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Abstract

A central challenge to studying emerging infectious diseases (EIDs)
is a landscape dilemma: Our best empirical understanding of disease
dynamics occurs at local scales, whereas pathogen invasions and
management occur over broad spatial extents. The burgeoning field
of landscape epidemiology integrates concepts and approaches from
disease ecology with the macroscale lens of landscape ecology, enabling
examination of disease across spatiotemporal scales in complex environ-
mental settings. We review the state of the field and describe analytical
frontiers that show promise for advancement, focusing on natural
and human-altered ecosystems. Concepts fundamental to practicing
landscape epidemiology are discussed, including spatial scale, static
versus dynamic modeling, spatially implicit versus explicit approaches,
selection of ecologically meaningful variables, and inference versus
prediction. We highlight studies that have advanced the field by
incorporating multiscale analyses, landscape connectivity, and dynamic
modeling. Future research directions include understanding disease
as a component of interacting ecological disturbances, scaling up the
ecological impacts of disease, and examining disease dynamics as a
coupled human-natural system.
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Emerging infectious
disease (EID):
a disease undergoing
range expansion or
increased incidence
following introduction
of an exotic pathogen
or reemergence of one
once in decline

Natural ecosystem:
an ecological system
consisting of wild
populations of plants,
animals, and microbes
that is not artificially
created (i.e., planted,
farmed, or intensively
managed) by humans

INTRODUCTION

Emerging infectious diseases (EIDs) of plants
and animals are impacting natural ecosystems
at unprecedented rates in response to increases
in human mobility, climate change, and the
creation of new habitat conditions (4, 18, 51,
65). The dynamic and inherently spatial nature
of epidemiological processes presents unique
challenges to studying and managing the spread
of EIDs in natural communities. First, natural
ecosystems often exhibit nonlinear dynamics
and feedbacks across a wide range of interacting
(and sometimes unknown) ecological variables
(93, 94). Second, the heterogeneous nature of
the biotic and abiotic variables driving disease
dynamics in natural ecosystems is notoriously
difficult to measure, and there is almost never
a single right scale of observation (32, 62)
(Figure 1). In human-altered ecosystems
(e.g., fragmented suburban forests), additional

100 m

200 m

300 m

400 m

Host

Nonhost

a b 

Sampling site

Figure 1
Diagram of two landscape scenarios illustrating scale-dependent effects of host (shown in green) and nonhost
(shown in white) habitat abundance and configuration across nested scales of increasing radii (100-m
increments) around a sampling site (black square). The amount of host habitat surrounding each site in
conjunction with the structural connectivity of habitat may influence the global infection pressure on a site.
If a single-scale analysis were conducted at 100 m, scenarios a and b would be identical in the amount and
configuration of habitat conditions. At 200 m, however, scenario a would appear to be connected to a greater
amount of contiguous host habitat. A multiscale examination, or an analysis that was conducted at a larger
spatial extent (e.g., 400 m), would further reveal that scenario b is surrounded by a larger area of contiguous
host habitat and thus may exhibit higher infection pressure from the surrounding landscape.

uncertainties associated with human behavior
and decision-making processes can further
complicate our understanding of disease
systems (84). The field of disease ecology has
made critical strides toward understanding how
pathogens interact locally with plant and animal
populations in natural systems. However, our
knowledge of larger-scale interactions between
the spatiotemporal heterogeneity of host and
environmental conditions and the rates at which
pathogens disperse through and among frag-
mented host populations remains limited (39,
42, 83). Consequently, the challenge of explic-
itly integrating landscape heterogeneity of the
biophysical environment into epidemiological
analyses must be overcome for us to better un-
derstand the multiple scales at which epidemio-
logical processes operate in ecological systems.

The burgeoning field of landscape epidemi-
ology examines interactions between landscape
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Figure 2
The spread and persistence of diseases across heterogeneous landscapes depend on spatial heterogeneity and
functional connectivity of landscape conditions. (a) Connectivity is greater between the blue sites than it is
between the blue and yellow sites and the red site, despite their greater Euclidean distance separation,
because the red site is located on the other side of a mountain range, which may function as a geographic
barrier to inoculum, host, and/or vector dispersal. (b) In a waterborne pathosystem in which inoculum is
dispersed in streams, the two yellow sites (separated by the greatest Euclidean distance) could actually be the
most connected because the lower yellow site is located downstream from the upper yellow site.

Human-altered
ecosystem: a natural
ecosystem harboring
wild populations of
plants, animals, and
microbes that is
heavily influenced by
human activities, such
as urbanization or
selective harvesting;
does not include
agroecosystems with
intensive farming

Landscape
heterogeneity:
spatial variability of
biotic and abiotic
conditions over a
specified geographic
area

Landscape ecology:
the science of studying
the reciprocal
interactions between
spatial patterns of
landscape
heterogeneity and
ecological processes

heterogeneity and the underlying ecological
processes that drive the spread and persistence
of disease (42, 58, 83, 88). By definition,
landscape epidemiology integrates concepts
and approaches from disease ecology with the
macroscale lens of landscape ecology. The
intersection of these perspectives enables us to
understand how the spatial configuration and
composition of landscape features influence
epidemiological processes across broad geo-
graphical areas that extend beyond processes
operating locally within a single community.
Thus, landscape epidemiology is more than
simply establishing plots in the field and ex-
amining differences in local biotic and abiotic
conditions among sites; the key is to gain insight
into the geographical distribution of disease
and to understand how landscape connectivity
influences spatial interactions between sus-
ceptible and infected individuals (Figure 2).
The environmental conditions that determine
landscape connectivity for dispersal may vary
by region and depend on whether a pathogen
disperses biotically (e.g., vector-borne insect
movement) or abiotically (e.g., flows of wind

and water). For example, rivers and streams
may act as dispersal corridors that foster the
spread of infection across a heterogeneous
landscape for waterborne plant pathogens (53),
yet in other systems, such as zoonotic diseases
of terrestrial mammals, these same water
bodies might function as geographic barriers
by impeding host or vector movement (97).

Implementing a landscape approach is typ-
ically not a trivial task. Landscape approaches
that incorporate spatiotemporal complexity in
epidemiological systems require careful spatial
linking of molecular and microbial observa-
tions of disease distribution with measurements
of corresponding (and surrounding) biotic and
abiotic conditions (7). Most landscape epidemi-
ological studies utilize geographic information
systems (GIS) and other geospatial technolo-
gies (e.g., remote sensing) to assimilate the
large, spatial data sets that enable analysis
of relationships between the distribution of
disease and landscape heterogeneity. However,
despite the many ways GIS has helped advance
landscape epidemiology, GIS software is no-
toriously limited to providing static snapshots
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LEVERAGING GEOSPATIAL ANALYSIS AND
COMPUTATIONAL MODELING

Understanding drivers of infectious disease dynamics across
heterogeneous landscapes ultimately requires a computationally
intensive integration of spatial and temporal dimensions of the
environment. When implementing a landscape epidemiological
approach, the first step is choosing the spatial scales (extent and
grain) thought to approximate the phenomenon scale of the sys-
tem. Analyses conducted at landscape to regional scales require
large amounts of spatial data, which may integrate local-scale
observations from fieldwork with larger-scale data derived from
geospatial mapping technologies (e.g., geographic information
systems, remote sensing). Integration of field data with geospa-
tial modeling requires careful consideration to matching the
sampling, analytical, and phenomenon scales (see section below,
What Is the Spatial Scale?). After data collection, the voluminous
data sets are typically imported into a relational geo-database
(e.g., ESRI ArcSDE, MySQL) for storage, manipulation,
and visualization, and may then be exported to an analytical
platform capable of modeling spatial and temporal complexity
(e.g., R, WinBUGS, C++). Unfortunately, the computationally
demanding nature of these analytical procedures often hinders
implementation in many cases, especially where there is a need
for dynamic models of spatial spread. However, we expect to see
a surge in the number of sophisticated landscape epidemiological
analyses as advancements in high-performance computing and
appreciation of interdisciplinary collaborations continue.

Landscape
connectivity: the
degree to which the
spatial composition
and configuration of
environmental
conditions facilitate
dispersal

Extent: the size of a
study area or temporal
duration; sometimes
referred to as the
domain

of spatial variables in a disease system, with
relatively little ability to incorporate the types
of dynamic temporal complexities (e.g., dis-
persal and infection) needed for process-based
understanding of epidemic behavior over time.
To continue moving the discipline forward,
we must embrace recent advancements in
spatial analysis and computational modeling,
which are now more than ever offering ways to
integrate both spatial and temporal dimensions
in landscape epidemiological analyses (75; see
sidebar, Leveraging Geospatial Analysis and
Computational Modeling).

As with most emerging fields, landscape epi-
demiology has not yet developed a clear identity
or direction for future research. We conducted

a literature search of the diverse perspectives
on landscape approaches in epidemiological
studies in order to describe the current state
of the field. We classified papers based on six
categories: (a) research design, (b) static versus
dynamic approach, (c) taxonomic focus, (d ) spa-
tial extent of the study area, (e) inferential
versus predictive nature, and ( f ) whether the
study used a multiscale approach (Figure 3).
Observation-based empirical studies were
much more common than simulation modeling,
and only three experimental studies were re-
turned (50, 80, 99). The overwhelming majority
(74%) of these analyses were static in nature. To
date, animal and zoonotic diseases have been
studied in more cases using landscape epidemi-
ological approaches as compared with plant sys-
tems (see Table 1 for a list of plant pathogens
analyzed using landscape epidemiological ap-
proaches). Across all studies, the range of spatial
extents spanned <1 km2 (one of the experimen-
tal studies) to over one million km2, with most
encompassing landscape- to regional-scale
extents of 1–10,000 km2. Only 13% used a
multiscale approach. Lastly, we found that
approximately two-thirds of the studies used
analytical approaches that were inferential as
opposed to predictive in nature (Figure 3).

In this paper, we review the state of the
emerging field of landscape epidemiology
and highlight the analytical frontiers that
hold promise to advance the discipline. We
focus on EIDs in natural and human-altered
ecosystems because of their growing threat to
ecological communities and the complexity of
invasion dynamics in heterogeneous landscapes
(Table 1). We begin by discussing funda-
mental considerations involved in conducting
a landscape epidemiological study, including
choosing an appropriate spatial scale, deciding
whether the analysis is static or dynamic, distin-
guishing between spatially implicit and explicit
approaches, selecting ecologically meaningful
variables, and deciding if the research objective
is statistical inference or prediction. We then
turn our attention to several studies that
have advanced the field in the catalyzing
areas of using a multiscale lens, incorporating
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Figure 3
Literature search using the ISI Web of Science database. Search results were delimited based on the following Boolean query executed
within a single search (conducted in December 2011): 1) Topic = (epidem∗ OR disease OR pathogen); 2) Topic = (∗spatial OR
geograph∗ OR GIS OR “remote sens∗” OR spread OR “landscape heterogen∗” OR “landscape structure” OR risk); and 3) Topic =
(landscape∗). We further refined the search by selecting only subject areas that were pertinent to our field of study. From the total of
631 returned papers, we considered 143 as true landscape epidemiological studies after assessing each paper’s research objectives and
methodology. We then classified papers based on the six criteria above. For taxonomic focus, we did not include diseases that affect
humans only, but did include zoonoses, nonhuman animal diseases, and plant diseases. Silviculture studies were considered agriculture.
Note that the sum for each histogram can be less than or greater than 100% because not all studies can be classified into a subcategory
(e.g., a conceptual paper not being static or dynamic) and some studies can belong to more than one subcategory (e.g., a study is based
both on observation and simulation).

landscape connectivity, and optimizing disease
control with dynamic landscape modeling.
We conclude with our perspectives on future
directions for further development of the field.

ANALYTICAL ISSUES
TO CONSIDER

What Is the Spatial Scale?

A central challenge to studying EIDs in
natural and human-altered ecosystems is a
landscape dilemma: Our best empirical un-
derstanding of disease dynamics mostly arises
from analyses of host-pathogen-environment
interactions at fine spatial scales, yet pathogen

invasions and their management often occur
over much broader spatial extents (e.g., white
pine blister rust in the Greater Yellowstone
Ecoregion; 40). Epidemiological processes are
embedded within communities, ecosystems,
and landscapes, and we should therefore expect
that processes occurring at these larger spatial
scales play a key role in disease dynamics at
the local scale (83, 86) (Figure 4). Moreover,
there is no single natural scale at which
ecological phenomena, including pathogen
invasions, should be studied (62; e.g., see
Figure 1) because each species experiences its
environment uniquely, depending on its life
history characteristics (e.g., mode of dispersal;
Table 1), the diversity and distribution of its
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a = 1 a = 25 a = 100

High dispersal limitation Low dispersal limitation

Figure 4
Schematic of the force of infection on a local site in response to sources of inoculum from variable distances
across a surrounding landscape. The potential load of inoculum from each source is represented by the width
of the arrows. The cumulative load experienced by the target is given by �exp(2d/a), where d = distance,
represented as arrow length in the schema. Nearby sources of inoculum have more influence than far sources
at low values of a. Reprinted with permission from Reference 70.

Geographic
disequilibrium:
a transient state
describing the spatial
distribution of an
organism that is
changing through time

hosts, and the abiotic factors it encounters.
For instance, Sullivan et al. (99) conducted
a landscape-scale experiment to examine
whether or not habitat corridors increased
the incidence of plant parasites and found
that outcomes varied with parasite dispersal
mode. Connectivity provided by corridors
increased incidence of vector-borne parasites
(galls on Solidago odora), but wind-borne
parasites (foliar fungi on S. odora and three
Lespedeza spp.) were less influenced by corridors
because wind dispersal occurred over larger
scales with less sensitivity to landscape pattern.

When studying emerging diseases across
landscape to regional scales, pathogen distri-
butions may exhibit heightened spatial and
temporal dependencies because of localized dis-
persal from the point of introduction (66).
Thus, the amount of geographic disequilibrium
that an emerging disease undergoes in space and
time should be carefully contextualized when
specifying the scale and heterogeneity of ob-
servations. For instance, many native pathogens
(e.g., Armillaria or Heterobasidion spp. in North
America) may not be considered emerging in
the context of their geographic range as a whole
but might be emerging at particular locations
responding to changes in environment or host
community structure. Similar considerations

apply for temporal scale. For example, white
pine blister rust has been established in North
America for more than100 years, yet continues
to expand its range into new areas (e.g., south-
western United States) while becoming en-
demic in other regions (British Columbia) (57).

The choice of spatial scale—defined by ex-
tent and grain—should be grounded in epi-
demiological theory (e.g., the dispersal curves
of air- and splash-dispersed pathogens often
display a concave shape; 10) and driven by re-
search objectives. For example, a spatial extent
with a regional to continental scope might be
used to study potential impacts of emerging
pathogens as large-scale agents of ecosystem
disturbance (24, 31, 40, 64), whereas smaller
landscape extents might be used to explore how
spatial heterogeneity of host availability influ-
ences disease spread (53). Spatial grain pertains
to the resolution of explanatory variables (e.g.,
cell size of raster data) and the response vari-
able for the measurement of disease. For exam-
ple, how might inference change if infection is
measured at the level of the leaf, the tree, or
the forest stand? Because nature is fine grained
over large extents, researchers often face the
dilemma of choosing between smaller extents
that enable them to capture more detail of the
system property being studied and large extent
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Grain: the
smallest resolvable
measurement unit
within a data set, such
as the cell size of raster
data

Species distribution
model: numerical
tool used to quantify
relationships between
species occurrences
and environmental
factors that contribute
to survival and
propagation

studies that may sacrifice grain for logistical
reasons (62, 111). In practice, researchers are
inevitably constrained by time and resource
limitations, which often dictate scales of data
and model structures that may not adequately
capture underlying epidemiological processes
(22).

Following Dungan et al. (20), we suggest
three categories for conceptualizing spatial
scale in landscape epidemiology: (a) the
phenomenon scale, e.g., the spatial spread of
an infectious disease; (b) the sampling scale
used to measure the phenomenon, such as the
detail and area of measurement in the field
or in grid cells of geospatial data; and (c) the
analytical scale, which determines the manner
in which data are aggregated or generalized.
If the choice of sampling and analytical scales
do not correspond to the phenomena scale,
resulting inference and conclusions drawn
from a study may be weak or unreliable (20).
Scale mismatches may also suffer from the
modifiable areal unit problem (MAUP) (48),
which occurs when data collected at a fine grain
are spatially aggregated to variably coarser res-
olutions, resulting in potential bias in statistical
inference. The ease in which scale mismatches
can occur in landscape epidemiological studies
emphasizes the importance of carefully speci-
fying all three scales when studying the spread
and persistence of EIDs. These considerations
are especially relevant to designing multiscale
analyses of disease dynamics, although rela-
tively few plant disease studies have embraced
multiscale approaches in natural ecosystems
(Figure 3; see section below, Using a Multi-
scale Lens).

Is the Model Static or Dynamic?

To date, the majority of landscape epidemi-
ological studies have used static rather than
dynamic approaches for analyzing EIDs
(Figure 3). Careful attention to spatial data
collection in static approaches has yielded
novel insights into how real-world landscape
heterogeneity affects disease risk but typically
at the expense of ignoring epidemic behavior

over time (e.g., dispersal, rate of infectious
spread) (13, 30, 98). Static approaches often use
correlative species distribution models that link
spatially referenced data on disease occurrence
with environmental variables through the use
of parametric (e.g., a generalized linear model)
and nonparametric (e.g., maximum-entropy)
methods. Logistic regression, for example,
is a standard parametric method commonly
used to model disease occurrence (i.e., pres-
ence/absence) at a site (i ) as a function of any
number (k) of explanatory variables:

logit(pi ) = ln
(

pi

1 − pi

)

= β0 + β1x1,i + · · · + βkxk,i .

For instance, using Bayesian statistical analyses
of a static snapshot of disease distribution, Haas
et al. (35) demonstrated links between forest
species diversity and disease risk in a generalist
plant-pathogen invasion (i.e., a dilution effect in
which sites with greater biodiversity had lower
infection risk; 54) after accounting for land-
scape heterogeneity and spatial dependence
in infection. However, these results cannot
suggest how diversity-disease relationships
will change through future stages of disease
progression. When static approaches are used
to analyze EIDs, the presence of geographical
disequilibrium inherent in the distribution
of disease at different stages of invasion
may require additional analytical consider-
ations (Figure 5). For example, Václavı́k &
Meentemeyer (107) showed that distribution
models of an emerging forest pathogen cali-
brated from data representative of early stages
of invasion were less accurate than models
calibrated under scenarios closer to equilibrium
because data from early stages did not capture
all combinations of climate and local habitat
conditions potentially harboring the pathogen.

Dynamic approaches, in contrast, allow a
phenomenon to change through time to accom-
modate the fluctuating behavior of an epidemic
during successive stages of invasion that an
EID undergoes. The most widely studied class
of dynamic epidemiological models take the
form of SIR (susceptible-infectious-removed)
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Figure 5
Methodological considerations of modeling the potential versus actual distribution of emerging infectious
diseases in natural ecosystems. (a) A sampled geographical space with three host habitat patches: patch 1 is
fully infected, patch 2 is partially infected owing to the early stage of invasion, and patch 3 is not infected
because of the presence of a dispersal barrier impeding spatial spread. (b) A statistical model fit in
environmental space to identify the pathogen’s niche by relating observational data to underlying
environmental conditions. (c) If the goal is to predict the potential distribution of a pathogen, the model
should ignore dispersal constraints and utilize only positive samples (pathogen presence) to avoid
underestimation of suitable habitat at risk for disease. (d ) If the goal is to predict the actual distribution of a
pathogen, the model should incorporate dispersal barriers with both positive and negative samples (pathogen
presence and absence) used in model calibration to avoid overestimation of disease distribution. Figure
modified from Pearson (85).

compartment models (5) that consist of a set of
linked differential equations as shown below in
their most basic form (β is the contact rate, r
is the recovery rate):

dS
dt

= −βSI,

dI
dt

= βSI − rI,

and
dR
dt

= r I.

With the addition of considerable complex-
ity, dynamic epidemiological models can
incorporate environmental heterogeneity and
demographic processes of birth and death
across spatiotemporal scales (e.g., season-
ality, interactions with biocontrol agents,
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metapopulation dynamics), resulting in a
deeper understanding of ecological feedbacks
(95). However, application of simulation
models to realistic landscapes is relatively rare
because of the challenge of integrating models
with detailed, real-world geographical data
across broad spatial extents (71). As a compro-
mise, dynamic epidemiological models often
resort to using simulated or artificial land-
scape data (92), which may involve questionable
assumptions regarding the spatial scale and het-
erogeneity of a system. Yet, even when data are
available or could be collected, modelers must
still confront the challenge of balancing epi-
demiological and landscape parameters needed
to capture disease dynamics without (a) exceed-
ing computational and data collection costs or
(b) overfitting models that contain large num-
bers of free parameters that are difficult to in-
terpret (see section below, Optimizing Disease
Control with Dynamic Landscape Modeling).

Is the Model Spatially Implicit
or Explicit?

The manner in which space is considered in
landscape epidemiological models naturally af-
fects the inferences, predictions, and ultimately
the conclusions drawn from a study. Although
spatial information is not always required for
studying ecological problems, the spread and
persistence of pathogens likely depend on two
basic types of spatial effects: (a) exogenous ef-
fects associated with broad-scale spatial trends
in underlying environmental conditions (e.g.,
climate) and (b) endogenous effects caused by
fine-scale processes, such as dispersal limita-
tion, interspecific competition, and disturbance
history (19, 106). Described by Peters et al.
(87), models can be classified as nonspatial,
spatially implicit, or spatially explicit, all of
which can be conceptualized from the following
geostatistical equation:

zi = f (xi ) + s i + ε,

where a response variable z measuring disease
at a specific location, zi, is a function of broad-
scale trends from a set of explanatory variables,
f (xi), measured at location i, plus a local spatial

component, si (where s is a function of relation-
ships measured in the neighborhood of location
i ), and ε are standard residual errors. In this
framework, nonspatial models describe z only
as a function of a set of explanatory variables
with disregard to spatial location, f (x). A spa-
tially implicit approach, in contrast, models zi

with reference to the spatial location of the ex-
planatory variables f (xi), measured but does not
account for spatial dependency among neigh-
boring sites. Finally, the spatially explicit model
goes the next step by estimating zi as a function
of both spatially referenced explanatory vari-
ables f (xi), measured and a user-specified neigh-
borhood of spatial interactions among sampling
sites, si (Figure 4).

In essence, spatially implicit models are non-
spatial constructs driven by spatially structured
explanatory variables. For example, Smith et al.
(98) examined patterns of white pine blister
rust infection in the Rocky Mountains by cor-
relating geographically referenced field obser-
vations of disease prevalence with GIS-derived
environmental variables in a Poisson regression
model. Here, the explanatory variables were
spatially structured and a random effect was
included to minimize spatial dependence
among observations within sampling sites, but
the analyses were spatially implicit in that they
did not quantify neighborhood interactions
among observations. Spatially explicit models,
in contrast, directly model spatial interactions
between each study location i in the surround-
ing landscape through gradients of inoculum
pressure (35, 53; Figure 4), connectivity and
movement of hosts (39), and biophysical flows
of energy and matter (52) (Figures 2 and
4). Despite the potential for spatially explicit
interactions si to increase sophistication of
landscape epidemiological analyses, explicit
incorporation of space requires large data sets
for model calibration and testing (87).

How Ecologically Meaningful
Are the Variables?

Increases in the availability of geospatial data
and rich ecological databases [e.g., the National
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Ecological Observatory Network (NEON)] are
providing new sources of valuable information
for landscape-scale research. However, studies
of disease in natural systems often still focus on
indirect variables at the site level. Franklin (29)
defined indirect variables as environmental
gradients (e.g., elevation or slope steepness)
that have no direct physiological effect on
an organism’s survival and reproduction, but
rather serve as surrogates for more functionally
direct factors, such as temperature, moisture
availability, and solar radiation. Indirect
variables may cause two analytical problems.
First, simple indirect gradients are actually
complicated because they simultaneously
influence multiple environmental processes.
For example, elevation affects temperature,
rainfall, and wind patterns as well as other
underlying environmental conditions. Second,
species’ responses to indirect variables like
elevation are likely to change depending upon
the sampling location and are therefore not
suitable for comparison over broad extents. For
instance, a given plant pathogen will respond to
environmental conditions at 1,000-m altitude
in temperate zones very differently than at
1,000 m in the tropics. We suggest that mea-
surements of direct variables in heterogeneous
landscapes will lead to better mechanistic
understanding of the functional responses
of pathogens to their environment and help
tie together findings from disparate studies.
For instance, direct measurements of season-
ally varying precipitation and temperature
conditions—shown to affect the production of
inoculum in the field (15, 16)—were used to
drive the spread of an emerging forest epidemic
in a dynamic landscape model (72). Altizer et al.
(2) review the vital role that seasonality plays in
the spread and persistence of pathogens in plant
and animal populations. Seasonal variations
in temperature, precipitation, and resource
availability influence host behavior and suscep-
tibility (44), spatial and temporal variations in
inoculum build-up and transmission (71, 89),
and pulses of host regeneration and mortality
(25).

The way we measure the spatial heterogene-
ity and connectivity of landscapes also influ-
ences inference and prediction (Figures 1 and
2). For example, structural connectivity is rel-
atively straightforward to measure—referring
only to the physical attributes of the landscape
(e.g., patch cohesion, nearest-neighbor distance
among patches)—but it does not explicitly con-
sider dispersal ability or behavioral responses
of organisms to landscape features (11). In
contrast, functional connectivity incorporates
information about dispersal ability and how
specific environmental conditions function
as barriers or conduits to dispersal (56). For
instance, movement of vectors or hosts may
lead to spread that is confined to specific habitat
corridors (61), impeded by geographic barriers
(8, 90), or facilitated by landscape features (46)
(see section below, Incorporating Landscape
Connectivity). The amount of data needed
to model landscape connectivity in natural
ecosystems is a question that warrants careful
attention in every study, as the cost of acquiring
and processing these data can be high.

Is the Goal Inference or Prediction?

Landscape epidemiology combines data and
models with the goal of enhancing our ability
to understand and predict spatial processes in
disease systems. All models involve inference to
some degree, although some analyses also take
the form of predictive geographical distribu-
tions (12), depending upon research objectives,
e.g., obtaining a mechanistic understanding of
disease transmission or forecasting epidemic
outcomes across space and time. In landscape
epidemiology, a central challenge stems from
the fact that natural and human-altered ecosys-
tems are high dimensional, meaning that many
interacting forces are at work (e.g., see 12).
When ecological inference is the primary goal,
the concept of parsimony should be invoked to
communicate the generality of results across
disease systems and to identify functional
relationships between predictor and response
variables (87). However, perspectives are
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Static model:
describes ecological
patterns at a specific
moment (e.g., when
data are collected) and
does not account for
changes over time.
Process is often
inferred from pattern

changing as spatial prediction of epidemic risk
is becoming an increasingly common goal in
response to new spatial modeling techniques,
more accurate and complete geospatial data,
and demand for landscape-scale strategies of
disease control (28, 83). When prediction is
the goal, complex models may be preferred
over simple ones so long as they predict disease
patterns in an accurate manner. Efforts to
obtain inference versus prediction often lead to
analytical trade-offs in landscape epidemiology,
in part because spatial prediction requires that
explanatory variables can be accurately mapped
in geographic space. For example, those
fine-scale variables collected in the field (e.g.,
host density or microclimate)—so important
to inference—often prevent spatial prediction
when they cannot be reliably mapped or com-
putationally analyzed across a heterogeneous
landscape (108). As a compromise, predictive
models often turn to using larger-scale ex-
planatory variables, such as land cover type
or average climate conditions, that are readily
mapped at coarse grains (e.g., 30 m to 1 km).

When static models are used to analyze
snapshots of disease distribution at a single
point in time, parametric methods (e.g., logistic
regression) are well known for balancing model
parsimony and prediction robustness while
providing interpretation of straightforward
ecological relationships. Species distribution
modelers, though, are increasingly using more
complex nonparametric methods (e.g., max-
imum entropy and support vector machines)
because of their high predictive performance,
ability to fit complex data, and absence of
limitations posed by assumptions concerning
underlying data distributions (21). However,
the biogeographical modeling literature is
increasingly indicating that errors in model
predictions and inference stem more from
faulty model structures, poor quality of data,
and inappropriate selection of environmental
variables than from a lack of complexity in
model fitting procedures (6, 49, 100). Although
complex methods are essential in certain cases,
we caution that too much focus on capturing
every nuance of spatial heterogeneity in a

disease system may at times narrow our
view to a point where analytical complexity
interferes with understanding. Therefore, we
expect to see complex black-box approaches
of nonparametric algorithms applied when
spatial prediction is the sole aim, whereas sim-
pler approaches—based on sound ecological
theory—continue to prevail for hypothesis-
driven analyses.

The impacts of ignoring ecological theory in
predictive models are often revealed when the
actual and potential distributions of pathogen
invasions are not distinguished in the goals of
a study (105; see Figure 5). The actual distri-
bution represents an organism’s geographical
range at a specific point in time restricted by
the availability of suitable environmental condi-
tions and by colonization time lags governed by
dispersal constraints. In contrast, the potential
distribution represents all areas in which biotic
and abiotic conditions are suitable for coloniza-
tion regardless of dispersal barriers. In practice,
the goal of modeling the actual versus poten-
tial distribution of an EID should be clearly
distinguished because methods, data, and con-
clusions vary when the stage of invasion is not
defined (105). The contagious processes of dis-
ease spread can also lead to an excess of absence
observations that can bias statistical inference
or associated measures of uncertainty and thus
require specific methods to account for zero-
inflated data (e.g., 35).

ANALYTICAL FRONTIERS

Using a Multiscale Lens

Ecosystems are structured hierarchically by a
range of ecological and anthropogenic pro-
cesses across multiple scales of space and time
(26, 62). To date though, only a few landscape
epidemiological studies have examined EIDs
from a multiscale lens (Figures 1 and 3).
Embracing multiscale approaches—described
here as data collection and analytical methods
structured by two or more scales of interest—
strengthens landscape epidemiological analyses
for two critical reasons: (a) Epidemiological
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Spatial
autocorrelation
(SAC):
a phenomenon
encountered in
ecological data
describing the
propensity for nearby
locations to influence
each other more than
locations that are
farther apart

processes observed at one scale may operate
differently at another scale and (b) scaling
up is feasible when relationships between
disease patterns and processes are consistent
across scales (i.e., the use of phenomenological
relationships at one scale being used to provide
information at a different scale; 104). Mundt
& Sackett (81) examined scaling relationships
for the spread of wheat stripe rust caused by
the wind-dispersed fungus Puccinia striiformis f.
sp. tritici in experimental field plots and found
that the disease spread at a velocity directly
proportional to the size of the initial disease
focus. Their results suggest that power law
dispersal of long-distance dispersing pathogens
may produce scale-invariant relationships
that are useful for extrapolating results from
small-scale experiments to invasions spreading
over larger scales. In another pathosystem,
however, analyzing more than one spatial scale
illustrated reversed effects of topography on
the incidence of scleroderris canker caused by
fungus Gremmeniella abietina in pine forests of
southern Finland (82). These results showed
that disease impacts increased with elevation
at coarse scales but decreased with elevation at
local scales, suggesting scale-variant effects of
elevation on disease dynamics.

By revealing scale-dependent processes,
multiscale approaches may help reduce the risk
of making incorrect anthropogenic assump-
tions regarding the spatial scale of a species’
response to environmental conditions (e.g.,
availability and connectivity of host vegetation;
Figure 1) (43, 109). Nonetheless, all three con-
cepts of scales—phenomenon, sampling, and
analytical scales—are inevitably biased to some
degree by analyst perceptions and logistical
constraints no matter how many precautions
are taken (62). As aptly noted by Matthews
& Haydon (68), epidemiologists often seem
to glance upward in scale worrying they have
omitted effects of landscape features that are
critical to formulating effective management
strategies, whereas those conducting research
at larger scales peer downward and worry that
inclusion of heterogeneity at the level of the
individual or gene locus is needed.

Condeso & Meentemeyer (13) conducted
an observational study using a multiscale nested
approach to analyze scale-dependent effects of
landscape heterogeneity on the spread of the
invasive forest pathogen Phytophthora ramorum.
The study focused on the composition and
configuration of host habitat surrounding 86
field plots across a spatially heterogeneous
landscape. To examine the spatial scale at which
P. ramorum responds to landscape pattern,
landscape metrics such as the shape and connec-
tivity of host habitat were calculated for nested
areas of increasing radii in 50-m increments
from 50 to 500 m (e.g., Figure 1). To isolate the
scale-dependent effects, the authors accounted
for local biotic and abiotic conditions by mea-
suring host density, canopy cover, proximity
to forest edges, and microclimate variation.
The results showed that (a) incorporating
larger-scale data on host availability substan-
tially increased their ability to predict disease
severity, (b) disease severity was greater at plots
with higher connectivity of surrounding host
vegetation (e.g., Figure 4), and (c) the effect
of landscape pattern on disease severity is scale
dependent.

In another study of the P. ramorum
pathosystem, Václavı́k et al. (106) showed
how the consideration of multiple scales
of spatial dependence, measured as spatial
autocorrelation (SAC) in patterns of disease
spread, improves spatial prediction. Spatial
dependence is common in biogeographical
observations because of broad-scale spatial
trends in underlying environmental conditions
(19). In pathogen invasions, SAC also arises
from contagious processes of dispersal and
colonization that lead to clustered distributions
and mismatches between a pathogen’s potential
and actual distribution (Figure 5). Here, the
authors compared the performance of spatially
implicit models to spatially explicit models that
incorporated multiscale patterns of SAC using
trend surface analysis, autocovariates, and spa-
tial eigenvector mapping. The results from this
observational study revealed that accounting
for SAC across scales significantly enhanced
spatial prediction of disease incidence,
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Force of infection:
the potential
contribution of
cumulative inoculum
input to a focal site
from surrounding
invaded sites

especially when finer-scale patterns of SAC
were considered.

Observational approaches are receiving a
resurgence of appreciation for their ability to
confront ecological complexity across multi-
ple spatial scales that typically extend beyond
those feasible for experimentation (86, 94, 96).
However, experimental studies of plant disease
spread are beginning to be conducted at broader
spatial scales. For example, Mundt et al. (80) de-
signed large-scale field experiments to examine
the effects of spatial heterogeneity—specifically
host frequency, host patch size, and size of ini-
tial disease focus—on disease spread of wheat
stripe rust (caused by Puccinia striiformis f. sp.
tritici ). This study provided unique insights
into spatial spread of plant epidemics by creat-
ing controlled conditions in a closed system. In
addition, we need studies that manipulate open
systems across heterogeneous landscapes. For
example, Johnson & Haddad (50) conducted
a large-scale habitat corridor experiment—
accounting for the shape, size, and connectiv-
ity of habitat patches embedded within a pine
plantation matrix—to examine the movement
of a wind-dispersed fungal pathogen (Cochliobo-
lus heterostrophus) through a fragmented land-
scape. The authors showed that corridors did
not facilitate pathogen movement and disease
development but instead found that edge effects
were the key drivers of plant disease dynamics.

Incorporating Landscape Connectivity

The establishment of emerging plant diseases
in natural systems depends on many factors,
although dispersal of inoculum is the first
precondition for spatial spread (69). Landscape
connectivity is increasingly recognized as a
major factor, but rarely considered in studies
of plant epidemics. However, as natural en-
vironments become increasingly fragmented
(and connected in some instances) by human
activities, understanding the role of landscape
connectivity in plant pathogen invasions may
be more important than ever (Figure 1 and 2).

Ellis et al. (23) studied the relative impor-
tance of functional connectivity versus local

environmental conditions on the distribution
of P. ramorum across a heterogeneous land-
scape in northern California. Given that passive
dispersal of microscopic inoculum through
wind-blown rain splash could not be traced di-
rectly (16), the researchers used least-cost path
analyses to model potential transmission path-
ways within and between fragmented patches of
host and nonhost habitat. They applied various
scenarios of friction (i.e., transmission cost)
assigned to each habitat type because there was
little knowledge regarding the ease in which
the pathogen disperses through fragmented
host populations. For any given movement
from a source location i to a target location
i+1, the cumulative friction Ni+1 was calculated
as the cost to reach location i plus the average
cost to move through location i and i+1:

N i+1 = N i + ri + ri+1

2
,

where r represents the friction value in the
corresponding location (1). The least-cost
distances were then incorporated into a
connectivity term (λi), modeled as force of
infection (Figure 4) in the form of a negative
exponential dispersal kernel:

λi =
n∑

k=1

[
SLk × exp

(−dik

α

)]
,

where SLk was the severity of disease in plot
k, dik was the least-cost distance between plot
i and plot k, and the parameter α modified
the form of the kernel that indicated high or
low dispersal limitation. Their results showed
that functional connectivity was a significant
determinant of disease severity, although not as
significant as local environmental conditions.
In addition, connectivity was only predictive
when measured using least-cost path analysis
as opposed to measuring Euclidean distances
that do not consider landscape heterogeneity
(e.g., Figure 2).

Human-altered corridors (e.g., narrow
strips of restored habitat to connect isolated
habitat patches; 101) often inadvertently fa-
cilitate disease spread by increasing landscape
connectivity (41). For example, Jules et al.
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Dynamic model:
describes how
ecological processes
change over time;
typically represented
with difference
equations or
differential equations

(52) studied the spread of an exotic root
rot pathogen, Phytophthora lateralis, across a
region with riparian habitat for the host Port
Orford cedar (Chamaecyparis lawsonia) in the
western United States. Using tree-ring dating
techniques, the authors assessed the roles that
vehicles played in long-distance spread of
infested substrate compared to shorter-range
dispersal of spores by animals and human foot
traffic. Their results revealed that host popula-
tions following streams connected by roadways
suffered significantly greater risk of infection
and that the greater connectivity of roads facil-
itated longer range dispersal than foot traffic.
Kauffman & Jules (53) also showed that
P. lateralis spreads along stream corridors.
Their survival analysis along a 1,350-m stretch
of stream further revealed evidence contrary to
theoretical predictions that disease intensifica-
tion is primarily dependent upon the distance
of a host downstream. Instead, the more signif-
icant connectivity factor was the lateral prox-
imity of hosts to the stream channel corridor.

The growing literature on graph theory is
illustrating how networks can be used to model
the connectivity of movement across large
geographic regions (77, 78, 103). In a network
of a pathosystem, nodes of susceptible/infected
entities can be linked by infection events
whose connectedness varies as a function of
transmission factors driven by more than dis-
tance alone (47). For example, Harwood et al.
(39) demonstrated how a nursery plant trade
network can be superimposed on a landscape to
allow areas of high human activity to function
as dispersal shortcuts for disease transmis-
sion. The authors constructed a stochastic
epidemiological model of P. ramorum and
Phytophthora kernoviae using geographically
explicit grids of host plants in conjunction
with nursery trade networks in Great Britain
to assess the consequences of different types
of intervention. The simulations suggest that
nursery inspections can be used to control
epidemics when efforts target superconnected
nodes (i.e., nodes with a high number of links).
Although these types of models can be limited
by the availability of appropriate data, they hold

promise for providing a useful framework for
integrating natural and anthropogenic features
of landscapes in epidemiological models.

Optimizing Disease Control with
Dynamic Landscape Modeling

Invasive plant diseases often spread rapidly in
natural and human-altered ecosystems, espe-
cially when pathogens are capable of long-range
dispersal and asymptomatic infection. Yet,
management recommendations typically arise
from small-scale experiments that by design
cannot consider broader epidemic outcomes of
intervention or how external sources of inocu-
lum may affect finer-scale management efforts.
Consequently, successful control depends on
our ability to develop management strategies
that match the spatial and temporal scale of epi-
demic spread in the most cost-effective manner
possible. Mathematical models that incorporate
space-time complexity of population dynam-
ics can help us design management strategies
across the range of scales needed to control in-
vasions (33, 34). However, the interdisciplinary
challenge of infusing geography into dynamic
epidemiological models causes most modelers
to use simulated or artificial data with assump-
tions on the spatial scale and heterogeneity in
a system that may not be well justified or real-
istic for predicting epidemic outcomes in par-
ticular geographical regions of concern. Below,
we highlight recent articles that integrate dy-
namic epidemiological and geographical mod-
eling to optimize strategies for detection and
control across large heterogeneous landscapes.

Meentemeyer et al. (71) developed a
stochastic epidemiological model to predict
the spread of P. ramorum through spatially
heterogeneous host populations in forest
ecosystems of the western United States, sub-
ject to fluctuating weather conditions. Three
challenges were addressed in their research:
(a) development of a dynamic model for
predicting geographical spread of a widespread
epidemic in natural ecosystems; (b) parame-
terization of a model from snapshots of data
on the distribution of host, pathogen, and
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environmental conditions that take into ac-
count the principal scales of spread without
overfitting a large number of free parameters
that are difficult to interpret; and (c) spatially
explicit prediction of probable epidemic out-
comes through the year 2030 to prioritize high-
risk locations for detection and control. Their
SI (susceptible-infected) simulation model was
initiated in 1990 by infecting susceptible veg-
etation at three known introduction locations.
Infection was modeled as a Poisson process,

φjt =
∑

i

ψijt,

where ψ ijt is the rate of spread from an infected
site i to site j during week t. The infection
pressure from site i to site j was modeled as:

ψijt = β(xt( fi )mitc it Iit)
(

xt( f j )mjtc jt Sjt

N max

)

× K (dij; α1, α2, γ )
dij

,

where β controls the overall rate at which spores
are produced by infected hosts within a given
site per unit time. Iit and Sjt are the numbers of
infected and susceptible hosts at time t in cells
i and j, respectively. Host availability in each
250-m cell was derived from detailed GIS maps
of Californian plant communities weighted
by abundance and competency to produce
inoculum (74). N max is the carry capacity of
host vegetation in any site. Parameters mjt and
cjt are time- and space-dependent variations in
precipitation and temperature, parameterized
based on experimental studies and mapped
from spatially interpolated estimates of daily
weather conditions (16, 45). K (di j ; α1, α2, γ ) is
a dispersal kernel for movement of inoculum
over distance dij parameterized by Bayesian
Monte Carlo Markov Chain estimation of scale
parameters: α1, controlling short-range abiotic
dispersal associated with wind-driven rain and
mist; α2, controlling long-range dispersal asso-
ciated with human activities, such as planting
infected ornamentals and transporting infected
organic material by hikers, vehicles, and
animals (91); and γ , controlling the proportion
of spore units that are locally (e.g., <1 km)
dispersed. Finally, xt( fj) is a phenological

indicator variable, equal to 1 if susceptible
hosts of type fj are able to infect and be
infected at time t, and 0 otherwise (16).
The model showed that most disease spread
occurs through abiotic dispersal (<250 m)
but occasional long-distance dispersal events
significantly increase rates of epidemic spread.
Between 2010 and 2030, the model forecasts
a tenfold increase in disease spread with most
infection impacting northern coastal forests
between San Francisco and Oregon.

In a follow-up study, Filipe et al. (27)
adapted the model described in Meentemeyer
et al. (71) to optimize landscape-scale strategies
for managing invasive plant pathogens in
natural ecosystems. Their study focused on
controlling the spread of an isolated outbreak
of sudden oak death in northern California. A
long-range dispersal event occurred in the late
1990s that led to a rapidly expanding epidemic
focus with considerable tree mortality (67, 91).
The epidemiology of P. ramorum posed several
challenges to designing effective strategies of
control that required the use of dynamic land-
scape modeling. First, the pathogen’s ability
to disperse long distances with asymptomatic
infection introduced substantial complexity
into knowing how to best match the spatial
and temporal dimensions of epidemic spread
with effective control. Delayed detection in
conjunction with long-range dispersal may
allow a pathogen to continue spreading fol-
lowing treatment of symptomatic hosts (38).
Second, methods for controlling the spread of
P. ramorum have been limited to small-scale
yet expensive reduction of inoculum (culling
and burning infected hosts) and preemptive re-
moval of susceptibles (no curative chemical or
biological control exists) with little understand-
ing of the type and amount of upscaling needed
to be effective across landscape to regional
extents. These issues are further complicated
by the long infectious period and generalist
nature of the pathogen, which greatly amplify
the risk and uncertainty of spread.

Filipe et al. (27) used their model to explore
several landscape-scale scenarios of control be-
ing considered by policy makers. The scenarios
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included a combination of culling infected and
susceptible hosts within and beyond the spread-
ing focus, protective aerial spraying, and con-
struction of a controversial host-free barrier to
the north of the focus. Their modeling revealed
that the proposed barrier by itself would not
prevent wind-blown dispersal northward, but
strategic combinations of removing inoculum
and susceptible hosts beyond the focus could
contain epidemic spread. This discovery was
made possible by analyzing multiple scenarios
of control that considered the principal scales of
epidemic spread and real-world landscape het-
erogeneity of the pathosystem—practical re-
sults that have given policy makers critical guid-
ance on when and where to apply costly control
measures across heterogeneous landscapes.

WHAT’S NEXT?

Landscape epidemiology holds great promise
for developing new interdisciplinary ap-
proaches that advance our understanding of the
ecology of infectious diseases in both natural
and human-altered ecosystems. In her recent
MacArthur award lecture to the Ecological So-
ciety of America, Monica Turner identified “in-
teracting disturbances” as a priority for future
research efforts at larger spatial and ecosystem
scales (102). Attention to interacting distur-
bances in disease systems is critical because
the combinatorial effects of EIDs with other
ecological disturbances can produce nonlinear
dynamics with thresholds, feedback loops, time
lags, and unexpected outcomes. For example,
Metz et al. (76) discovered a complicated inter-
action between the forest disease sudden oak
death and wildfire severity in California forests,
where increased fuel load from disease-induced
host mortality contributed to burn severity only
in areas where the pathogen had recently in-
vaded, reflecting the changing nature of disease
impacts over time. Opportunities exist across
a range of pathosystems to explore feedbacks
between disease dynamics and other natural dis-
turbances, such as wildfire, weather anomalies,
floods, or an additional biological invasion. For
instance, how do the joint impacts of emerging

disease and other disturbances influence com-
munity trajectory, ecosystem resilience, and
long-term epidemic outcomes? Can our under-
standing of interacting disturbances be scaled
up to anticipate impacts at broad geographic
extents and guide management resources?

The explicit consideration of reciprocal
feedbacks between human activities and disease
dynamics is a further understudied area of
research likely to produce transformative
discoveries. Societies depend on ecosystem
services provided by natural systems, yet
human activities—through direct and indirect
effects—change the flows and efficiency of
ecosystem provisioning, making up what
socioecological researchers conceptualize as
a coupled human-natural system (CHANS)
(61; see Figure 6). Needed are CHANS-based

Spread risk and im
pacts

Natural system

Human system

A
biotic

Biotic

A
ttitu

d
es / perceptions

Policy

Land use change and control

Human
behavior

and
decision
making

Disease
dynamics

eptions

Space-time dependencies

Figure 6
Schematic of a transdisciplinary framework for analyzing emerging infectious
diseases of wild plant and animal populations as a coupled human-natural
system (CHANS). Integrated approaches that explicitly analyze reciprocal
feedbacks between human activities and disease dynamics are needed to
understand which management policies and incentives influence willingness of
stakeholders to participate in control and in turn how the spatial and temporal
implementation of management actions influence the spread and persistence of
disease.
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approaches that holistically contextualize dis-
ease systems in transdisciplinary frameworks,
with natural and social scientists collaborating
on common questions where not only ecolog-
ical processes (e.g., biodiversity and ecosystem
function) and human dimensions (e.g., so-
cioeconomics, social networks, governance)
are analyzed but also feedbacks that link epi-
demiological processes with human behavior
and decision making (Figure 6). However,
disconnects between academic cultures and the
scales required for integrated analyses make
CHANS research challenging to conduct (63).

We believe the techniques and approaches
fostered by landscape epidemiology can help
bridge the gaps between disciplinary per-
spectives on disease systems. Consider the
complexity of controlling an emerging forest
disease across a heterogeneous landscape with
a mixture of public and private land ownership
and diverse stakeholder attitudes toward

management action. Key questions arise that
require landscape perspectives, such as should a
control be applied to the center of the epidemic
or to isolated outbreaks and how would delays
in deploying control efforts affect epidemic out-
comes and social perceptions? From the social
science side, we want to learn how stakeholders
perceive epidemic risk and ecological impacts,
how this influences their participation in con-
trol, and which management policies and in-
centives change their willingness to participate.
From the ecological side, we need to understand
how the spatial and temporal implementation
of management actions influences the spread
and persistence of disease. Only when we
integrate these multilevel processes within a
CHANS analytical framework can we begin
to explore the reciprocal feedbacks between
human behavior and disease dynamics that
govern the tipping point between successful
collective action and out-of-control invasion.

SUMMARY POINTS

1. Landscape epidemiology is more than simply establishing plots in the field and examining
differences in local environmental conditions among sites; the key is to gain insight into
the geographical distribution of disease and to understand how landscape connectivity
influences spatial interactions between susceptible and infected individuals.

2. The nascent field of landscape epidemiology is still striving to develop a clear identity.
Few studies have applied dynamic modeling and multiscale approaches to natural and
human-altered ecosystems. To date, animal and zoonotic diseases have been studied in
more cases using landscape epidemiological approaches than have plant systems.

3. There is no single natural scale at which ecological phenomena, including pathogen
invasions, should be studied because each species uniquely experiences its environment,
depending on its life history characteristics, the diversity and distribution of its hosts,
and the abiotic factors it encounters. We recommend careful consideration—based on
theoretical and empirical evidence—be given to three classes of scale: the phenomenon
scale, the sampling scale, and the analytical scale.

4. Dynamic epidemiological models allow phenomena to change through the successive
stages of invasion that an EID undergoes, yet their application to realistic landscapes is
relatively rare because of the challenge of integrating models with detailed, real-world
geographical data across broad spatial extents.

5. Incorporating spatially explicit interactions among neighboring observation units is too
often ignored when developing static models.
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6. The challenge of measuring drivers of disease spread across heterogeneous landscapes
often compromises their ecological meaningfulness. We need to measure variables that
capture direct environmental gradients (e.g., temperature or moisture availability) and
avoid using indirect variables (e.g., elevation) that have no direct physiological effect on
a pathogen’s survival and reproduction.

7. Efforts to obtain sound ecological inference versus prediction of epidemic risk often lead
to analytical trade-offs between model parsimony and complexity. We caution that too
much focus on capturing every nuance of spatial heterogeneity may at times narrow our
view to a point where analytical complexity interferes with understanding.

FUTURE POINTS

1. As multiscale approaches to landscape epidemiology are increasingly embraced, can we
begin to learn which landscape contexts allow epidemiological processes to be scaled up
to large geographic extents and which do not?

2. New approaches to modeling functional connectivity in natural ecosystems are needed
to better understand how landscape conditions influence the spread and persistence of
disease across heterogeneous landscapes.

3. Development of dynamic landscape epidemiological models will allow us to predict im-
pacts and optimize large-scale strategies for managing EIDs in natural ecosystems.

4. How do the joint impacts of emerging disease and other disturbances influence com-
munity trajectory, ecosystem resilience, and long-term epidemic outcomes? Can our
understanding of interacting disturbances be scaled up to anticipate impacts at broad
geographic extents and guide management resources?

5. The explicit consideration of reciprocal feedbacks between human activities and disease
dynamics will likely produce transformative discoveries. Can a CHANS framework be
used to predict the reciprocal feedbacks between human behavior and disease dynamics
that govern the tipping point between successful collective action and out-of-control
invasion?
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105. Václavı́k T, Kanaskie A, Hansen EM, Ohmann JL, Meentemeyer RK. 2010. Predicting potential and

actual distribution of sudden oak death in Oregon: prioritizing landscape contexts for early detection
and eradication of disease outbreaks. For. Ecol. Manag. 260:1026–35
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Solke H. De Boer and Marı́a M. López � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 197

Somatic Hybridization in the Uredinales
Robert F. Park and Colin R. Wellings � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 219

v

A
nn

u.
 R

ev
. P

hy
to

pa
th

ol
. 2

01
2.

50
:3

79
-4

02
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 A

ri
zo

na
 S

ta
te

 U
ni

ve
rs

ity
 o

n 
01

/1
0/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



PY50-FrontMatter ARI 9 July 2012 19:8

Interrelationships of Food Safety and Plant Pathology: The Life Cycle
of Human Pathogens on Plants
Jeri D. Barak and Brenda K. Schroeder � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 241

Plant Immunity to Necrotrophs
Tesfaye Mengiste � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 267

Mechanisms and Evolution of Virulence in Oomycetes
Rays H.Y. Jiang and Brett M. Tyler � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 295

Variation and Selection of Quantitative Traits in Plant Pathogens
Christian Lannou � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 319

Gall Midges (Hessian Flies) as Plant Pathogens
Jeff J. Stuart, Ming-Shun Chen, Richard Shukle, and Marion O. Harris � � � � � � � � � � � � � � 339

Phytophthora Beyond Agriculture
Everett M. Hansen, Paul W. Reeser, and Wendy Sutton � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 359

Landscape Epidemiology of Emerging Infectious Diseases
in Natural and Human-Altered Ecosystems
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