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Abstract Animal movement across the landscape

plays a critical role in the ecology of infectious

wildlife diseases. Dispersing animals can spread

pathogens between infected areas and naı̈ve popula-

tions. While tracking free-ranging animals over the

geographic scales relevant to landscape-level disease

management is challenging, landscape features that

influence gene flow among wildlife populations may

also influence the contact rates and disease spread

between populations. We used spatial diffusion and

barriers to white-tailed deer gene flow, identified

through landscape genetics, to model the distribution

of chronic wasting disease (CWD) in the infected

region of southern Wisconsin and northern Illinois,

USA. Our generalized linear model showed that risk of

CWD infection declined exponentially with distance

from current outbreaks, and inclusion of gene flow

barriers dramatically improved fit and predictive

power of the model. Our results indicate that CWD

is spreading across the Midwestern landscape from

these two endemic foci, but spread is strongly

influenced by highways and rivers that also reduce

deer gene flow. We used our model to plot a risk map,

providing important information for CWD manage-

ment by identifying likely routes of disease spread and

providing a tool for prioritizing disease monitoring

and containment efforts. The current analysis may

serve as a framework for modeling future disease risk

drawing on genetic information to investigate barriers

to spread and extending management and monitoring

beyond currently affected regions.
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Introduction

Understanding the distribution and spatial dynamics of

an emerging infectious disease is crucial to predicting

geographic spread, revealing the history of infection,

and developing management strategies (Smith et al.

2005; Meentemeyer et al. 2012). Spatial clustering of
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disease can reveal the point of introduction, particu-

larly in early stages of emergence (Brownstein et al.

2002; Hess et al. 2002). After successful introduction,

the risk of infection and prevalence typically decline

with distance from hotspots as a function of the time

since disease introduction and diffusion rate (Gesler

1986; Ostfeld et al. 2005; Joly et al. 2006). However,

landscape heterogeneity and spatial arrangement, as

well as movement patterns of hosts add complexity to

the process of disease spread (Langlois et al. 2001;

Kauffman and Jules 2006; Meentemeyer et al. 2012).

Landscape and environmental factors influence the

density, arrangement, and availability of susceptible

hosts, thereby influencing the probability of pathogen

invasion (Collinge et al. 2005; Hosseini et al. 2006;

Perez-Reche et al. 2012), pathogen viability (Breban

et al. 2009), and other host–pathogen dynamics (Hess

et al. 2002).

Because disease prevalence directly relates to the

probability of disease exposure and transmission, the

pattern of prevalence on the landscape is an important

indicator of disease risk (McCallum et al. 2001; Ostfeld

et al. 2005). When disease distribution is related to

landscape factors, these can provide a powerful

predictor of spread to naı̈ve areas (McGinnis and

Kerans 2012; Meentemeyer et al. 2012). Establishing

links between landscape features and disease patterns is

fundamental to the field of landscape epidemiology

(Pavlovsky 1966; Galuzo 1975), which emphasizes

spatial modeling and risk mapping to understand

disease dynamics (Ostfeld et al. 2005; Riley 2007).

Recent advances in the availability of geographic data,

spatial analysis, and concern about emerging diseases

have facilitated applications of landscape epidemiology

to wildlife diseases (Smith et al. 2005; Hosseini et al.

2006; Chuang et al. 2012). For example, habitat

structure and avian community composition influence

prevalence of West Nile Virus (Ezenwa et al. 2007),

and can be used in mapping the geographic risk of

infection (Chuang et al. 2012). Landscape structure has

been linked to movement of rodent hosts and preva-

lence of Hanta virus (Langlois et al. 2001). Models

combining landscape epidemiology and genetics have

also identified landscape characteristics that impact

host movement and broad-scale spread of rabies (Smith

et al. 2002; Russell et al. 2004; Real et al. 2005).

Landscape characteristics shape patterns of disease

spread by directing movement patterns and contact

rates among hosts (Hess et al. 2002; Riley 2007).

Theoretical models (Barlow 1995; Cross et al. 2005),

and field studies demonstrate the importance of animal

dispersal in facilitating spread of rabies in raccoons

(Procyon lotor) (Jenkins and Winkler 1987; Moore

1999; Cullingham et al. 2008) and bovine tuberculosis

(Hickling 2002; Gilbert et al. 2005; Ramsey and Efford

2010). Dispersing animals are also implicated in

spreading chronic wasting disease (CWD) among

cervid populations (Conner and Miller 2004; Miller

and Conner 2005; Oyer et al. 2006). Despite the

importance of contact between populations in epide-

miological processes, determining the role of environ-

mental characteristics and animal movement remain

significant challenges within landscape epidemiology

(Ostfeld et al. 2005). In many cases, disease research

has benefited from the integration of landscape ecology

and landscape genetics to reveal patterns of connectiv-

ity, barriers, and potential routes of disease spread

between populations (Biek and Real 2010).

Here we used landscape genetics (Blanchong et al.

2008; Robinson et al. 2012) of white-tailed deer

(Odocoileus virginianus) to understand the spread of

CWD across the landscape of the Midwestern USA.

CWD is a fatal neurodegenerative prion disease of

North American cervids (Williams 2005) with signif-

icant implications for white-tailed deer management. In

the Midwest, CWD was detected in 2001–2002 (Illinois

Dept. Natural Resources 2003; Joly et al. 2003), and is

now endemic in two distinct core areas, or disease foci,

one in south-central Wisconsin (WCWD) and one

straddling the eastern Illinois–Wisconsin border

(ECWD) (Fig. 1). Previous research on CWD distribu-

tion has focused on the WCWD, and has shown that

prevalence was correlated with spatial, environmental

and demographic factors (Joly et al. 2006; Blanchong

et al. 2008; Osnas et al. 2009). These studies high-

lighted the potential importance of landscape hetero-

geneity in the distribution of CWD and the need to

investigate disease spread beyond the WCWD.

Our primary objective was to identify the landscape

drivers shaping the distribution of CWD in the

Midwestern USA. We describe CWD infection pat-

terns for the WCWD and the ECWD, evaluate both local

and landscape-scale factors affecting the spatial dis-

tribution of CWD, and develop a model of disease

spread. We hypothesized that, in addition to the simple

diffusion process, local habitat characteristics and

barriers to deer dispersal would shape the distribution

of disease. We constructed models of CWD
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prevalence incorporating distance from disease foci,

local habitat characteristics, and landscape barriers to

deer dispersal from previous landscape genetics

studies (Blanchong et al. 2008; Robinson et al.

2012). We interpret results related to potential CWD

risk, spread of disease, and surveillance to aid disease

monitoring and management.

Methods

Study area and landscape data

Our research took place in the CWD management area

of southern Wisconsin (27,500 km2 in 15 counties)

and northern Illinois, USA (15,000 km2 in 6 counties)

(Fig. 1). This landscape comprised 498 Public Land

Survey System (PLSS) townships (9.6 9 9.6 km),

which were the unit of study (grid cells). The area

contained two distinct CWD outbreaks, and preva-

lence was similar in each (6.5 % in the ECWD and

5.9 % in the WCWD). This study landscape spans three

ecoregions (ECOs), varying levels of urbanization,

different land management regimes, and numerous

potential corridors or barriers to animal movement.

The ECOs (Fig. 2d) consist of the Western Coulee and

Ridge (WCR) and Southwest Savanna (SWS) in the

west and the Southeast Glacial Plains (EGP) in the

east, with minor portions of the Great Lakes and

Northern Sands (Omernik 1987). The WCR is char-

acterized by rolling hills with extensive forest cover

(about 40 % deciduous forest) and small agricultural

fields (primarily corn and alfalfa). In the SWS, forest

cover is limited to steeper slopes (above 10 %) with

0 25 50 75 10012.5
Kilometers

Crude CWD Prevalence
< 0.001

0.001 - 0.01

0.01 - 0.02

0.02 - 0.05

0.05 - 0.10

> 0.10

Wisconsin

Illinois

Fig. 1 A map of the CWD-affected area of Wisconsin and

Illinois, USA, indicating CWD cases and sample townships for

landscape epidemiological modeling. Small squares show the

prevalence (number positive/number tested) of CWD in each

section (2.6 km2), these data were summarized at the township

level (93.2 km2) for analysis. The grid of 498 townships was

used for spatial analysis of CWD prevalence and predictive risk

models based on CWD surveillance data from 2001 to 2007
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the majority of land in agriculture or grassland. The

EGP is a mix of agricultural and urban areas with

forest fragments (about 10 %). All regions experience

mild winters and deer were not seasonally migratory,

as in more severe climates (Nelson 1995).

We based our epidemiological modeling on habitat

characteristics and potential dispersal barriers previ-

ously shown to impact deer movement and CWD

distribution (Long 2005; Joly et al. 2006; Blanchong

et al. 2008; Robinson et al. 2012) (Fig. 2). We used

three habitat variables to describe ecological features

and habitats within townships. ECOs represented

broad-scale ecological communities. Forest canopy

cover (CAN), the percent of each township covered by

deciduous forest canopy (National Land Cover Data-

base; Fry et al. 2009), has been positively correlated

with deer density and thus it may affect deer social

structure and CWD transmission (Joly et al. 2006;

Rolley 2007; Storm 2011), and has been shown to

impact dispersal distance thus influencing contact

rates between populations (Long 2005; Diefenbach

et al. 2008). Soil clay content (CLAY) in each

township was calculated as a weighted average of

the percentage of clay in the top 10 cm of soil from

each soil map unit (Natural Resources Conservation

Service 2012). Clay soils have been identified as

potential reservoirs for environmental transmission of

CWD (Miller et al. 2004; Johnson et al. 2006;

Schramm et al. 2006), and clay content has been

correlated with CWD infection in mule deer (O.

hemionus) (Walter et al. 2011). We also evaluated

potential impediments to gene flow identified by

landscape genetic studies (Blanchong et al. 2008;

Robinson et al. 2012): interstate highways, US high-

ways, and major rivers.

Landscape epidemiological model of CWD risk

Crude CWD prevalence in adult deer (C1.5 years) was

summarized at the township level (number positive/

number tested, between 2001 and 2007). Fawns were

excluded due to their low probability of infection (Grear

et al. 2006) and differential testing of fawns throughout

the study region. Because CWD transmission dynamics

in the Midwest depend on the prevalence of infected

individuals in a population, prevalence provides the

most informative measure of disease risk (Jennelle et al.

submitted-a; Storm et al. 2013). We selected townships

as the areal unit of study to ensure adequate sampling of

CWD prevalence in each area. CWD status was

determined by ELISA and confirmed by immunohisto-

chemistry (by the WI Veterinary Diagnostic Laboratory

or IL Dept. of Agriculture Animal Disease Laboratories,

as described in Keane et al. 2008).

We used the distance of each township from the

center of the disease foci as a measure of CWD risk

based on simple diffusion from the ECWD (De) or

WCWD (Dw). We defined the center of each outbreak

as the centroid of the township with the highest

prevalence which corresponded with CWD hotspots

identified based on spatial clustering of cases (Ku-

lldorff and Nagarwalla 1995; Joly et al. 2006; Storm

2011). In a homogeneous landscape we expect a

simple exponential decline in prevalence with distance

from disease foci. However, because landscape heter-

ogeneity can also impact disease spread, we tested the

importance of environmental factors by evaluating

models including landscape covariates.

We built a generalized linear model using the

glm.nb routine in the MASS package within R

(Venables and Ripley 2002) with the number of

CWD cases per township as the response variable. We

used a log link function with the number of CWD-

tested deer as an offset to account for differential

sampling (about 50 % of townships had \100 deer

sampled while 5 % had over 1,000; average 234

samples/township) and to ensure our response variable

was based on CWD prevalence. CWD prevalence was

low and cases were rare across much of the study area

and we observed spatial clustering of cases. Such

spatial clustering is common in disease data (Shaw

et al. 1998) and frequently leads to overdispersion

(Alexander et al. 2000). We used a negative binomial

model to account for overdispersed data; this provided

greater flexibility to model the relationship between

mean and variance, and allowing calculation of the

Akaike Information Criterion (AIC) which would not

Fig. 2 Maps of the study area showing variables used in spatial

genetic models for white-tailed deer in the Midwestern USA.

Potential dispersal barriers include a INT = zones define by

intervening interstate highways, 4–6 lane divided roads with

high traffic, b HWY = zones define by intervening US

highways, typically 2 lane with high traffic, c RIV = zones

define by intervening rivers of class four or five water volume.

Habitat features include d ECO = ecoregion classification,

e CAN = % forest canopy, f CLAY = % clay content

c
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be possible with a quasi-Poisson model (Ver Hoef and

Boveng 2007; Linden and Mantyniemi 2011).

Our model was:

#CWD positives�NB l; jð Þ
Log #CWD positivesið Þ ¼ b0 þ biXi

þ offset log #deer testedið Þð Þ þ e ð1Þ

where l is the expected number of CWD cases, j is the

negative binomial shape parameter, b0 represents

CWD infection at the foci, and Xi is the covariate

matrix for township i with bi coefficients. The error

parameter e is assumed to be independent with a

negative binomial distribution. Because we used a log-

linked model, exp(bi) represents the relative CWD risk

for each variable (relative risk, RR). We assessed

model fit based on residual deviance and plots of

model residuals. We selected the best model based on

fit, parameter significance, DAICc and AICc weights

(Burnham and Anderson 2002). Because disease

distribution is inherently spatial, we also evaluated

spatial autocorrelation in the model residuals (using

the lm.morantest routine in the spdep package in R;

Bivand et al. 2011).

We mapped predicted CWD prevalence in each

township based on a model fit to 2001–2007 data. To

validate model predictions, we compared model-

predicted CWD cases to observed testing data from

2008 to 2011. For each township we calculated the

difference between the model prediction and observed

Table 1 Alternative epidemiological models describing the distribution of CWD in Wisconsin and Illinois, USA

Alternative models k df* ResDev AICc DAICc AICc wt

De ? Dw 2 495 209.240 811.066 119.608 0.000

Habitat only

De ? Dw ? ECO 6 492 210.010 732.086 40.628 0.000

De ? Dw ? CAN 3 492 215.090 778.025 86.566 0.000

De ? Dw ? CLAY 3 487 222.440 812.040 120.581 0.000

De 1 Dw 1 ECO 1 CAN 7 489 213.220 729.784 38.325 0.000a

De ? Dw ? ECO ? CLAY 7 484 220.650 734.056 42.597 0.000

De ? Dw ? CLAY ? CAN 4 484 223.710 779.379 87.920 0.000

De ? Dw ? ECO ? CAN ? CLAY 8 481 222.200 731.792 40.334 0.000

Barrier only

De ? Dw ? RIV 5 491 211.070 763.118 71.659 0.000

De ? Dw ? INT 5 494 212.520 764.951 73.492 0.000

De ? Dw ? HWY 10 487 209.420 753.337 61.879 0.000

De ? Dw ? RIV ? INT 8 490 211.490 749.369 57.910 0.000

De ? Dw ? RIV ? HWY 13 483 211.250 720.364 28.905 0.000

De ? Dw ? INT ? HWY 13 486 212.290 721.883 30.425 0.000

De 1 Dw 1 RIV 1 INT 1 HWY 16 482 211.180 713.197 21.738 0.000b

Combined

De ? Dw ? RIV ? INT ? HWY ? ECO 20 477 221.140 694.573 3.114 0.137

De 1 Dw 1 RIV 1 INT 1 HWY 1 ECO 1 CAN 21 476 221.210 691.459 0.000 0.649

De ? Dw ? RIV ? INT ? HWY ? ECO ? CAN ? CLAY 22 468 220.810 693.669 2.211 0.215

We select among alternative models including geographic distance, habitat features, and potential dispersal barrier based on DAICc

and AICc weights (best overall model in bold, best models within subsets for habitat or barriers in bold italics). Number of parameters

(k), degrees of freedom (df), and residual deviance (ResDev) are also reported. De and Dw denote distance in km from eastern and

western disease foci respectively. Habitat variables include ECO = ecoregions, CAN = % forest canopy, CLAY = % soil clay

content. Putative dispersal barriers include RIV = major rivers, INT = interstates, HWY = US highways. See Fig. 2 for additional

information on habitat and dispersal barriers
* n = 498 townships, degrees of freedom may differ in the case of missing data for some variables
a AICc wt = 0.555 within Habitat Models
b AICc wt = 0.961 within Barrier Models
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prevalence for 2008–2011, plotted observed versus

expected prevalence, and used a one-sample t test to

determine whether predicted values differed signifi-

cantly from the observed prevalence based on standard

error for each township.

Results

Landscape epidemiological model of CWD risk

Models incorporating barriers, habitat features, and

distance outperformed alternative models (Table 1).

The best model, De ? Dw ? RIV ? INT ?

HWY ? ECO ? CAN, was well-supported by AICc

(AICc weight 0.649, Table 1), and predictions were

strongly correlated with the observed prevalence from

2001 to 2007 (r = 0.865). Null deviance for the model

was 789.5 for 497 degrees of freedom (df). Residual

deviance of 221 with 476 df indicated good model fit

to the data with pseudo R2 = 72 %. CWD risk

declined with distance from WCWD or ECWD, and

landscape features significantly impacted disease

distribution (Table 2). The second best model

included CLAY and was close in AICc, but the CLAY

parameter was not significant (b = 0.004; 95 % CI

-0.064012 to 0.072012, DAICc = 2.211, Table 1).

The predicted CWD prevalence map (Fig. 3)

illustrated that disease risk did not diffuse evenly

from foci. While proximity to either ECWD or WCWD

were important risk factors, the regression coefficients

differed significantly (p = 0.008), indicating more

aggregation of risk around the WCWD (RR = 0.966;

95 % CI 0.952–0.979) than the ECWD (RR = 0.946;

95 % CI 0.931–0.960). Landscape features had strong

impacts on the distribution of CWD compared to

Table 2 Estimated epidemiological model parameters describing the distribution of CWD in Wisconsin and Illinois, USA

Variable Parameter bi Estimate SE Significant comparisons

Intercept Intercept 0.090 1.679

Distance De -0.056 0.008 ***

Dw -0.035 0.007 ***

Canopy (CAN) CAN 0.033 0.013 **

Rivers N-WI Riv -2.328 1.539

(RIV) Yah Riv-Fox Riv 0.116 1.278

WI Riv-Yah Riv -1.690 1.438 E-Rock Riv*

Interstates I39/90-NE -1.197 1.094 I39/90-W**

(INT) I39/90-CE 1.617 0.709 I39/90-NE***

I39/90-SE 1.727 0.651

Ecoregions GL 0.962 0.828

(ECO) NS 2.341 0.926

SWS 1.961 0.686

WCR 3.137 0.979 EGP**

Highways B (18 W-14 W) 0.904 1.180

(HWY) C (14 W-12 W) 0.131 1.128

D (12 W-151E) 1.994 0.995 C (14 W-12 W)*

E (151E-18E) -0.544 1.038 D (12 W-151E)**

F (18E-12E) -1.785 0.871

G (12E-14E) -0.623 0.695 F (18E-12E)*

H (14E-20E) -0.692 0.656

I (S of 20) 0.069 0.638

We show the estimated parameter coefficients (bi) with standard error for a negative binomial glm explaining the prevalence of CWD

cases: De ? Dw ? RIV ? INT ? HWY ? ECO ? CAN. Significant Comparisons column shows only significant parameter

effects, based on parameter coefficients for numerical variables or on z score comparison of adjacent zones for categorical variables:

* p \ 0.1, ** p \ 0.05, *** p \ 0.01. Refer to Fig. 2 for location of zone classifications for categorical variables
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distance alone (Table 2; Fig. 3). For example, cross-

ing the I39/90 interstate corridor (Fig. 2a) was equiv-

alent to moving 45–50 km from a disease focus, and

moving from the WCR to another ECO (Fig. 2d) was

equivalent to moving 90 km from the WCWD (based on

ratios of coefficients). There was a small increase in

CWD prevalence with each increase in percentage of

forest CAN (RR = 1.033; 95 % CI 1.007–1.061).

Potential dispersal barriers also shaped the distribu-

tion of CWD on the landscape. In addition to the strong

effect of interstate barriers (RR up to 5.624; 95 % CI

1.570–20.142, for regions east versus west of the I39/

90: Fig. 2a), the Rock River was a marginally signif-

icant barrier (p = 0.062 comparing the E-Rock to WI

Riv-Yah Riv zone, RR = 0.185; 95 % CI 0.011–3.091:

Fig. 2c), perhaps acting as an additive impediment to

the I39/90 corridor. US highways (Fig. 2b) were also

important, particularly US 151(RR = 12.653; 95 % CI

1.801–88.899, separating zones A from B, and D from

E) and US 12/18 (RR = 3.459; 95 % CI 0.627–9.076,

separating zones C from D, and F from G) which

appeared to influence the spread of disease from the

WCWD. While highway crossings typically decreased

CWD prevalence more than distance, there was one

anomaly near WCWD; CWD prevalence was unexpect-

edly higher north of highway 12 W in zone C on

Fig. 2b (RR = 7.343; 95 % CI 1.045–51.589). This

finding suggests a secondary disease cluster became

established in this area. This was the only case where

prevalence was not well-described by distance and

landscape features, demonstrating the rarity of disease

clusters that indicate uncharacteristic dispersal or

artificial movement events. The origin and character-

istics of this cluster merits further research.

0 25 50 75 10012.5
Kilometers

Interstates

US HWYs

Rivers

Ecoregion Bounds

Fig. 3 Map of the predicted CWD risk across the disease

management area of Wisconsin and Illinois, USA. Model based

estimates of CWD risk are shown for each township within a

grid covering the disease management zone of WI and IL.

(Forest canopy cover was also a significant predictor in the

model; however, forest shading is not shown to simplify the

image.)
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Our model provided an informative prediction of

2008–2011 CWD patterns with a correlation of

r = 0.595 between predicted and observed prevalence

despite small sample sizes with high variability for the

limited time frame (Fig. 4). Of 105 townships con-

taining CWD cases, predicted prevalence was signif-

icantly higher than observed in 2 % and significantly

lower than observed in 15 % of townships (p value

\0.05 based on single sample t test) (Fig. 4). Most

significant differences were detected in or adjacent to

the focal townships in the WCWD and ECWD where

disease prevalence has increased recently (Heisey

et al. 2010; Jennelle et al. submitted-a).

Discussion

Landscape epidemiology of CWD in the Midwest

Across the CWD-affected area, disease prevalence

was associated with distance from foci as well as

township-scale habitat characteristics and broad-scale

landscape features. These factors likely relate to

epidemiological processes of disease diffusion, ampli-

fication of disease in local populations, and spread of

disease to new areas. The spatial clustering of CWD

has been noted in previous studies (Joly et al. 2006;

Osnas et al. 2009), but evaluations of CWD distribu-

tion in the Midwest were limited to the WCWD and

noted the likely importance of long distance deer

dispersal in spreading disease (Joly et al. 2006; Osnas

et al. 2009). Our data strongly indicate that CWD has

been spreading across the landscape from the WCWD

and ECWD foci. Slow, but spreading movement of

CWD has been noted in other mathematical models

(Jennelle et al. submitted-a). While previous studies

noted spatial autocorrelation indicating effects of

unmeasured environmental heterogeneity or aggrega-

tion on disease patterns (Joly et al. 2006; Osnas et al.

2009), our landscape epidemiological modeling

extends earlier studies, including both the WCWD and

ECWD outbreaks, revealing the importance of each

outbreak and the intervening landscape features in

shaping the spread of disease risk to outlying areas.

Rather than incorporating spatial autocorrelation

(as in Osnas et al. 2009), we explicitly consider both

local habitat characteristics within each township and

potential movement barriers between areas. The

absence of residual spatial correlation in our model

indicates we have accounted for ecological variables

that are associated with patterns of spatial clustering.

In particular, incorporating landscape barriers to gene

flow helped understand the risk of CWD beyond

current outbreaks. We found that the importance of

deer habitat in CWD prevalence (as pointed out in Joly

et al. 2006) extended to the landscape scale, but

considered independently, barriers to host movement

had a larger impact than land cover, suggesting the

Fig. 4 The landscape

epidemiological model fit to

data from 2001 to 2007

provided strong correlation

to observed CWD

prevalence in surveillance

samples from 2008 to 2011.

Single-sample t tests

showed significant

differences in predicted and

observed values for 17 % of

townships where CWD

occurred. The dashed line

indicates a perfect

relationship between

predicted and observed

values, the solid line shows

the observed correlation of

0.595
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relative importance of habitat features in local trans-

mission and landscape features in spatial spread of

disease.

Our model indicated that both natural and anthro-

pogenic impediments to population connectivity (INT,

HWY, RIV: Fig. 3) were influential in shaping CWD

spread. Landscape genetics studies provided a biolog-

ical link between gene flow impediments and reduced

contact rates that impede disease spread. Blanchong

et al. (2008), using a subset of our study area, also

found that highways US 18W, US 14W, and the

Wisconsin River were barriers to local gene flow and

CWD spread around the WCWD. Further, mitochon-

drial DNA haplotype patterns have shown similar

patterns relative to landscape barriers (Rogers et al.

2011). Roadways and rivers have been widely

acknowledged as barriers to dispersal and gene flow

for several ungulate species (Nussey et al. 2005;

Coulon et al. 2006; Perez-Espona et al. 2008; Long

et al. 2010), and these landscape features have become

an important focus of animal movement studies

(Forman and Alexander 1998; Jackson 2000), as well

as in landscape genetics (Balkenhol and Waits 2009).

In other studies, landscape genetics may enhance

epidemiological models by identifying landscape

features that influence population contact rates (Jones

et al. 2008; Biek and Real 2010).

As an epidemic persists, local factors affecting

agent transmission and persistence (habitat, popula-

tion density, contact rates, and environmental trans-

mission) can play a key role in determining local

prevalence (Conner and Miller 2004; Farnsworth et al.

2006). Both ECO and CAN were important factors in

our model, demonstrating the importance of local

habitat features. The WCR ecoregion around the

WCWD was heavily forested with small agricultural

fields, providing excellent deer habitat and high deer

density (Wisconsin Dept. Natural Resources 2007). In

contrast, areas surrounding the ECWD were fragmented

by extensive agriculture and urbanization, leaving

sparse patches of deer habitat, leading to lower deer

densities, and higher movement rates. Landscape

genetics has shown that group social structure is less

aggregated in the fragmented EGP habitat (Rogers

et al. 2011; Robinson et al. 2012), which could impact

contact rates and disease transmission for social

groups (Grear et al. 2010). Our analysis also indicates

that CWD infection is likely more dispersed (less

aggregated) around the ECWD than in the WCWD.

Despite the importance of soil minerals in prion

infectivity (as demonstrated in experimental studies;

Miller et al. 2004; Johnson et al. 2006; Schramm et al.

2006), CLAY was not an important predictor of CWD

prevalence in the Midwest. An analysis of CWD

transmission to young deer at a fine spatial scale

(2.6 km2) in Wisconsin reached similar conclusions

(Storm et al. 2013). These results differ from analyses in

Colorado (Walter et al. 2011) which concluded that

CLAY was an important risk factor for CWD infection.

Possible explanations include a low variability in the

range of soil clay values in our study area, differences in

soil characteristics and related habitat associations, and

differences in disease prevalence or animal behavior

between the two areas. Further research is needed to

understand the potential role of soils and, more broadly,

the importance of environmental reservoirs of CWD in

the dynamics of disease in the Midwest.

Utility of landscape epidemiology to map CWD

risk

Understanding how the landscape influences wildlife

disease is critical to determining disease spread, risk to

naı̈ve populations, future infection rates, and develop-

ing effective disease management and surveillance

strategies (Ostfeld et al. 2005). Risk maps based on

disease occurrence are an important tool in landscape

epidemiology, and have proven useful to the manage-

ment of several diseases including hantavirus (Glass

et al. 2000; Langlois et al. 2001), malaria (Rogers and

Randolph 2000) and whirling disease (McGinnis and

Kerans 2012). Risk maps based on current disease

prevalence assume that future risk of infection is related

to current infection rates (Ostfeld et al. 2005). Our risk

estimates based on CWD prevalence are consistent with

recent findings of frequency-dependent transmission in

Wisconsin (Jennelle et al. submitted-a, Storm et al.

2013). While our landscape epidemiological model

provided excellent fit to observed prevalence data

(2001–2007), model validation underestimated preva-

lence of CWD for 2008–2011 (Fig. 4) likely because of

increases in CWD prevalence (Heisey et al. 2010;

Jennelle et al. submitted-a) making it difficult to predict

future disease patterns. Future epidemiological model-

ing efforts should consider temporal as well as spatial

changes in disease risk as increasing prevalence alters

disease dynamics (Jennelle et al. submitted-a; Storm

et al. 2013).
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Implications for CWD management

To date, the two Midwestern CWD outbreaks have been

managed separately (Wisconsin Dept. Natural Resources

2002; Illinois Dept. Natural Resources 2003; Wisconsin

Dept. Natural Resources 2010). Yet, our results indicate

that both CWD outbreaks contribute to spread of disease,

suggesting coordination between both east and west

regions will be necessary to achieve a goal of disease

containment. When considering the risk of disease spread

to naı̈ve areas of Illinois or Wisconsin, management

agencies might consider both impediments to host move-

ment and distance from outbreaks. For instance, an area

further from the foci might be at a higher risk of disease

than a neighbor separated by multiple barriers (e.g., I39/90

corridor and Rock River in the ECWD; Fig. 3). At the state-

wide (or regional) scale, additional landscape genetics

research may help identify other barriers between distant

naı̈ve deer populations (Lang and Blanchong 2012).

The predicted risk map (Fig. 3) may help focus

surveillance and management efforts at the edges of the

current CWD-infected area. By weighting surveillance

where risk of spread is highest, sampling efforts can

most efficiently detect new cases or increasing disease

prevalence (Conner et al. 2007; Jennelle et al. submit-

ted-b). Further, preventing spread of disease is likely

more effective than efforts to eradicate disease and

clean-up potentially contaminated environments (Miller

et al. 2004; Mathiason et al. 2009). Finally, management

agencies might be more successful in building commu-

nity support for proactive management to keep CWD

out of new areas than with management in established

infected areas (Vaske et al. 2004).
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