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Abstract Understanding how landscape heterogeneity

constrains gene flow and the spread of adaptive genetic

variation is important for biological conservation given

current global change. However, the integration of popu-

lation genetics, landscape ecology and spatial statistics

remains an interdisciplinary challenge at the levels of

concepts and methods. We present a conceptual framework

to relate the spatial distribution of genetic variation to the

processes of gene flow and adaptation as regulated by

spatial heterogeneity of the environment, while explicitly

considering the spatial and temporal dynamics of land-

scapes, organisms and their genes. When selecting the

appropriate analytical methods, it is necessary to consider

the effects of multiple processes and the nature of popu-

lation genetic data. Our framework relates key landscape

genetics questions to four levels of analysis: (i) node-based

methods, which model the spatial distribution of alleles at

sampling locations (nodes) from local site characteristics;

these methods are suitable for modeling adaptive genetic

variation while accounting for the presence of spatial

autocorrelation. (ii) Link-based methods, which model the

probability of gene flow between two patches (link) and

relate neutral molecular marker data to landscape hetero-

geneity; these methods are suitable for modeling neutral

genetic variation but are subject to inferential problems,

which may be alleviated by reducing links based on a

network model of the population. (iii) Neighborhood-based

methods, which model the connectivity of a focal patch

with all other patches in its local neighborhood; these

methods provide a link to metapopulation theory and

landscape connectivity modeling and may allow the

integration of node- and link-based information, but

applications in landscape genetics are still limited. (iv)

Boundary-based methods, which delineate genetically

homogeneous populations and infer the location of genetic

boundaries; these methods are suitable for testing for bar-

rier effects of landscape features in a hypothesis-testing

framework. We conclude that the power to detect the effect

of landscape heterogeneity on the spatial distribution of

genetic variation can be increased by explicit consideration

of underlying assumptions and choice of an appropriate

analytical approach depending on the research question.
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Introduction

Landscape genetics investigates neutral or adaptive genetic

variation in spatially heterogeneous landscapes (Holde-

regger and Wagner 2008; Storfer et al. 2007; Storfer et al.

2010). Landscape genetic studies may have either (i) an

evolutionary focus aiming to infer the effects of micro-

evolutionary processes on genetic data while accounting

for landscape effects such as isolation by distance or matrix

resistance (Storfer et al. 2010), or (ii) an ecological focus

aiming to quantify and test landscape effects on organism
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dispersal that potentially results in gene flow and spread of

adaptive genes (Manel et al. 2010; Spear et al. 2010). In the

former case, spatial and landscape effects are largely a

nuisance for statistical hypothesis testing (Diniz-Filho et al.

2009; Legendre and Legendre 1998), whereas in the latter

case, the same effects may be the primary interest (Fortin

and Dale 2005). In both cases, landscape genetic studies

are faced with conceptual and statistical challenges related

to inferring processes, which are not directly observable,

from the resulting spatial genetic structure (Anderson et al.

2010). For instance, the observed population genetic

structure represents a single realization of the underlying

process, and independent replication at the landscape scale

is difficult to achieve (Wagner and Fortin 2005). The same

pattern may result, however, from different alternative

processes, e.g., different dispersal scenarios could explain

the same population genetic structure or different series of

historical events can generate similar spatial patterns of

genetic structure (Epperson 2003). Observed genetic pat-

terns are likely the result of several, potentially interacting

processes, such as habitat change (hereafter landscape

change), population dynamics, habitat selection, dispersal

mode, matrix resistance to dispersal, mating and repro-

duction system, mutation, selection and genetic drift

(Fig. 1). Clearly, a single study is unlikely to address this

full complexity but will identify which processes to pri-

oritize while making implicit or explicit assumptions on

others.

In addition, methods for the spatial analysis of landscape

heterogeneity (Fortin and Dale 2005; Wagner and Fortin

2005) and of population genetic structure (Epperson 2003;

Slatkin and Arter 1991; Sokal 1979) have largely been

developed independently, drawing on different theories and

analytical methods, and thus lack a coherent framework for

their joint analysis. In order to apply and further develop

methods for relating genetic data to landscape features,

landscape ecologists and spatial statisticians need to

understand the specific nature of population genetic data

and population genetic methods, and population geneticists

need to understand the nature of landscape ecological data

and spatial statistical methods.

Here, we stress how the choice of analysis method should

be guided first by the research question, then by the methods

that can address the research question, and finally by the

nature of the data at hand. Consequently, this paper provides

a framework for categorizing research questions based on the

processes considered (Fig. 1, Table 1). We then classify

statistical methods that relate genetic data to landscape data

according to four analysis levels that imply different data

models (Fig. 2, Table 2). We thus aim to: (1) clarify where

and how spatial and temporal processes matter in landscape

genetics, and (2) point out common misconceptions and

prevent misunderstandings of the complexity of issues that

arise when moving from one field to another or in interdis-

ciplinary research collaborations between population

geneticists, landscape ecologists, spatial statisticians and

other experts from related fields (Balkenhol et al. 2009a).

Processes to consider

Most ecological and evolutionary processes are inherently

spatially dynamic. Therefore, landscape genetic studies

need to consider the effects of processes both in space and

time (Fig. 1).

Landscape change occurs due to various processes that

create different types of spatial dynamics: (i) natural or

anthropogenic disturbance may temporarily or permanently

alter the amount, quality and connectivity of habitat.

Ecosystems and their organisms may be adapted to natural

disturbances, such as wildfires or insect outbreaks, and

many natural disturbance regimes result in a shifting

mosaic with dynamic equilibrium at a larger spatial scale

(Folke et al. 2004; Holling 1992). However, anthropogenic

disturbances may interact with natural disturbances in

complex ways, altering ecological system dynamics.

(ii) Succession, e.g., triggered by a disturbance event,

changes species’ composition and species’ spatial distri-

bution over time. (iii) Climate change will gradually alter

habitat quality, though extreme events such as drought may

trigger abrupt changes. (iv) Land-use change typically

occurs as a discrete change from one land-use type to

another, though changes in land-use intensity such as

fertilizer application may be more gradual.

Fig. 1 Conceptual model of how space and time affect relevant

processes in the fields of landscape ecology (left box) and population

genetics (right box). The primary focus of landscape genetics is how

landscape spatial and temporal heterogeneity shape the spatial

distribution of genetic variation by modifying environmental selec-

tion and gene flow (grey box). By linking concepts from landscape

ecology and population genetics, landscape genetics embraces both

spatial and temporal dimensions and needs to consider the relevant

ecological and evolutionary processes, either explicitly or through

assumptions
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Similarly, key micro-evolutionary processes contribute to

genetic diversity at neutral loci or adaptive genes (Fig. 1).

Even in a homogeneous environment, mutation will over

time change genetic variation, genetic drift will reduce

genetic diversity due to the stochastic loss of alleles from one

generation to the next, and restricted dispersal can create

spatial genetic structure (isolation by distance, IBD; Lande

1991; Wright 1943, 1948). Other micro-evolutionary

A B C D

Fig. 2 Four analysis levels at which landscape genetic data can be

analyzed: A at the node level, the alleles (Y) at each sampling

location a, b or c are related to environmental conditions or landscape

features (X) observed at the same location. Alternatively, Y may

represent an aggregate measure of genetic diversity such as allelic

richness. Nodes of different sizes refer either to different genetic

values or habitat patch sizes. B at the link level, genetic distance DY

between pairs of sampling locations ab, ac and bc is related to

distance-based landscape data DX describing the intervening matrix

along each link. C at the neighborhood level, the alleles Y (or

diversity measure, see above) at sampling location a are related to a

patch-level connectivity measure RjXj that quantifies local landscape

context (see text). D at the boundary level, spatially contiguous,

discrete populations a, b and c are inferred from genetic data and

overlaid with landscape features to identify barriers to gene flow. This

may be achieved by relating spatial rates of change in genetic data,

bY, to spatial rates of change in landscape predictors bX. Alterna-

tively, b may denote between-cluster components of variance in X or

Y (see text)

Table 1 Examples of landscape genetics research questions and common assumptions

Micro-evolutionary processes Analysis context Static landscape Assumption: mutation—

drift—migration equilibrium

Changing landscape Assumption:

contemporary gene flow is

measured

Gene flow Assumption: markers

are not affected by selection

Ecological: landscape

connectivity

What is the resistance of different land-

cover types to the dispersal of a species

of interest?

How does a new barrier affect the

dispersal of a species of

concern?

Evolutionary: genetic

connectivity

Is there enough gene flow to maintain a

viable population?

Does a new barrier disrupt gene

flow for a species of concern?

Selection Assumption: loci are

under selection or linked to

adaptive genes

Ecological: adaptation to

selective environment

Which loci are potentially linked with

adaptive genes?

Does a change in habitat quality

trigger rapid evolutionary

change?

Evolutionary: cohesion of

a spatially structured

population

How does gene flow affect the frequency

of adaptable genes?

How do beneficial mutations

spread across a spatially

structured population?

Table 2 Examples of spatial analysis methods that can be used to describe or model spatial patterns in one or more response variables Y at each

of the four analysis levels

Spatial pattern description of Y Spatial modeling of Y

Node Global spatial autocorrelation (Moran’s I, Geary’s c, variography) Spatial regression

Spatial interpolation (Kriging) Gravity model

sPCA Partial direct ordination using MEM

Link Mantel correlogram Partial Mantel tests

Partial regression of distance matrices

Neighborhood Local spatial autocorrelation (Moran’s I, Geary’s c) Geographical weighted regression

Boundary Boundary detection (Wombling, Monmonier) Correlation between boundaries (Boundary overlap

statistics) or clusters with environmental/

landscape features (POPS)
Spatial Bayesian clustering (TESS)
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processes are directly affected by landscape spatial hetero-

geneity: environmental selection depends on local habitat

quality (Garant et al. 2007), whereas dispersal (movement

from natal site to new site) and resulting migration (dispersal

to new site followed by reproduction) may depend on char-

acteristics of the natal or new site as well as the physical

distance between sites (IBD) and the nature of the inter-

vening landscape (matrix resistance), including the presence

of complete barriers to movement or more gradual differ-

ences in traversability or mortality (Spear et al. 2010).

In ecological and evolutionary processes, both spatial

and temporal constraints need to be considered (Fig. 1).

For instance, the study of selection in spatially heteroge-

neous landscapes may be compromised by spatial auto-

correlation introduced by restricted dispersal due to

isolation by distance or matrix resistance (Epperson 2003;

Landguth et al. 2010). The fact that genetic processes

operate within time units of generations may introduce

important time lags in the response of spatial genetic

structure to landscape change. Such time lags, referred to

as ghost landscape effects (Anderson et al. 2010), need to

be differentiated from the contemporary landscape effects.

Dyer et al. (2010) showed that removing the effect of

known phylogeographic history may significantly improve

our ability to assess landscape effects. Our conceptual

framework (Fig. 1) may help researchers identify the main

processes of interest for their study, those processes that are

accounted for in the study design and statistical analysis,

and any processes that are not studied and for which the

underlying assumptions should be made explicit. For

instance, a specific study focusing on landscape resistance

to dispersal and gene flow would explicitly investigate the

processes of gene flow and landscape resistance while

accounting for IBD in the statistical analysis. It may ignore

landscape change and thus assume that landscape has been

constant over many generations. It may further ignore

evolutionary processes of selection, mutation and drift,

with underlying assumptions that the molecular markers

studied are neutral and not linked to genes under selection,

mutation is negligible at the temporal scale studied, and

local populations have not undergone recent bottlenecks.

Research questions

Landscape genetic studies may address a wide range of

hypotheses and research questions, depending on the focal

micro-evolutionary process (gene flow vs. selection), the

ecological or evolutionary perspective (Storfer et al. 2010),

and whether the intent is to study equilibrium conditions or

transient dynamics after landscape change (Table 1). Studies

of gene flow commonly assume that the molecular markers

used are not affected by selection (Holderegger and Wagner

2008). Studies of selection may rely on known adaptive

genes (e.g., in model organisms) or the identification of

outlier loci as putatively adaptive loci or assumedly neutral

markers that may be linked to unknown adaptive genes due to

proximity on the genome (Holderegger and Wagner 2008;

Holderegger et al. 2010).

The assumption that the amount, quality and connec-

tivity of habitat remained constant for a period long enough

to reach an equilibrium between mutation, drift and

migration may rarely be met in real landscapes. Violations

of underlying assumptions (such as Hardy–Weinberg

equilibrium) may compromise the validity of interpretation

and generalization. The problem thus is how to assess and

account for the potential effect of such violations on the

results. Other studies explicitly focus on changes in dis-

persal, gene flow or adaptation in response to a known

landscape change or manipulation of amount, quality or

connectivity of habitat, such as the adding or removal of a

putative barrier or the loss or addition of corridors and

stepping stone habitat. In such cases, it is important to

measure contemporary gene flow that reflects current

connectivity, which may be contrasted with estimates of

gene flow prior to the landscape change (Anderson et al.

2010).

In landscape genetics, it is often difficult to tease apart

ecological and evolutionary perspectives. The distinction is

relevant, though, as misunderstandings may arise if one

researcher implicitly takes an ecological perspective,

another an evolutionary perspective, on what may appear to

be the same issue. When studying gene flow, an ecologist

may want to use genetic data as a proxy to infer dispersal

rates among habitat patches with the goal of testing

hypotheses on matrix resistance that ultimately may lead to

effective planning of habitat networks (Méndez et al.

2011). Such studies often implicitly assume that all dis-

persal events will (or are equally likely to) result in gene

flow, but few studies explicitly investigate this discrepancy

(Greenwald 2010).

From an evolutionary perspective, we are directly

interested in inferring gene flow as a measure of genetic

connectivity, which may lead to the identification of pop-

ulations at risk of loss of viability and ultimately extinc-

tion. Small isolated populations are likely to experience

higher levels of inbreeding or Allee effects, which may

result in depression of population fitness, and reduction of

genetic diversity through drift, which may reduce the

potential for evolutionary adaptation (Frankham 2005;

Spielman et al. 2004). Such assessment of genetic con-

nectivity often assumes that new alleles arise in a popula-

tion by immigration, not by mutation. Landscape genetics

however typically relies on markers with relatively high

mutation rates, and estimates of mutation rates for

specific marker types carry high levels of uncertainty. The
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assumption that mutation may be ignored at the population

level may not hold, as illustrated by a recent study that

found a strong signal of mutation for both symbionts

(fungus and alga) within replicate populations of the lichen

Lobaria pulmonaria (DalGrande et al. 2012).

Currently, most landscape genetic studies of adaptive

variation take an ecological perspective (Manel et al.

2010), such as aiming to identify outlier loci. A major

challenge in this context is accounting for spatial auto-

correlation due to restricted dispersal or landscape spatial

heterogeneity. An evolutionary perspective may focus on

the cohesion of spatially structured populations in the

context of speciation (typically assuming a static land-

scape) or the spatial dynamics of rapid evolutionary change

in a changing environment (Holderegger and Wagner

2008). In the latter case, assumptions may be needed

regarding the probability that the same beneficial mutation

has multiple independent origins. Note that the time lag in

the genetic signal is related to the rate of landscape change

as compared to generation time.

Approaches linking genetic and landscape data

Our framework is based on four analysis levels for relating

neutral or adaptive genetic data to landscape pattern

(Fig. 2), depending on the research questions. These anal-

ysis levels can be characterized by adopting terminology

from graph theory, where nodes refer to habitat patches and

links to lines that connect any two patches (Dale and Fortin

2010). The four analysis levels imply different data mod-

els, and in some cases it may be appropriate to convert data

from one data model to another to best match the analysis

to the research question.

Node-based methods (Fig. 2a) relate the presence of

adaptive genes or the genetic diversity of local populations

to environmental site conditions at sampling locations or to

patch attributes such as area or age. They thus address the

question of what determines the presence and abundance of

alleles, or the genetic diversity, at a spatial location. Note

that the question relating to the presence and abundance of

alleles is only meaningful for adaptive genetic variation,

i.e., genes under selection or loci linked to such genes.

At the node level, the analysis of allele frequency data

from n individuals, or predefined local populations (e.g.,

demes, home ranges, nodes), is typically based on a

response matrix Y with n rows and m columns representing

alleles. The explanatory matrix X with n rows and p col-

umns represents the environmental and landscape predic-

tors. Multivariate statistical methods such as ordination

(e.g., redundancy analysis RDA, canonical correspondence

analysis CCA; Legendre and Legendre 1998) can be used

to predict the frequency of each allele y from local site

conditions x. These methods can be used to identify outlier

loci that are empirically associated with landscape pre-

dictors. IBD may create spatial autocorrelation in the

residuals, thus violating the assumption of independent

error of non-spatial linear models. If statistical tests (e.g.,

Moran’s I) indicate autocorrelated residuals, the analysis

should be modified to account for spatial autocorrelation

due to IBD (Dray et al. in press; Wagner and Fortin 2005).

This may be accomplished by including an additional set of

predictors W that model spatial structure in the data at

multiple scales based on the spatial locations of sampling

points. The matrix W can be used to partial out spatial

variation by including it in the linear model as

Y * X ? W. Methods for creating matrix W has been

developed as Principal Components of Neighborhood

Matrices (PCNM; Borcard et al. 2011) and generalized to

Moran’s Eigenvector Map (MEM; Dray et al. 2006) anal-

ysis. We can thus partial out all spatial variation when

assessing the response of allele frequencies Y to local site

conditions X (Manel et al. 2010). However, this blanket

approach may also eliminate spatial variation unrelated to

gene flow (Lichstein et al. 2002; Wagner and Fortin 2005).

As an alternative, spatial regression could be used

to explicitly build isolation by distance into the model

(Diniz-Filho et al. 2009) (Table 2).

Link-based methods (Fig. 2b) relate pair-wise genetic

distance between individuals or demes to their landscape

distance (e.g., geographic distance, cost distance, presence

or number of barriers) hypothesized to be related to the

probability of dispersal and migration. They thus address

the question of how likely gene flow is between two pat-

ches. This analysis level may be particularly relevant for

assessing genetic connectivity, testing hypotheses on

landscape resistance, and identifying corridors for conser-

vation applications.

At the link level, the analysis of allele frequency data from

n individuals, or demes, is typically based on a n 9 n matrix

DY of pairwise genetic distances, and a set of p matrices DXp

of size n 9 n. Each matrix DXp provides a measure of

landscape distance dij between two sampling locations i and

j. In the simplest case, dij is equal to the geographic distance,

representing isolation by distance. The effect of a barrier

(e.g., mountain, river, road) can be represented with a binary

matrix. Similarly, the intervening landscape can be descri-

bed in terms of the presence (binary), absolute distance (e.g.,

in km) or relative distance (in percent of total distance) of

each cover type p that an organism would have to traverse

along a transect between sampling locations i and j (e.g.,

Angelone et al. 2011). Alternatively, dij may represent a

potential cumulative cost for an organism to traverse the

intervening landscape between sampling locations i and

j. Cost values of different cover types may be derived from

field data on organism movement behavior, from expert
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opinion, or through optimization given the genetic data

(Spear et al. 2010). Cumulative cost dij is commonly calcu-

lated either (i) along the shortest physical distance (transect)

between locations i and j, (ii) along a corridor of specified

width, (iii) along the least-cost path, or (iv) as total resistance

(McRae et al. 2008) integrating over all possible paths (Spear

et al. 2010).

Mantel tests have been used to test the association

between two distance matrices DY and DX1, and partial

Mantel tests allow accounting for a third matrix DX2. These

methods evaluate the (linear or rank) correlation between

vectors of pairwise distances dij. Appropriate permutation

tests need to be used for significance testing to account for

the inflated sample size, as each vector has length n(n-1)/2

(Legendre and Fortin 2010). (Partial) Mantel tests have

been shown to have low statistical power in general

(Legendre and Fortin 2010), thus likely to fail to detect an

effect especially with small data sets. On the other hand,

landscape genetic studies often experience the opposite

problem that many candidate models show statistically

significant effects and criteria are needed to identify the

most important factors (Cushman and Landguth 2010;

Cushman et al. 2006). Multiple regression of distance

matrices (Legendre and Legendre 1998; Legendre and

Fortin 2010) rephrases the problem from correlation to

regression and allows modeling of the response matrix DY

by a number of matrices DX1, DX2, …, DXp simultaneously.

The power of link-based analysis may be improved by

reducing the full distance matrix to a subset of links, either

based on generic spatial graph models (e.g., planar graph

that connects only adjacent sampling locations; Dale and

Fortin 2010) or using population graphs based on condi-

tional genetic distance (Dyer et al. 2010; Garroway et al.

2011). More research is needed to develop and test

approaches at model selection, e.g., using criteria such as

AIC or BIC (Ward 2008) taking into account the inflated

sample size in regression of distance matrices as well as

inferential problems related to spatial autocorrelation in

predictor and response variables, which in turn affect the

effective sample size.

Neighborhood-based methods (Fig. 2c) relate genetic

diversity of demes, or their genetic differentiation, to

attributes of the local landscape context, either within a

certain radius around the sampling location or as a function

of the neighboring patches, with weights inversely pro-

portional to their landscape distance scaled by the dispersal

ability of the organism. They thus address the question of

how connected each patch is to all nearby patches, and how

such connectivity affects genetic diversity or differentia-

tion at the level of demes (Keyghobadi et al. 2005). Such

neighborhood-level analysis is compatible with a patch-

based metapopulation perspective and often uses a patch

connectivity model Si (Balkenhol et al. 2009b; Bulman

et al. 2007; James et al. 2011) to quantify local landscape

context in a node-based connectivity measure. While link-

based methods model connectivity between pairs of nodes,

neighborhood-level analysis integrates connectivity for a

focal patch across all other patches in its neighborhood.

Here, a n 9 m matrix Y of allele frequencies, or a single

vector y of an aggregate measure such of genetic diversity

or differentiation, is related to a n 9 p matrix S of patch

connectivity measures, where each variable Sp contains the

connectivity value for each patch i with respect to land-

scape predictor p. Each patch connectivity measure may be

calculated for a single environmental factor, or for a

resistance surface that integrates multiple factors (Bal-

kenhol et al. 2009b; Foll and Gaggiotti 2006). Note that

summarizing landscape features, e.g., road density or the

proportions of different habitat types, within a given radius

around each sampling location, irrespective of the other

sampling locations, does not provide connectivity measures

S but node-based variables X that quantify the local land-

scape context.

Technically, this type of analysis brings information

about the pairwise links back into a node-based data struc-

ture. This means that matrix S, containing variables model-

ing dispersal from neighboring patches (potentially affecting

gene flow), may be combined with a matrix X that contains

additional variables relating to local site conditions (poten-

tially affecting selection) in the same analytical framework.

It is important to keep in mind what exactly is being modeled.

In the multivariate case, allele frequencies in matrix Y are

predicted by patch connectivity. For instance, this could

mean that we predict the presence of an allele from an overall

patch connectivity measure or from the amount of woodland

cover in the local landscape around the patch. Although

conceptually questionable for neutral markers, simulation

results indicate that such neighborhood-based methods may

perform comparably well under a range of landscape genetic

scenarios (Balkenhol et al. 2009b). More research is needed

to clarify the applicability of the approach for different

research questions, including the application of distance-

based RDA where Y is replaced by a genetic distance matrix

Dy. Gravity models provide a promising avenue for the joint

modeling of node- and link-related processes (Murphy et al.

2010).

Boundary-based methods (Fig. 2d), which include

boundary detection algorithms and spatial Bayesian clus-

tering methods, aim to delineate discrete or admixed pop-

ulations in space (Barbujani et al. 1989; Safner et al. 2011).

The determination of whether individual genetic data

(Y) collected at different locations stem from a panmictic

population or from several geographically and genetically

distinct populations is an important goal in conservation

genetics (Frankham 2009). When spatially distinct popu-

lations are identified based on genetic data, the next step in

258 Conserv Genet (2013) 14:253–261
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boundary-level methods consists in determining which

landscape features separate them. Boundary-based methods

thus address the question of what landscape features con-

stitute a barrier to gene flow.

Spatially distinct populations can be delineated using

boundary detection methods such as Monmonier’s algo-

rithm (Monmonier 1973) or Womble’s bilinear algorithm

(Barbujani et al. 1989). In essence, using quantitative data

(e.g., gene frequencies, environmental data) these algo-

rithms identify boundaries between adjacent locations

(based on Delaunay links) as highest rates of change b.

Hence for each link dij between directly adjacent sampling

locations i and j (nodes or grid cells), a rate of change value

bY indicates how likely the link is to cross a genetic

boundary. This can be reduced to a binary classification of

links as boundary or non-boundary, either based on sig-

nificance testing or an arbitrary threshold value. Similarly,

boundaries in environmental conditions can be identified

by assessing spatial rate of change bX.

Bayesian clustering methods (Dawson and Belkhir

2001) without genetic admixture result in a categorical

vector y of length n that specifies for each observation

(individual or deme) to which of k discrete genetic popu-

lations it has been assigned. If the method allows admix-

ture, the response is a n 9 k matrix M with probabilities of

membership of each of n observations for each of k genetic

populations, with row sums adding to 1. The presence of

isolation by distance may lead to spurious boundary

detection (Safner et al. 2011). Spatial Bayesian clustering

as proposed by François and Durand (2010) adds a spatial

graph constraint to determine spatial cluster memberships.

Once genetic boundaries, or spatial cluster member-

ships, are identified, the next step is to relate them to

environmental or landscape features. This can be achieved

by testing the degree of spatial overlap (Jacquez et al.

2000; Oden et al. 1993) between genetic boundaries and

landscape features (X) hypothesized to restrict dispersal.

The spatial coincidence between the genetic (bY) and

landscape boundaries (bX) can be assessed using boundary

overlap statistics (Barbujani and Sokal 1991; Fortin et al.

1996; Oden et al. 1993; St-Louis et al. 2004) to test specific

hypotheses about landscape effects on the genetic data.

Alternatively, the relationship between the cluster mem-

berships and environmental conditions X can be tested

using ancestry distribution models as implemented in

POPS software (Prediction of Population genetic Structure;

Durand et al. 2009; Jay 2011).

Conclusions

Landscape genetics research questions require analysis

at different spatio-temporal scales and thus different data

models, analysis levels and statistical methods (Table 2).

Node-based methods are the natural choice for studying

selection, link-based methods for studying gene flow. The

barrier effect of new landscape features may best be detected

by testing the overlap between genetic boundaries in con-

temporary gene flow assessed before and after establishment

of the hypothesized barrier. Novel questions relating to the

spread of adaptive variation in changing landscapes will

require methods that integrate node- and link-based analysis,

for which neighbourhood-level analysis may be best suited.

Statistically sound and powerful methods are needed for each

analysis level, as questions are not easily transferable to a

different analysis level.

The presence of multiple processes, and the absence of

equilibrium conditions, may compromise many methods.

Landscape genetics needs a true integration of population

genetic and ecological analysis methods and the develop-

ment of new methods that take into account the complexity

of landscape genetic data.
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