistical tools developed in landscape
ecology. Landscape genetics should advance greatly our
understanding of how landscape and environmental
features influence gene flow, population structure and
local adaptation. But landscape genetics is not an end in
itself. The techniques used in this field will describe spatial
genetic patterns, but more importantly will lead to
exploration of the processes that caused the patterns.

In the laboratory, SNPs are likely to become widely used
in the future, because of their favourable attributes: they
are the most abundant class of polymorphisms in genomes
[49,50], they can be genotyped in automated systems more
easily than can microsatellites, and their mutation
dynamics are more easily modeled and less variable
among loci. Finally, they can often be identified in
candidate genes with potentially important functions [51].

In statistics, the near future will see the development of
statistical tests to detect selection across space [52] and to
identify spatial patterns using linked loci instead of using
only independent loci [53]. Most of the assumptions
required in many of these statistical methods are likely
to be violated in natural populations, and the impact of
these violations on the inference reliability is uncertain. It
is essential to validate the performance of statistical
methods (e.g. by simulations). For example, Epperson and
Li [54] characterized the statistical properties of spatial
autocorrelation statistics for a wide range of sampling
methods and sampling size, with careful considerations of
appropriate spatial scale of sampling. It is important that
studies such as this [54] are conducted and compared with
other statistical approaches, because the success of studies
of landscape genetics will depend on a change of sampling
strategies in population genetics.

Landscape genetics implies random sampling across
the entire study area and not just sampling some
individuals in each of several populations identified
beforehand. Unfortunately, the establishment of large-
scale sampling programs to assess the genetic variability is
usually difficult. Here, landscape management activities
can help greatly: existing inventory and monitoring
programs can provide environmental data and large
numbers of genetic samples across large landscapes.
These data can then be explored to find genetic disconti-
nuities and identify areas of conservation concern. In
general, more detailed investigations (i.e. simulations) are
necessary to establish the precise relationships between
properties of the statistical methods used and sampling
strategy in terms of number of samples and loci, distance
among samples and overall economic cost [55]. All these
improvements will help landscape genetics fulfil its
enormous potential for facilitating studies in ecology,
evolution and conservation biology.
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