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Abstract Lateral flows in landscape mosaics repre-

sent a fundamentally important process in landscape

ecology, but are still poorly understood in general. For

example, windblown litter nutrient transfer across a

landscape has rarely been studied from an ecosystem

perspective. In this study we measured the litter

nutrient transfer from an Acacia mangium plantation

to a Dimocarpus longan orchard in an agroforestry

landscape for 3 years from January 2002 to December

2004. About 11% of the total litterfall of the acacia

plantation were transported to the longan orchard

annually, accounting for ca. 9–59% of the total litter

nutrient input of the longan orchard. The windblown

litter transfer showed high spatial variation mainly

caused by wind speed and directions. Slope positions

5 m away from the source acacia plantation received

significantly greater amount of allochthonous acacia

litter than those 10 m away, and the northwest-facing

slope of the longan orchard received 2 to 3-fold more

litter than the southeast- and south-facing slopes

because of the prevailing southeasterly wind in the

region. To explore how different management prac-

tices may influence the litterfall, leaf production, and

soil nutrient status of the two ecosystems, we devel-

oped a Meta-Ecosystem Litter Transfer (MELT) model

to simulate the processes of litter-related transforma-

tion (production, deposition, and decomposition) and

transfer (wind- and management-driven movement).

Our simulation results suggest that less than 30% of

acacia litter should be transferred to the longan orchard

in order for the acacia plantation to sustain itself and

maximize production of the longan. Connectivity of

nutrient flow between adjacent ecosystems as shown

here leads to a functional meta-ecosystem with higher

landscape-scale production of ecosystem services.

That is, managing this connectivity through landscape

design or active litter transfers can lead to large

changes in overall landscape functioning and service

production.
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Introduction

Movements of inorganic nutrients, organic matter,

pollutants, and living organisms are ubiquitous in

natural and managed landscapes. Through these

movements, outputs of materials, energy, and organ-

isms from donor patches may become inputs for

recipient patches, and can exert important influences

on the structure, dynamics, and functioning of both

patches and the landscape as a whole (Forman and

Godron 1981; Risser 1990; Polis et al. 1997; Loreau

et al. 2003; Gravel et al. 2010). Since the biogeo-

chemical cycles of elements are key ecosystem

processes, the transformation and vertical flows of

elements in the plant-soil continuum have been the

main foci of ecosystem ecology. Compared to the

vertical ecosystem nutrient cycling, the lateral flows

of elements across different patch ecosystems embed-

ded in a landscape or a meta-ecosystem have been

less studied (Loreau et al. 2003; Reiners and Driese

2004; Turner and Chapin 2005). Therefore, ecolog-

ical flows including lateral nutrient fluxes across

landscape mosaics have been recognized as one of

the research frontiers in landscape ecology (Wu and

Hobbs 2002; Turner 2005; Turner and Cardille 2007;

Wu and Hobbs 2007).

Materials move between landscape components

through mechanisms such as diffusion, gravity, and

transport by surface and subsurface runoff, wind, or

animals (Cadenasso et al. 2003). Among these driving

forces, water-driven nutrient flows across heteroge-

neous landscapes have received much attention, mainly

because excess nutrients (e.g., nitrogen (N) and phos-

phorus (P)) discharged from croplands and residential

areas may cause the widespread problem of nonpoint

source pollution in the receiving water bodies such as

streams, lakes, and coastal oceans (Carpenter et al.

1998). For example, in an agroforestry landscape

consisting of corn fields, riparian forest and stream,

Peterjohn and Correll (1984) estimated that about 35 and

17% of the total N and P inputs (from wet deposition and

fertilization) were transported from the corn fields into

the down slope riparian forest via surface runoff and

belowground water; contrastingly only 11 and 20% of

the total N and P inputs (from wet deposition and

cornfield runoff) were transported from the riparian

forest to the stream. In another agroforestry watershed

consisting of agricultural fields, forest shelterbelts and

meadows, nitrate concentration in the groundwater

beneath the shelterbelts and meadows were found

significantly (in some cases 26-fold) lower than those

under the adjoining fields, and meadows could retain

90% of the P-PO4
-3 in the incoming ground water

(Ryszkowski et al. 1999). These results suggest nutrient

movements across landscape components are signifi-

cant and biogeochemical barriers such as riparian forests

and shelterbelts can play important role in regulating

nutrient/pollutant fluxes (also see Haycock et al. 1997;

Lowrance et al. 1997; Baker et al. 2006; Jones et al.

2006; Mayer et al. 2007).

Wind has also been widely recognized as an impor-

tant driver in transporting materials across landscape

components. Most previous studies have focused on

wind-eroded dust or soil particles (Breshears et al. 2003;

Reiners and Driese 2004; Li et al. 2008). Relative to

hydrological and windblown nutrient movements asso-

ciated with soil solutions or soil particles, windblown

litter nutrient transfer and its ecological significance

have been less studied. This is despite the fact that

litter plays a key role in ecosystem nutrient cycling

(Hattenschwiler et al. 2005; Berg and Laskowski 2006).

A few studies have shown that wind can play an

important role in litter fall and litter transfer processes.

In Arctic landscapes, wind often redistributes litter and

snow from hill and ridge tops to leeward locations

during winter time, subsequently forming patches of

litter accrual after the snow melts in spring, which can

further reduce photosynthetically active radiation and

soil temperature, increase C and N accumulation, and

stimulate soil CO2 efflux at the litter deposition sites

throughout the growing season (Fahnestock et al. 2000).

In arid and semi-arid landscapes, windblown fine soil

particles and plant detritus from inter-shrub spaces help

form islands of fertility after deposition on the shrub-

occupied patches, therefore altering the spatial distri-

bution patterns of soil properties and posing a sign of

desertification (Schlesinger et al. 1996). Nutrients

bound in soil particles and plant residues may also be

transported from nearby croplands to remnant native

woodlands and have negative impacts on the regener-

ation of native vegetation in semiarid agricultural

regions of Australia (Duncan et al. 2008). In riverscapes,

most of carbon used by stream organisms originates

from litterfall and other materials produced by riparian

forests (Fisher and Likens 1973; Johnson and Covich

1997). Thus, windblown litter transfer is a common

phenomenon with important ecological impacts in

various landscape types and deserves more study.
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Under the pressure of human population growth and

economic development, it is of paramount importance

to use shrinking land resources efficiently in order to

harmonize human demand and environment protec-

tion such that the production of ecosystem services are

sustainably maintained. Agroforestry, being widely

practiced in both the developed world such as Europe

(Rigueiro-Rodriguez et al. 2009) and North America

(Blanco-Canqui and Lal 2008), and the developing

countries such as China (Zou and Sanford 1990; Fu

et al. 2004), India (Puri and Nair 2004) and Africa

(Kwesiga et al. 2003), has been recognized as one of

the best land management practices in conserving soil

and water, improving farm economy, advancing food

security, and mitigating atmospheric and water pollu-

tion (Blanco-Canqui and Lal 2008). Agroforestry

systems often combine trees/shrubs with crops and/

or livestock on the same unit of land, thus forming a

spatially heterogeneous landscape or meta-ecosystem

comprised of tree plantations, croplands, and/or pas-

tures. With such diverse spatial composition and

configuration, agroforestry systems are useful for

studying the reciprocal relationships between land-

scape pattern and ecological processes in the produc-

tion of ecosystem services. Practically, understanding

nutrient transfer across the components of agroforestry

landscapes can also provide management guidance to

land practitioners and policy makers.

In this study, we chose a typical agroforestry system

in southern China to investigate dynamics of wind-

blown nutrient transfer between two contrasting

patches. This agroforestry landscape occupies a small

catchment and is composed of a legume tree (Acacia

mangium) plantation on the upper slopes (1.3 ha), a

longan fruit-tree (Dimocarpus longan) garden on the

middle (0.87 ha), a fish pond at the bottom (0.29 ha),

and a napiergrass (Pennisetum purpureum) strip

(0.3 ha) along the fish pond banks (Fig. 1). The aim

of this design was to create a self-sustaining system

that can efficiently control soil erosion and water loss

while simultaneously increasing the economic gain of

local farmers. In this agroforestry watershed, the

acacia plantation can serve to regulate the local

climate and control soil erosion from steeper upper

slopes; the napiergrass can be used to feed fishes and

buffer longan garden originated nutrients; the litter

from the acacia plantation and sediments from the fish

pond can be moved to the longan garden as organic

fertilizers; fish (mainly grass carp and tilapia) and

longan fruits are the products to be sold for monetary

income. Thus, these systems provide multiple ecosys-

tem services with several direct and indirect conse-

quences for human well-being. Our previous studies

on nutrient movements in this agroforestry landscape

had been mainly focused on nutrient fluxes associated

with hydrological flows and found that groundwater

could transport a substantial amount of nutrients (e.g.,

1.3–3.7 g N m-2) from the acacia plantation to the

down-slope patches (Ding et al. 1995; Shen et al.

2007). This study emphasizes windblown- and man-

agement-litter nutrient transfer processes that mainly

occur between the acacia plantation and the longan

orchard.

Specifically, we aimed to quantify the amount of

windblown nutrient flow between the two patch

ecosystems, analyze how it varied spatially with slope

aspects and distance to the source patch, and derive the

relationships between windblown litter nutrient trans-

fer and wind conditions. Based on the observed data,

Fig. 1 The spatial composition and configuration of the

studied agroforestry landscape
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we also aimed to develop a model to simulate the litter-

related transformation and transfer processes by

viewing the two patch ecosystems as a meta-ecosys-

tem. The model was further used to analyze how

different management litter transfer scenarios could

influence the litter and nutrient pool sizes of the meta-

ecosystem and from these results derive practical

guidance on managing the landscape for sustainable

production of ecosystem services.

Methods

Study site description

The study site is located at the Heshan National Field

Research Station (Heshan-NFRS) of Forest Ecosys-

tems (112�540E, 22�410N), Heshan City, Guangdong

province, southeastern China. This site is characterized

by a typical subtropical monsoon climate. The mean

annual temperature is 21.7�C, with the maximum mean

monthly air temperature of 29.2�C in July and the

minimum of 12.6�C in January. The mean annual

precipitation is 1700 mm, nearly 80% of which falls in

the wet season from April through September. The soil

is an oxisol developed from sandstone, with a pH of

about 4.2. The study area is typical of the region with

low hills (peak elevation of 98 m) and small water-

sheds (area of about 3–100 ha). This region was

historically covered by evergreen broadleaved forests

but its land cover had been transforming into agricul-

tural lands and abandoned hilly slopes since 1960s.

Starting from the early 1980s, most of the abandoned

hilly slopes were replanted with fast-growing tree

species such as Pinus massoniana, A. mangium, and

Euclyptus citriodora, and those vicinal to villages were

turned into agroforestry systems that are often man-

aged by a group of households.

Litter collection and chemical analysis

Ten litter traps were placed randomly on the acacia

plantation floor and 12 were placed systematically on

the longan orchard floor. Each of the three aspects of

the orchard slope had four litter traps, with two of them

5 m away and the other two 10 m away to the lower

edge of the acacia plantation. The litter traps were

made from fine nylon mesh cloth (1 mm mesh size)

with a size of 1 9 1 m and a depth of 40 cm. The

bottom of the trap was 15 cm above the ground and the

top of the trap was supported horizontally. All

accumulated materials in the traps were collected

every month from January 2002 to December 2004.

The materials from each trap were weighted and sorted

into leaves, branches, and other with respect to litter

species (i.e., acacia and longan). Five subsamples from

the pooled litter of each ecosystem were oven-dried at

65�C to constant weight and the water content was

calculated based on the fresh weight and dry weight.

Nutrient contents of acacia and longan litter were

analyzed twice with litter samples from March 2002

and July 2003. The dry litter samples were first pooled

in proportion to quantity and then milled to pass a

1 mm sieve for nutrient analysis. Total organic C and N

concentrations were determined by coupled combus-

tion/reduction and gas chromatography (CHN Ana-

lyzer, Perkin Elmer II 2400). Dry litter powder was wet

digested in a mixture of HNO3 ? H2O2. The concen-

trations of Ca, K, Na, Mg, P and S in the solution were

measured by inductively coupled plasma atomic

emission spectrometry (ICP AES, Perkin Elmer

Optima 3100XL). The size of the subsample for

CHN analysis was 0.1–0.3 g and wet digestion 0.5 g.

Observed data analysis

The relationships between litterfall and wind speed

(including monthly mean wind speed and peak wind

speed) were analyzed using correlation analysis. The

difference of acacia litter transfer among the three slope

aspects (i.e., southeast-, northwest-, and south-facing

slopes, see Fig. 1) and between the two distances (5 and

10 m to the lower edge of the acacia plantation) were

analyzed using repeated-measures ANOVA. All the

statistical analyses were performed in SPSS 13.0 and

SigmaPlot 7.0. The significance level was 0.05.

Model development

Based on the meta-ecosystem concept (Loreau et al.

2003; Gravel et al. 2010) and the approach used to

model carbon transfer following soil erosion and

deposition (Jenerette and Lal 2007), we built a simple

Meta-Ecosystem Litter Transfer (MELT) model to

simulate the wind- and management-driven litter

transfer processes from the source acacia plantation

to the sink longan orchard without considering their

spatial variation. Figure 2 is a conceptual diagram of
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the MELT model, which consists of two types of

pools (leaf biomass and litter pools) and the input,

output, and transfer processes determining the

dynamics of these pools. Table 1 provides the

description and parameterization on the variables

used in Fig. 2 and equations below.

The dynamics of leaf biomass pool (B, g C m-2)

were determined by the rates of leaf production (P,

g C m-2 month-1) and litter fall (F, g C m-2 month-1),

and the dynamics of the litter pool (L, g C m-2)

were determined by the rates of litter fall, litter

decomposition (D, g C m-2 month-1), and litter transfer

driven by wind (W, g C m-2 month-1) and manage-

ment (M, g C m-2 month-1), i.e.,

dB

dt
¼ P� F ð1Þ

dL

dt
¼ F � D�W �M ð2Þ

To simplify the model for this study and empha-

size the effects of litter fall and litter transfer

processes, the production rate (P) was calculated as

the product of a fixed growth coefficient (l, month-1)

and a N modifier f(N) (i.e., P = l � f(N)), where l for

acacia and longan were derived from literature (Shen

et al. 2003; Fu et al. 2010) and the calculation of

f(N) shall be described later in Eq. 7. Litterfall rate

(F) was modeled by subtracting a fixed proportion (k)

of leaf biomass (B) in each month ((i.e., F = k � B).

The proportion (k) was the ratio of the observed

monthly litterfall to the total annual litterfall. The

litter decomposition rate (D) was a product of the

decomposition coefficient (k), litter mass (L), and

temperature scalar (f(Ts)):

D ¼ k � L � f ðTsÞ ð3Þ

where k (month-1) was derived from literature (Li

et al. 2001) and had a lower value for acacia than that

for longan (see Table 1). The k value for the mixed

acacia and longan litter was a weighted average based

on the proportion of the two litter species. The

temperature scalar f(Ts) incorporated temperature (Ts)

influences on litter decomposition:

f ðTsÞ ¼ 0:0326þ 0:00351 � ðTsÞ1:652 � Ts

41:748

� �7:19

ð4Þ

although this function was not specifically derived

from the acacia and longan ecosystems, it had been

used as a general modifier for a variety of ecosystem

AcaLf

AcaLitr

LonLf

LonAcaLitr

LonNGet

AcaLitrFall LonLitrFall

AcaLfPrd LonLfPrd

AcaLitrDecom LonLitrDecom
WindTransfer

AcaNGet

PeakWdSpd

AcaLtrC\N

AcaLfC\N
LogLfC\N

LonLitrC\N

Month

AcaLitrRt LonLitrRt

AcaDecomRt LonDecomRtManTransFrac

AcaNdemand LonNdemand

Month

ManTransfer

Tscalar Tscalar

AcaNmodifer LonNmodifier

fLtrFall

AcaPrdCo
LonPrdCo

Source ecosystem Sink ecosystem
Fig. 2 A conceptual

schematic diagram of the

MELT (Meta-Ecosystem

Litter Transfer) model.

Boxes represent pools; pipe
lines with arrows represent

processes that link the

pools; circles represent the

auxiliary variables used to

calculate the rates of

processes; and thin lines
with arrow show the

connections among pool,

process, and auxiliary

variables. Descriptions and

initial/fixed values of all the

variables are given in the

Table 1
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types such as grassland (Parton et al. 1993), shrubland

(Shen et al. 2008), and forest (Eliasson et al. 2005).

Monthly mean Ts (�C) was generated by a normal

distribution function with the means and standard

deviations obtained from the meteorological station at

Heshan-NFRS. Similarly, monthly peak wind speed

(dw, m s-1) was generated by a lognormal distribution

function with the means and standard deviations

derived from our 3-year observation. The windblown

litter transfer rate (W, g C m-2 month-1) was

Table 1 Variable description and parameterization of the MELT model

Symbol in

equations

Abbreviation in

Fig. 2

Description Value Unit Source/notes

P AcaLfPrd

LonLfPrd

Leaf production rate Eq. 1 g C m-2 month-1 Fixed

l AcaPrdCo

LonPrdCo

Leaf production coefficient 50.5

21.0

g C m-2 month-1 Shen et al. (2003), Fu et al.

(2010)

B AcaLf

LonLf

Leaf biomass (initial

values)

558

225.5

g C m-2 Shen et al. (2003), Fu et al.

(2010)

L AcaLitr

LonAcaLitr

Litter pool size (initial

values)

1617

567

g C m-2 Zou et al. (2006), Fu et al.

(2010)

F AcalitrFall

LonLitrFall

Litterfall rate Eq. 2 g C m-2 month-1 Varies monthly

k AcalitrRt

LonLitrRt

Litterfall coefficient 4.7–21.2% month-1 Derived from the 3-year

observation

C/Nlf AcaLfC\N

LonLfC\N

Leaf C/N ratio 20.45

30.76

Unitless Shen et al. (2003)

C/Nlt AcaLtrC\N

LonLtrC\N

Litter C/N ratio 29.2

44.3

Unitless Measurements of this study

D AcaLitrDecom

LonLitrDecom

Litter decomposition rate Eq. 3 g C m-2 month-1 Shen et al. (2008)

k AcaDecomRt

LonDecomRt

Litter decomposition

coefficient

0.051

0.063

month-1 Li et al. (2001)

f(Ts) Tscalar Soil temperature modifier 0–1, Eq. 4 Unitless Shen et al. (2008), Eliasson et al.

(2005)

dw PeakWdSpd Peak wind speed m s-1 Measurements of this study

W WindTransfer Windblown litter transfer

rate

Eq. 5 g C m-2 month-1 Derived from the 3-year

observation

M ManTransfer Management-driven litter

transfer

10–100% g C m-2 month-1 Designed scenarios

Ndmd AcaNdemand

LonNdemand

Nitrogen used in leaf

production

Eq. 6 g N m-2 month-1

Nget AcaNGet

LonNGet

Nitrogen from litter

decomposition

Eq. 6 g N m-2 month-1

f(N) AcaNmodifier

LonNmodifier

N modifier to leaf

production

Eq. 7 Unitless Steady state value = 1

Nmint AcaNmin

LonNMin

N mineralization rate 0.7407

0.2080

g N m-2 month-1 Initialization steady state model

run

Nstd
soil

AcaNsoilStd

LonNsoilStd

Steady-state soil N content 55.7

12.7

g N m-2 Initialization steady state model

run
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simulated by a regression equation derived from our

3-year observation data:

W ¼ 2:6283dw � 7:0907 ð5Þ
Besides simulating the carbon (defined as dry

matter times litter C content) flow associated with

litter production, transfer and decomposition pro-

cesses, the MELT model also computed the amount

of nutrients (represented by N) required to produce

leaf biomass (Ndmd, g N m-2 month-1) and N gained

from litter decomposition (Nget, g N m-2 month-1):

Ndmd ¼
P

C=Nlf

and Nget ¼
D

C=Nlt

ð6Þ

where P was the rate of leaf production and D the rate

of litter decomposition; C/Nlf and C/Nlt were the C to N

ratios for leaf and litter, respectively (see Table 1). At

steady state, we assumed that Ndmd was balanced by N

gained from litter decomposition (i.e., Nget) and from

mineral soil organic matter mineralization (denoted as

Nmin), which were also constants derived from the

initialization steady-state model run (see Table 1 for

their values). We then used the relative change of soil

N pool size (Nsoil, g N m-2) to the steady-state soil N

pool size (see Table 1 for their values) as the N

modifier to provide the N limitation/stimulation feed-

backs to acacia/longan leaf production.

f ðNÞ ¼
1� Nsoil�Nstd

Nstd

��� ���;
1þ Nsoil�Nstd

Nstd

��� ���;
8<
: if

Nsoil\Nstd

Nsoil�Nstd

ð7Þ

Management transfer scenarios and model

execution

The main goal of litter transfer management is to

increase litter nutrient input for the longan orchard

but not seriously influence the nutrient status of the

acacia plantation. Therefore, we adopted five man-

agement transfer scenarios, i.e., moving 10, 30, 50,

70, and 100% of the acacia litter into the longan

orchard, to infer the appropriate amount of acacia

litter that should be transferred. Managed litter

transfers occur once a year in October, mainly

because it would be easier for working with compar-

atively dry litter in the field during this time of the

year. Besides the management transfer scenarios, we

also ran a baseline scenario that had no management

transfer and no wind transfer, and a scenario with

wind transfer only. For each scenario, we ran the

model 50 times with a monthly time step and a

simulation length of 360 months. This simulation

design resulted in 301 model runs in total (6 transfer

scenarios 9 50 replicate runs ? 1 baseline run). All

the wind and management transfer actions were set to

take place in the 120th month when the model was

initialized to a steady state.

Results

Meteorological variables

Since meteorological variables (e.g., wind speed and

temperature) were used to drive the MELT model and

derive the quantitative relationships in the model, we

briefly summarize the major variables here. During

the three years of observation at the Heshan-NFRS,

annual precipitation was 1004 and 970 mm for 2003

and 2004, respectively, but about 60% greater in 2002

(1618 mm), which was mainly due to the large

rainfalls in July through September (Fig. 3a). The

prevailing wind direction was north to northwest

(300–360�) from October through March and south to

southeast (90–180�) from April through September

(Fig. 3b). Monthly mean wind velocity showed large

variation (1.2–2.2 m s-1) but was generally higher

in March through October than in other months

(Fig. 3c). Monthly peak wind speeds were mostly in

the range of 4.5–7.5 m s-1 and could reach as high as

11 m s-1 (Fig. 3d). Monthly mean air temperature

varied from 14.1�C in the coolest January to 29.8�C

in the warmest July (data not shown in Fig. 3), with

small difference (\1.5�C) among the 3 years.

Litter fall and litter nutrient input into the two

patch ecosystems

Litterfall of the acacia plantation peaked in July

through September (Fig. 4a) whereas it peaked in

March for the longan orchard (Fig. 4b). Although

such seasonal patterns of litter fall were clear,

monthly litterfall varied markedly among the 3 years.

The acacia litterfall was significantly correlated with

the mean and peak wind speeds (Fig. 4c) whereas the

longan litterfall was not (Fig. 4d, f). On average,

annual litterfall collected in the acacia plantation was
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1026.3 g DM m-2, nearly twice as much as that of

the longan orchard (599.6 g DM m-2). Wind blew

about 130 g DM m-2 of acacia litter into the longan

orchard, accounting for 11% of the total annual

litterfall in the acacia plantation and 21.6% in the

longan orchard (Table 2). The wind-transferred aca-

cia litter was also correlated with the mean and peak

wind speeds (Fig. 4e).

Our chemical analysis showed that the litter nutrient

contents of the two species were different. Acacia litter

had higher N and Na contents whereas longan litter

had higher Ca, K and P contents (Fig. 5). S, Mg and

organic C concentrations were similar for the two

species. The amount of nutrients (litter dry matter

times nutrient concentration) returned to the acacia

plantation floor was about 1.5–2.4 times larger than

those to the longan orchard floor, particularly for C, N,

S, K, and Mg (Table 2). In the longan orchard, nutrient

inputs contributed by the allochthonous acacia litter

could account for 9–59% of the total nutrient inputs of

the longan orchard, depending on the nutrient species

of interest (Table 2).

Spatial variation of windblown litter transfer

The amount of acacia litter deposited onto the longan

orchard varied with the distance to its source (i.e., the

acacia plantation; Fig. 6). The acacia litter collected at

the upper slopes of the longan orchard (5 m to the lower

edge of the acacia plantation) were significantly greater

than those collected at the lower slopes (10 m away

from the lower edge of the acacia plantation; F = 5.32,

P = 0.04; Fig. 6a). Averaged over the 3 years, the

acacia litter transferred by wind to the upper slopes

of the longan orchard (232.9 g DM m-2 year-1) was

nearly 8 times the rate to the lower slopes

(30.1 g DM m-2 year-1; Table 3). On the upper slope

of the longan orchard, the percentage of allochthonous

acacia litter to the total litterfall was 20–65% whereas

this ratio was generally less than 20% for the lower slope

of the longan orchard (Fig. 6c). Larger litter deposition

on the upper slope also means more nutrient input.

Taking N as an example, the upper slope of the

longan orchard received the allochthonous N of

3.9 g m-2 year-1 compared to 0.5 g N m-2 year-1 at

the lower slope (Table 3). In contrast, the longan litter

collected at the upper slope (384.7 g DM m-2 year-1)

was significantly less than that at the lower slope

(582.1 g DM m-2 year-1; F = 15.4, P = 0.003;

Fig. 6b).

The windblown acacia litter deposition also varied

with slope aspects. The northwest-facing slope of the

longan orchard received significantly greater amounts

of acacia litter than the south- and southeast-facing

slopes (Fig. 7a; F = 23.44, P = 0001). Based on

annual averages, acacia litter deposition on the
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legend as shown in (d). Bars
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of the 10 and 12 litter traps
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Table 2 Annual litter nutrient input (3-year average ± SD; in g m-2) onto the acacia plantation and longan orchard floors

Nutrient species Acacia plantation Longan orchard

Acacia litter Longan litter Total % Acacia to totala

TN 17.3 ± 0.59 2.18 ± 0.67 4.96 ± 0.29 7.14 30.6

TP 0.26 ± 0.01 0.03 ± 0.01 0.30 ± 0.02 0.33 9.1

TS 1.41 ± 0.05 0.18 ± 0.05 0.66 ± 0.04 0.84 21.4

K 5.01 ± 0.17 0.63 ± 0.19 2.72 ± 0.16 3.35 18.8

Na 2.42 ± 0.08 0.31 ± 0.09 0.22 ± 0.01 0.53 58.5

Ca 6.31 ± 0.22 0.80 ± 0.24 8.27 ± 0.48 9.07 8.82

Mg 0.86 ± 0.03 0.11 ± 0.03 0.35 ± 0.02 0.46 23.9

OC 505.3 ± 17 63.7 ± 19.5 219.6 ± 12.9 283.3 22.5

DM 1026.3 ± 34 129.4 ± 38 470.2 ± 48 599.6 21.6

TN total nitrogen, TP total phosphorus, TS total sulfur, OC organic carbon, DM dry matter
a Percentage of acacia litter nutrient to the total litter nutrient received in the longan orchard
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northwest-facing slope of the longan orchard was

228.4 g DM m-2 year-1, compared to 63.4 g DM

m-2 year-1 for the south-facing slope and 102.6 g

DM m-2 year-1 for the southeast-facing slope

(Table 3). Corresponding to nutrient contents, litter

nutrients received at the northwest-facing slope were

1.1–3.5 times those of the south- and southeast-facing

slopes, especially at the upper slope positions (Table 3).

In contrast, the longan litterfall at different aspects of

slopes were not statistically different (Fig. 7b). As a

result, the northwest slope received more litter in total,

of which the allochthonous acacia litter accounted for

29.3% on average, much higher than the percentages for

the southeast-facing (20.2%) and south-facing (11.%)

slopes (Fig. 7c).

Modeled response of the meta-ecosystem

to management litter transfer

Compared with the observed values (see Table 2), the

MELT model overestimated the wind-transferred

acacia litter by 2.5% and the annual litterfall of the

two systems by ca. 10% (Fig. 8, inlets). These

simulated results are reasonably good, indicating that

the model is a useful representation of the observed

data. It also indicates that the logic and quantitative

relationships built into the model are suitable for

describing litter-related processes in a meta-ecosys-

tem. As 10–100% of acacia litter was moved into the

longan litter pool, both the acacia litterfall and wind-

transferred acacia litter declined, whereas longan

litterfall increased (Fig. 8). This is a result of the

suppressed/amplified leaf and litter production

(Fig. 9) due to the litter-related nutrient reduction/

addition in the two systems. For the five management

litter transfer levels, our modeling results showed that

leaf/litter production and litter pool size responded

nonlinearly to the linear increase of litter transfer

amount. After the transfer level exceeded 30%, the

acacia system quickly declined to a low-level steady

state in terms of litter pool size and leaf production,

and the longan system was less responsive than below

30% transfer levels (Fig. 9)—the difference of relative

longan leaf production increase was 41% between the
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10 and 30% transfer levels, compared to 14.6%

between the 30 and 50% transfer levels.

Discussion

Spatial variation of litter transfer

Although the studied landscape is small in area

(ca. 3 ha), litter transfer between patches showed high

spatial variation. The windblown acacia litter could

reach as far as more than 50% of the width of the

orchard. The closer the position to the source ecosys-

tem (i.e., the acacia plantation), the more the litter

deposited to the sink ecosystem (i.e., the longan

orchard; Fig. 6a). Based on our correlation analysis,

acacia litterfall was significantly related to wind speed,

particularly peak wind speed, which also determined

the distance of acacia litter transfer into the longan

orchard. Litter transfer did not only happen from the

acacia plantation to the longan orchard, longan litter

also drifted from the upper slope to the lower slope

positions within the longan orchard, causing greater

longan litterfall on the lower slopes than on the upper

slopes (see Fig. 6b). But the amount of acacia litter

transferred from the acacia plantation to the longan

orchard was much greater than the amount of longan

litter transferred from the upper to the lower slopes of

the orchard. We argue this was mainly because the

upper slope acacia plantation with the height of about

20 m acted as a wind barrier to reduce the wind speed

in the down slope longan orchard. Moreover, the lag

periods between peak wind (in July–September) and

longan litterfall (in March) might also be responsible

for the weak correlation between the two (see Fig. 4).

While wind speed determines the distance of acacia

litter transfer into the longan orchard and therefore in

part causes the variation of litter deposition with slope

positions, wind direction is responsible for the variation

of litter deposition with slope aspects. Based on our

observation (Fig. 4a) and other studies on the litterfall

of A. mangium plantation (Tsai 1988; Saharjo and

Watanabe 2000), April through October was the period

with greater litterfall compared to other months. During

this period at our study site, the prevailing wind

direction was southeast (Fig. 3b), which therefore likely

caused the 2–3 fold more acacia litter deposition on the

northwest-facing slope than on the southeast- and

south-facing slopes of the longan orchard. Such aT
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pattern was particularly obvious from July to September

(see Fig. 7), the typhoon season with strong southeast

wind and large rainfall (Fig. 3a). During the period

from November to March, the prevailing wind direction

was northwest (Fig. 3b). Therefore, the southeast-

facing slope generally received more allochthonous

acacia litter than the other two slopes (Fig. 7). Some

other factors such as the growth conditions and the slope

steepness of the acacia plantation might also contribute

to the spatial variation of litter transfer—larger canopy

biomass may result in greater litter production and litter

transfer and less steep slopes may result in shorter

distance of litter transfer. The contribution of these

factors to the spatial variation of acacia litter transfer

needs further investigation.

Unlike the windblown surface litter transport in

arctic (Fahnestock et al. 2000) and desert landscapes

(Duncan et al. 2008), the litter transfer in our

agroforestry landscape was mainly from canopy to

ground. Therefore, both wind and gravity were

important for litter transfer and deposition. Due to

the restriction imposed by gravity and rough bound-

ary layer surface, the distance of litter transfer was

limited—very sparse acacia and longan litter were

observed in the grass slope and fish pond at the lower

positions of the landscape (see Fig. 1). However, the

importance of such short-distance litter transfer

between patches may be a common feature of patch

edges. The edges lead to increase of total litter

production resulting from greater wind exposure and

increased plant desiccation stress (Sizer et al. 2000;
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Vasconcelos and Luizao 2004), Edges also lead to

accumulation of material from lower lying vegetation

to higher statured vegetation (Feeley 2004). Further-

more, litter accumulation within a patch gradient can

be found corresponding to wind direction as fine litter

materials are carried over from the windward sides to

the leeward sides (Feeley 2004). Greater litter

production and accumulation on forest edges may

exert a series of edge effects such as affecting the

litter dwelling faunal and microbial communities,

increasing seed and seedling mortality, and causing

forest fragments to be more vulnerable to destructive

surface fires (Vasconcelos and Luizao 2004). Here we

suggest these cascades of effects can also lead to

overall changes in productivity in both the source and

sink patches. Therefore, windblown litter transfer is

an important landscape process that causes a redis-

tribution of organic matter within and between

patches and creates spatial heterogeneity for a variety

of ecological properties.

Litter transfer for management of ecosystem

services

The main challenge of managing the agroforestry

landscape is to maximize its ecosystem services such

as reducing nutrient loss and increasing fruit produc-

tion of the longan orchard. These ecosystem services

lead to direct economic benefit for the local residents.

To maximize fruit production, management activities

commonly adopt heavy fertilization practices. The use

of fertilizer however has an economic, greenhouse gas,

and pollution cost associated with its production. Our

data showed that the acacia plantation placed on the

upper slope of the agroforestry landscape provides a

source of nutrients to the orchard through the wind-

blown litter transfer. About 2.2 g m-2 of acacia litter

N was blown into the longan orchard annually

(Table 2), and a previous study had shown that the

contents of organic carbon, total N and P in the upper

slope soils of the longan orchard (with greater acacia

litter deposition) were about 20–30% larger than those

in the soils of the lower slope positions with less acacia

litter deposition (Li et al. 2004). These litter nutrient

exchanges between patches are ecosystem services

that have cascading effects on both immediate eco-

nomic resources and sustainability. These effects

occur by altering the spatial patterns of ecosystem

stoichiometry, with relative increases in nitrogen in the

sink patch and decreases in the source patch (Ptacnik

et al. 2005). These landscape characteristics of the

production of ecosystem services from agricultural
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regions can have substantial effects on their sustain-

ability (Kremen 2005; Tscharntke et al. 2005). The A.

mangium plantation with large annual litterfall is

particularly suitable for this purpose. By the age of

4–9 years old, the litterfall of A. mangium plantations

can reach as high as 1100 g DM m-2 year-1 (Tsai

1988; Kunhamu et al. 2009), very close to the 18-year

old acacia plantation in our study (1155.7 g DM m-2;

Table 2) and much higher than those of the subtropical

evergreen broadleaved forests in the region

(560–850 g DM m-2 year-1; Liu et al. 2004; Zhou

et al. 2007). In addition to the benefits associated with

nutrients the acacia litter may also reduce the risk of

surface soil erosion, as many studies have found litter

cover can markedly ameliorate soil erosion (Sayer

2006; Verbist et al. 2010) and buffer the generally low

soil pH and severe acid rain (Pocknee and Sumner

1997; Li et al. 2003).

Because of its large annual litterfall and relatively

slow decomposition rate (Li et al. 2001), the acacia

plantation had accumulated a large amount of litter

([3000 g DM m-2) on its floor (Zou et al. 2006).

Based on our MELT model simulation analyses, we

suggest less than 30% of the accumulated litter should

be moved into the longan orchard as organic fertilizers

and maintain high production in the acacia forest. This

suggestion is based on two response patterns of the

model to different scenarios of management litter

transfer (Fig. 9): (i) the acacia plantation (measured by

litter pool size, leaf production, and soil N content)

could only sustain itself for a few years if over 30% of

its litter were removed; and (ii) the litter addition

stimulation effect on the longan orchard quickly

declined when the litter transfer intensity surpassed

30%. The declined response of longan leaf production

to acacia litter addition might be ascribed to the

reduction of litter decomposition rate as the proportion

of acacia litter increased in the longan orchard litter

pool, thus retarded the release of nutrients into the

longan orchard soil and slowed the response of longan

leaf production as shown in Fig. 9b. It is noted here

that this management guidance is on the basis of our

model assumptions. For example, we assumed that the

nutrients derived from acacia litter were entirely

released into the soil nutrient pool and readily taken

up by longan trees, but in reality some litter-derived

nutrients might be leached away by runoff or had little

influence on longan production. Furthermore, some

important variables such as the rates of leaf production

and soil N mineralization were assumed to be

constants in the MELT model, this could also poten-

tially influence the long-term response behaviors of

longan production to acacia litter addition. Therefore,

our future study may consider conducting a series of

litter manipulation field experiments to see how the

longan orchard system would respond to acacia litter

addition in reality. The relationships between litter

addition and a series of ecological variables, such as

soil pH, nutrient availability, temperature, moisture,

erosion intensity, and the growth and fruit yield of

longan tree, may be established after such experiments

and readily incorporated into the MELT model.

In conclusion, our study found that windblown

litter nutrient movement was substantial across the

landscape. As litter transferred by wind was also

influenced by gravity and topographical conditions,

the windblown litter deposition varied significantly

with the distance to its source and the slope aspects,

which could further exert a series of cascading effects

on their nutrient status, production, as well as soil

physical and chemical properties of the source and

sink ecosystems. Such effects may be positive by

increasing soil nutrient availability and reducing soil

erosion as in our agroforestry landscape, or negative

by increasing seed and seedling mortality and fire

occurrence probability as in fragmented forest rem-

nants. Through optimized landscape design and active

management strategies, litter nutrients may be more

efficiently used to promote the services provided by

the landscape to human society. Our MELT model

provides a quantitative modeling framework to

describe the litter transfer-related processes across

landscape components. It can be used to identify key

empirical research needs, derive specific management

strategies for individual patches, and be extended into

spatially interactive landscape models to understand-

ing the reciprocal relationships between landscape

pattern, nutrient cycling, and the production of

ecosystem services.
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