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Abstract Although the effects of climate change on

species distributions have received considerable atten-

tion, land-use change continues to threaten wildlife by

contributing to habitat loss and degradation. We

compared projected spatial impacts of climate change

and housing development across a range of housing

densities on California’s birds to evaluate the relative

potential impacts of each. We used species-distribu-

tion models in concert with current and future climate

projections and spatially explicit housing-develop-

ment density projections in California. We compared

their potential influence on the distributions of 64 focal

bird species representing six major vegetation com-

munities. Averaged across GCMs, species responding

positively to climate change were projected to gain

253,890 km2 and species responding negatively were

projected to lose 335,640 km2. Development

accounted for 32 % of the overall reductions in

projected species distributions. In terms of land area,

suburban and exurban development accounted for the

largest portion of land-use impacts on species’ distri-

butions. Areas in which climatic suitability and

housing density were both projected to increase were

concentrated along the foothills of the Sierra Nevada

and areas of the north coast. Areas of decreasing

climatic suitability and increasing housing density

were largely concentrated within the Central Valley.

Our analyses suggest that the cumulative effects of

future housing development and climate change will

be large for many bird species, and that some species

projected to expand their distributions with climate

change may actually lose ground to development. This

suggests that a key climate change adaptation strategy

will be to minimize the impacts of housing develop-

ment. To do this effectively, comprehensive policies

to guide land use decisions are needed at the broader

scales of climate change.
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Introduction

Climate change is projected to alter the distributions of

many species. An array of species-distribution models

(SDMs) is being used to identify species at risk from

climate change (Midgley et al. 2002; Peterson et al.

2002; Thomas et al. 2004) as well as those whose ranges

may expand (Guisan and Theurillat 2000). Where a

species will be able to persist, however, is determined by

habitat availability as well as climate (Warren et al.

2001; Hill et al. 2001; Reif et al. 2010). Changing land

use is projected to increase rates of habitat loss in many

parts of the world (Millennium Ecosystem Assessment

2005). Thus, the assumption that species can shift into

any climatically suitable area may render projections

based on climate alone incomplete. The vulnerability of

species to environmental changes may consequently be

underestimated (Travis 2003).

Although most SDM-based projections have focused

only on climate-change, some recent efforts have

incorporated the potential impacts of future land-use

and landscape change on biodiversity and distributions

(e.g., Barbet-Massin et al. 2012). At a global scale, these

studies have found that habitat loss due to changes in

land use may pose a greater immediate threat to

biodiversity than climate change (Sala et al. 2000; Jetz

et al. 2007). Because land-use planning, resource

management, and conservation are carried out at local

to regional scales, however, it is important to identify

how climate, land use, and land cover interact to affect

distributions at these finer scales (Warren et al. 2001;

Forister et al. 2010). Finer-scale investigations permit a

more detailed identification of species vulnerabilities to

the combined impacts of land-use and climate change

(Dirnböck et al. 2003; Bomhard et al. 2005; Pompe et al.

2008). In this context, examining land-conversion types

beyond broad categories of habitat loss allows for a

more detailed assessment of the effects on biodiversity

(de Chazal and Rounsevell 2009).

In the United States, low-density housing development

is the fastest growing form of land-use change (Theobald

2001; Hansen et al. 2005). Although urban development

has often been identified as a primary threat to native

species (Wilcove et al. 1998; Davies et al. 2006), many

species may alsobenegativelyaffectedbysuburbanand/or

exurban development (Stralberg and Williams 2002;

Pidgeon et al. 2007; Merenlender et al. 2009). Habitat

quality can vary greatly within a given development

density, and long-term studies suggest that development-

induced habitat fragmentation and degradation can lead to

the gradual local extinctionofmany native species (Crooks

et al. 2001). The increasing interface between housing and

wildlife habitat may also be problematic for biodiversity

conservation (Theobald et al. 1997; Hammer et al. 2007;

Radeloff et al. 2010). Of course, birds respond differen-

tially to different intensities of development in ways

related to their life-history strategies (Johnston 2001;

McKinney 2002; Blair 2004; Lepczyk et al. 2008), and

many generalist species in particular may respond

positively to housing development (Fraterrigo and Wiens

2005; Merenlender et al. 2009).

Bioclimatic niche differences among species may

also result in a wide range of responses to climate

change (Stralberg et al. 2009). Combined, the impact

of these two factors will vary between species and

across the landscape. Thus, it is useful to consider a

first approximation of housing development (hereafter

‘‘development’’) effects on native avifauna by esti-

mating the area of spatial overlap between projected

species distributions and projected future develop-

ment. Accordingly, we used an SDM approach to

assess potential changes in climatic suitability for a

representative group of native California bird species,

with climate projections tied to the same global

population and economic growth assumptions as

development projections. Using these SDMs, we

quantified the spatial influence of projected land-use

changes for development densities from urban to

exurban and used species development-sensitivity

scores to assess how development impacts may vary

among species sensitivity groups.

Our objectives were to (1) evaluate the relative

potential impacts of climate change and development

on bird species’ distributions in California; (2) com-

pare the potential impacts of development across a

range of densities; and (3) identify how all these

impacts may vary regionally within the state. The

results caution against considering the effects of either

climate change or land-use change in isolation when

projecting future changes in species’ distributions.

Methods

Study area

Our study area covers the entire state of California

excluding islands (Fig. 1). We focused on California
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because it supports high levels of biodiversity and

endemism (Myers et al. 2000), it is likely to undergo

rapid growth of human population (State of California

2007), and housing growth may dominate land-use

change (Radeloff et al. 2005). Additionally, the wealth

of bird data available within the state makes it ideal for

developing SDMs.

Avian data sources

Bird-distribution models were based on presence/

absence information for breeding species from point-

count survey data from over 25,000 locations. We

considered 64 focal species identified by California

Partners in Flight as representative of six major

vegetation communities: coniferous forest (17 spe-

cies), oak-woodland (18), chaparral/scrub (11), ripar-

ian woodland (8), desert (7), and grassland (3) (Chase

and Geupel 2005; Supplementary Material A). Data

were obtained from several sources available through

the California Avian Data Center (Ballard et al. 2008)

including (1) PRBO Conservation Science

(1993–2007), (2) USDA Forest Service Redwood

Sciences Laboratory and Klamath Bird Observatory

(1992–2006), (3) the North American Breeding Bird

Survey (BBS) (1997–2006; Sauer et al. 2008), and (4)

the California Department of Fish and Game. All data

sets consisted of repeated surveys of all birds seen or

heard from a geo-referenced point location. Although

metrics such as bird density and abundance could be

obtained from these datasets, we used presence and

absence information because it is most reliably

standardized across surveys, especially given multiple

data sources. We assumed that any species detected at

any distance from a point was present at that location.

All bird data were then aggregated to 800 m grid cells

to match the spatial resolution of the climate data. Any

species not detected at any of the points within a grid

cell was considered absent. BBS transects consist of

50 points each spaced approximately 0.5 mile apart

(approximately 805 m) along 24.5 mile (39.4 km)

transects. We converted BBS routes to points by

interpolating 50 evenly spaced points along each

transect. Although this interpolation resulted in errors

of spatial accuracy, our aggregation of the data onto

800 m cells reduced the effect.

To remove non-breeding records, data were filtered

to include only records from April through July (i.e.,

the breeding season), with exceptions made for species

that are known to breed in the desert areas of southern

California, which were surveyed earlier in the year. To

remove detections of non-breeding migrants, we

omitted records that occurred outside of a species’

known breeding range, as mapped by the California

Wildlife Habitat Relationships System (Zeiner et al.

1988).

Fig. 1 Current and future

housing densities projected

by the U.S. EPA (2009)

under the IPCC SRES A2

scenario. See Table 1 for

density definitions
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Current and future climate projections

Current climate data were based on 30 year

(1971–2000) monthly climate normals interpolated

at an 800 m grid resolution by the PRISM Group (Daly

et al. 1994). We used monthly means for total

precipitation and minimum and maximum tempera-

ture to derive a set of 19 biologically meaningful

climate variables representing annual and seasonal

variation as well as extremes. All variables are

described and scripts to produce them are available at

http://www.worldclim.org/bioclim. To remove the

most highly correlated variables, we calculated Pear-

son correlation coefficients for each pair of climate

variables (based on values at bird-survey locations)

and identified any pair for which r [ 0.90. We then

removed the more complex variable of these pairs

(defined as any variable that combined both tempera-

ture and precipitation, as the relationships between

these variables may decouple in the future). This

resulted in a total of eight candidate climate variables

(Supplementary Material B).

Future climate was based on projections from a

regional climate model (RCM), RegCM3 (Pal et al.

2007) run by the Climate Change and Impacts Labora-

tory (http://ccil.ucsc.edu/*ccil/) at a 30 km resolution,

with emissions trajectory from the Intergovernmental

Panel on Climate Change (IPCC) SRES A2 scenario, a

high emissions scenario (IPCC 2007). To include and

examine potential variability between global climate

models (GCMs), we used output from two RCM runs

based on boundary conditions from two GCMs: (1) the

National Center for Atmospheric Research Community

Climate System Model 3.0 (CCSM), run for

2038–2069; and (2) the Geophysical Fluid Dynamics

Laboratory Climate Model 2.1 (GFDL), run for

2038–2070. Stralberg et al. (2009) provide more detail

on climate data sources and variables used.

Current and projected housing development

We used current and future continuous housing-density

grid surfaces developed by the Integrated Climate and

Land-use Scenarios project (ICLUS; model details are

provided in U.S. EPA 2009). Although other housing

growth models are available for California (e.g., John-

ston et al. 2008; Radeloff et al. 2010), the ICLUS data set

explicitly integrates parameters outlined by the IPCC

A2 scenario, matching the climate-model scenario and

time frame used in our species models. Current housing

density layers for ICLUS were based on the 2000 U.S.

Census Bureau housing and population census block

data. As a component of the ICLUS project, the

allocation of a changing population to housing units

was performed using the spatially explicit regional

growth model (SERGoM; Theobald 2005), which uses

the census-block data along with road and groundwater-

well density, undevelopable lands (e.g., National parks,

lakes), and population projections to create a spatially

explicit grid of current and future development density.

We used future housing densities averaged for

2060–2070. The IPCC A2 scenario is characterized by

high fertility, high domestic migration, medium inter-

national migration, and increasing household size.

Domestic migration is informed by a gravity model

based on independent variables such as population size

and distance. Current and future land-use grid surfaces

represent housing densities modeled at a 1 ha resolu-

tion. To match the resolution of our climate grids, land-

use data were resampled to an 800 m pixel resolution.

Because we were interested in potential impacts across

broad housing-density classes, we partitioned the con-

tinuous density grid into three classes: [12.4 units/ha

(urban), 2.47–12.4 units/ha (suburban), and 0.247–2.47

units/ha (exurban), following Beardsley et al. (2009).

Manipulation of environmental grid surfaces was con-

ducted in ArcGIS 9.2 (ESRI 2006).

Models

For each bird species, we generated predicted current

probabilities of occurrence in each 800 m grid cell

based on mapped vegetation types and observed

climate (1971–2000), as well as stream proximity,

which was used as a proxy for riparian vegetation. The

vegetation layer was based on vegetation models and

types described in detail in Stralberg et al. (2009).

Briefly, we used current vegetation mapped by the

California Gap Analysis Project (Davis et al. 1998),

aggregated to 12 general vegetation types, to model

future vegetation based on current observed relation-

ships between vegetation, climate, soil characteristics,

solar radiation, and slope. Predictor variables for both

bird and vegetation models are summarized in Sup-

plementary Material B.

For the bird models, we implemented generalized

additive models (Hastie and Tibshirani 1990) using

the ‘gam’ package for R (R Development Core Team
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2010) with a logit link function using smoothing

splines with default target degrees of freedom (four) to

ensure that the models were not over-fitted to the

current dataset. We used a stepwise (forward and

backward) AIC-based variable-selection approach to

identify a predictive model for each bird species

(Supplementary Material C). Future projections used

the modeled future vegetation layer and future climate

surfaces. Although stepwise model selection has been

criticized for a potential bias in parameter estimates

and its implications for hypothesis-testing (e.g.,

Whittingham et al. 2006), it was not our objective to

identify the specific climate variables driving each

species’ distribution. Rather, we sought to build

reasonable predictive models that could be used to

evaluate the relative magnitudes of the effects of

projected future climate and land-use change on

multiple bird species. We used predicted probabilities

of occurrence for all analyses of model outputs.

Model discrimination was evaluated using the area

under the curve (AUC) of the receiver operating

characteristics (ROC) plot (Fielding and Bell 1997)

for 25 % of the data randomly withheld from the

models (Supplementary Material A). Final models

used in the analysis were run with no data withheld.

Model reliability was evaluated using plots generated

with the package ‘‘verification’’ in R and Brier scores

(see details in Supplementary Material B).

Climate versus housing development analysis

To estimate the effects of climate change on species

occurrence, we calculated the change in probability of

occurrence between current and future SDMs for each

species. Similarly, we estimated development impacts

on future species distributions by calculating the

change in probability of occurrence between future

SDMs with current developed areas removed and

future SDMs with future developed areas removed for

each species and each of the three housing-density

classes. This calculation provided the change in

probability within future development areas while

accounting for areas already developed. To express

these changes in units of area, we multiplied the

projected change in probability of occurrence by the

area of each pixel (in km2) and then summed across all

pixels to obtain a predicted area of change for each

species.

To constrain our climate-impact calculations to

suitable habitat, areas currently classified as urban or

commercial were excluded from SDM outputs for the

climate-change impact calculations. Because future

commercial development was not modeled, current

commercial areas were also excluded for develop-

ment-impact calculations. We did not consider the

effects of future agricultural development, for which

statewide spatial projections are not readily available.

Current agricultural areas were included in our models

and area calculations and were assumed to remain

unchanged into the future unless converted to housing

development as projected by the ICLUS model.

Calculations of the areas affected by climate and

land-use change were conducted by species as raster

operations in R. For a given species, Csd is a grid

representing current predicted area of occurrence

based on climate, Fsd is the future projected area of

occurrence based on changes in climate, Chd is the

area of current housing development, and Fhd is the

area of future housing development. Then, in set

theory notation, where the set difference of F and C,

denoted F\C, is the set of all pixels of F that are not

pixels of C:

DC = Change in predicted area of occurrence due

to climate = (Fsd - Csd)\Chd.

DD = Change in predicted area of occurrence due

to development = (Fsd\Fhd) - (Fsd\Chd).

DO = Overall change in predicted area of occu-

rence = DC ? DD = (Fsd\Fhd) - (Csd\Chd).

To compare the overall effects of climate and

development, we summed the total changes in

predicted area of occurrence separately for climate-

related increases, climate-related decreases, and land-

use-related decreases for each housing-density class,

averaged between GCMs and summed across all

species. To examine the variability of our results

among species and GCMs, we partitioned the results

into the six Partners in Flight focal-species groups for

each GCM and for the average across GCMs. Finally,

we classified species according to the impact of

climate and the relative impact of total development

(averaged across GCMs).

Development-sensitivity scores

Although our SDMs provided explicit information on

probabilities of species occurrence, our analysis of

development only provided information on how much
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of a species’ range may be impacted by each

development density. Thus we interpreted results in

the context of development-sensitivity scores based on

life-history features as described in Hansen and Urban

(1992), supplemented by information from Poole

(2009). Life-history data included nesting character-

istics (nest type, nest height), reproductive effort, and

migratory behavior. Development-sensitivity scores

had a possible range of 5–15, with higher numbers

indicating greater sensitivity to development. Species

with higher reproductive output, smaller area require-

ments, more general nesting habitat, and short-

distance to no migration (i.e., generalist species) were

considered less sensitive to development and received

lower sensitivity scores. Thus, these species may be

better able to maintain viable populations within

developed areas while species with higher scores were

considered less able to do so.

Geographic variability

To illustrate geographic patterns in climate and

development impacts, we mapped current and future

distributions overlaid with housing development for

the oak-woodland and coniferous forest bird groups,

two groups that captured the variation in responses to

climate. To identify regions that may be particularly

vulnerable to changes in both climate and develop-

ment, we combined and mapped the changes in

species probability of occurrence and development

density between current and future periods. Change in

combined species probability of occurrence was

calculated by taking the difference between the future

and current sums of all future species’ probabilities of

occurrence (averaged across GCMs). Change in

development density was calculated as the difference

between future and current housing density (units/ha).

The 800 m grids of change in combined species

probability of occurrence then were overlaid with the

changes in housing density to highlight regions where

both factors were projected to have large impacts.

Results

For the IPCC A2 scenario we examined, future

development in California is projected to be concen-

trated in the Central Valley, the foothills of the Sierra

Nevada, on both sides of the transverse ranges in

southern California, and the San Francisco Bay area

(Fig. 1). Urban and suburban areas are projected to

nearly double by 2070, while exurban development is

projected to triple (Table 1).

Both climate models we examined project

increased temperatures and reduced annual precipita-

tion (Table 2). In comparison with the CCSM climate

projection, the GFDL projection is on average hotter,

with greater precipitation and more seasonality.

Model performance for current predictions of

individual species’ distributions was good to excellent

for all species based on ROC AUC scores

(0.91 ± 0.055 SD; Swets 1988) and Brier scores

(Supplementary Material A).

Table 1 Housing density class definitions and total area

(rounded to nearest km2) of each class in California for 2000

and 2060–2070 as projected by the U.S. EPA (2009) under the

IPCC SRES A2 scenario

Housing

density type

Density

(units/ha)

Area in 2000

(km2)

Area in 2070

(km2)

Urban [12.4 25,361 47,325

Suburban 2.47–12.4 66,001 150,750

Exurban 0.247–2.47 109,332 321,009

Table 2 Mean ± SD values for selected climate variables summarized for the state of California for the current period and two

future climate model projections (NCAR 2038–2069; GFDL 2038–2070) based on the IPCC A2 scenario

Climate variable Current NCAR CCSM3.0 GFDL CM2.1

Annual mean temperature (�C) 14.2 ± 4.6 15.9 ± 4.6 16.4 ± 4.6

Temperature seasonalitya (�C) 6.30 ± 12.4 6.83 ± 13.5 7.01 ± 1.33

Annual precipitation (mm) 613.0 ± 535.8 418.4 ± 378.2 562.5 ± 496.0

Precipitation seasonalityb 77.5 ± 16.4 84.2 ± 14.6 90.5 ± 17.8

a Standard deviation of monthly mean temperature
b Coefficient of variation of monthly precipitation
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Relative impacts of climate and development

Averaged across GCMs, species responding positively

to climate change were projected to gain 253,890 km2

and species responding negatively were projected to

lose 335,640 km2. Development resulted in a potential

loss of approximately 164,268 km2, averaged across

GCMs.

The oak-woodland and chaparral/scrub-associated

groups were the only groups projected to have a net

increase in distribution with climate change (Fig. 2).

The impact of development was apparent for all but

the coniferous forest group, where it accounted for less

than 2 % of the total (i.e., both climate and develop-

ment) potential loss in predicted area of occurrence.

Development-driven losses were greatest in both area

and percentage (compared to total losses) within the

oak-woodland group, followed by the chaparral/scrub

group. The oak-woodland group lost a total of

95,000 km2 to development, equal to 80 % of their

total area loss. The chaparral/scrub group lost a total of

27,174 km2 to development, equal to 49 % of their

total area loss. The development-driven decreases for

desert, grassland, and riparian-woodland bird groups

represented 34, 18, and 18 %, respectively, of their

total decreases.

Of the 64 species we examined, 24 were projected

to increase their predicted area of occurrence with

climate change. Of these increases, five were com-

pletely counteracted by development-driven losses

and an additional five had development-driven losses

greater than 50 % of the climate-driven gains

(Table 3). Of the 40 species with projected decreases

due to climate change, four had decreases due to

development greater than those due to climate, and an

additional four had development-related decreases

greater than 50 % of climate-driven decreases.

Species with high development-sensitivity scores

(42 of 64 with scores C10) followed similar patterns,

but a greater proportion had projected decreases in

area of occurrence due to climate change (Table 3).

All eight species that were projected to have both large

development-driven decreases (greater than 50 % of

climate impacts) and negative responses to climate

had high development-sensitivity scores. Large devel-

opment-driven decreases were projected for an addi-

tional ten species, four of which had high

development-sensitivity scores. Development-

Fig. 2 Total change in area

of occurrence (km2)

between current and future

climate and housing

development scenarios for

three development density

categories (urban, suburban,

exurban). For each of the six

focal-species groups, values

are presented for each

individual GCM and for the

mean across GCMs
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sensitivity scores for the study species ranged from 6

to 13 (Supplementary Material A).

Comparative impacts across housing densities

Most of the spatial impact of future development on

predicted area of occurrence was associated with

suburban and exurban growth (27 and 66 % of overall

development-driven area losses, respectively). Aver-

aged across all species, suburban and exurban devel-

opment accounted for 9 and 22 % of total area losses,

respectively. For the oak-woodland group, exurban

development accounted for over half (55 %) of the

total decrease in predicted area of occurrence. For the

chaparral/scrub and desert group, exurban develop-

ment accounted for 29 and 21 % of the total decrease

in predicted area of occurrence, respectively.

Regional patterns

Oak-woodland-associated bird species were generally

projected to increase due to climate change, primarily

by shifting distributions toward the north and central

coast and to greater elevations along the foothills of

the Sierra Nevada. This is where exurban growth is

projected to increase greatly (Fig. 3a–c). Coniferous

forest species were projected to face minimal impacts

from development, in part because their current

distributions were projected to shrink away from

developing areas along the lower elevations of the

Sierra Nevada (Fig. 3d–f). Areas of climate-projected

decreases in overall species probability of occurrence

that coincided with projected increases in housing

density were prevalent across much of the Central

Valley and portions of the foothills of the Sierra

Nevada, as well as around San Francisco Bay and

along the northern side of the Transverse Ranges

(Fig. 4).

Discussion

Our analysis of the combined effects of future climate

change and housing development on bird distributions

shows that the potential impacts of development can

be as great as or greater than those from climate

change for many species. Even if climate change leads

to an increase in the area of a species’ occurrence, the

gains could be partially or completely undermined by

development impacts, as shown by the oak-woodland-

associated group of species. Our results align with

those of other studies (Bomhard et al. 2005; Jetz et al.

2007; de Chazal and Rounsevell 2009) that highlight

the need for conservationists, resource managers,

planners, and policy-makers to consider the effects

of land-use change as part of any climate-change

adaptation strategy.

Our analysis included a range of development

densities that may impact wildlife in a variety of ways,

including habitat loss, fragmentation, and degradation

(Theobald et al. 1997; Marzluff et al. 2001; Hansen

et al. 2005; Pidgeon et al. 2007). Due to human

population and economic growth patterns, future

suburban and exurban development in California

may have particularly large impacts on vegetation

communities and the birds that depend on them. In the

scenario we examined, suburban housing is projected

to grow nearly four times as fast, and exurban housing

nearly ten times as fast, as high-density urban housing.

Although the habitat quality and avian responses

associated with low-density development may vary

greatly, the majority of native species that we eval-

uated may be considered development-sensitive to

some degree and may experience negative conse-

quences from housing development, especially over

the long term.

Development pressures and climate change are

widely recognized as stressors to wildlife, but they

tend to be considered in isolation, reducing the

effectiveness of conservation or land-management

actions (Sala et al. 2000; Pyke 2004). Our results

indicate that both threats may vary in different

combinations across the landscape. Such information

can provide useful guidance for informing and prior-

itizing landscape planning. For example, our models

project that the Central Valley will experience the

largest climate-induced decreases in overall species

probability of occurrence along with the highest levels

of development. Here, landscape planning that

reduces or mitigates the threat of development,

combined with connectivity-focused habitat protec-

tion and restoration efforts (Spencer et al. 2010), may

be especially useful.

In contrast, some lower-elevations in the Sierra

Nevada may experience increases in probability of

occurrence for several species in association with

climate change, but may also face potentially large

development impacts. Here, prioritizing areas for
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long-term conservation easements and ecological

reserves along with reducing the impacts of develop-

ment may help ensure the persistence of future

species-rich areas that would otherwise be lost. Our

models also show that higher elevations within the

Sierra Nevada as well as areas of the north coast may

support increases in overall species probability of

occurrence with relatively little direct impact from

development. However, many of the coniferous forest-

associated species projected to move into these

regions are also development-sensitive, indicating

the importance of holding development threats at bay.

The relative impacts of climate and development

are likely to differ markedly among species. Within

our scenarios, coniferous-forest-associated species

would benefit from a focus on managing climate-

related impacts, whereas an aggressive effort to

manage housing development could be critical to the

viability of chaparral/scrub-associated species in Cal-

ifornia. The same may be true for oak-woodland-

associated species, despite projected increases in

species distributions due to climate change.

Limitations and assumptions

Although the climate and development projections we

used are part of a closely examined and well-

documented future storyline (IPCC 2007), this is only

one scenario of several that could be examined to

guide planning decisions. All models are plagued by

uncertainty, and this is particularly true of attempts to

model future climates (Wiens et al. 2009). The two

climate models we used agree in their projections that

the future will be warmer and drier, but differences in

the projected magnitudes of change result in variable

projections for desert and chaparral/scrub-associated

bird species in particular. In addition, the uncertainty

of model predictions may increase if temperatures

increase beyond the range currently found within an

area. Because our models were informed by current

Fig. 3 Current predicted

areas of occurrence

averaged for a oak-

woodland and d coniferous

forest associated species

overlaid with current

housing development

densities. Future projected

areas of occurrence for

b oak-woodland and

e coniferous forest

associated species overlaid

with current development

densities. Future projected

areas of occurrence for

c oak-woodland and

f coniferous forest

associated species overlaid

with future development

densities. See Fig. 1 for

geographic area references
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climate conditions, future climate change may bring

conditions that do not presently exist in the area (no-

analog climates), potentially forcing the models to

project beyond the calibration data. This may result in

under- or over-prediction within no-analog areas

(Fitzpatrick and Hargrove 2009), which may comprise

some 6 % of the state (Wiens et al. 2011). Most of

these projected no-analog climate areas occur in the

southeastern desert portions of the state, which may

explain the relatively high variability in projections for

desert-associated species. These regions tend to have

low projected development, however, so the uncer-

tainty is not likely to affect our results.

Our models did not incorporate the possibility of

imperfect detection (sensu Mackenzie et al. 2003)

from the point count surveys used to train the models.

If the surveys failed to detect a species within an

otherwise suitable environmental space, our results

could under- or over-estimate the relative effects of

development on the species, depending on how that

environmental space was impacted by housing

development. However, over 70 % of all surveyed

cells had at least five visits. Thus, detectability would

have to be quite low for a species to go undetected in a

large majority of our cells. Moreover, we only

considered data collected during the breeding season,

when bird species are most active and singing to attract

mates, and none of our focal species could be

considered secretive. Thus, any bias introduced at

the cell level is likely minimal, especially when

considering the statewide scale of our analysis.

Although not accounted for in our projections,

exurban development may still provide useful habitat

for many species, and even increase the numbers of

some. The scarcity of point-count surveys collected at

the high end of the housing density gradient prevented

us from directly modeling the effects of development

on individual bird species distributions in California

(but see Lepczyk et al. 2008). This remains an

important goal for future modeling efforts. However,

while some species may actually benefit from anthro-

pogenically modified habitat (Fraterrigo and Wiens

2005; Chace and Walsh 2006), most do not (Lepczyk

et al. 2008). Despite the frequently detected pattern of

higher bird species richness at intermediate levels of

development intensity (Blair et al. 1996; Desrochers

et al. 2011), anthropogenic activities have also

resulted in the homogenization of bird communities

over time (La Sorte and McKinney 2007), a trend that

may be expected to continue in the future.

Our projections of the effects of land-use change

are conservative in several ways. We did not consider

the influence of developed areas as barriers to climate-

induced distribution shifts (Harris and Reed 2002), nor

did we consider the impacts of other infrastructure that

accompanies and is closely tied to housing, such as

roads, utilities, or commercial buildings (Burchell

et al. 2002). In addition, agriculture has a large impact

on habitat availability and suitability, but we were

unable to consider this aspect of future land-use

change because high-resolution future projections for

agricultural land use are not available for California.

Although options for further increases in agricultural

area may be limited, the types of agriculture that now

exist may change. Neither did we address the impact

that past development has already had on species

diversity and distributions. Finally, our analysis did

not account for the possible synergies that may occur

between these two drivers of landscape and biodiver-

sity change (Pyke 2004; Brook et al. 2008).

Fig. 4 Changes in overall species probability of occurrence due

to climate change (PO) coinciding with increases in housing

density (HD) calculated as the difference between current and

future time periods. Shades of blue indicate increases in PO

coinciding with increasing HD. Shades of red indicate decreases

in PO coinciding with increases in HD. Changes in probability

of occurrence were calculated as the total change across all

species
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Conclusions

Many species will face myriad challenges brought

about by climate change. Because current levels of

atmospheric greenhouse gases have locked in a

climate-change pathway that will persist for decades

(Sokolov et al. 2009), management strategies must be

geared toward climate-induced stresses that have yet

to emerge. Reducing the exposure of species to current

stressors such as development and habitat degradation

can increase their resiliency and reduce their vulner-

ability in the face of climate change (Chapin et al.

2010). Focusing on landscape-scale actions—the

creation of corridors and buffers around currently

protected areas, the designation of new protected

areas, habitat restoration efforts, and regional land-

scape planning—will be increasingly important in

dealing with the combined impacts of development

and climate change (Heller and Zavaleta 2009).

Because exurban development consumes roughly an

order of magnitude more land per unit dwelling than

urban development, these strategies align with the

benefits of fostering compact development patterns or

‘‘smart’’ urban growth (Danielsen et al. 1999).

Landscape planning and conservation are caught

between a rock (climate change) and a hard place

(development). Developing and implementing effective

strategies for conservation and landscape management

in the future requires land-use planning that incorporates

the potential consequences of climate change, and

climate-change projections that incorporate the poten-

tial effects of changing land uses and development.

Efforts to bring together resource conservation partners

at the landscape scale, such as the Landscape Conser-

vation Cooperatives (U.S. Department of the Interior

2009), will benefit from integrating and working closely

with land-use planners. There is little comprehensive

policy to guide land-use and development decisions at

the broader scales of climate-change projections. Anal-

yses such as those we have presented here can help by

identifying those species, groups of species, habitats,

and places that may be especially vulnerable to both

climate change and development.
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