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Abstract Connectivity is a vital component of

metapopulation and landscape ecology, influencing

fundamental processes such as population dynamics,

evolution, and community responses to climate

change. Here, we review ongoing developments in

connectivity science, providing perspectives on recent

advances in identifying, quantifying, modelling and

analysing connectivity, and highlight new applications

for conservation. We also address ongoing challenges

for connectivity research, explore opportunities for

addressing them and highlight potential linkages with

other fields of research. Continued development of

connectivity science will provide insights into key

aspects of ecology and the evolution of species, and

will also contribute significantly towards achieving

more effective conservation outcomes.
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Introduction

Connectivity has rapidly grown into a field of great

interest for scientists and conservation managers

(Crooks and Sanjayan 2006; Claudet 2011; Liu et al.

2011; Luque et al. 2012; Rayfield et al. 2011). Connec-

tivity research links a wide variety of subjects in ecology

and evolution, including dispersal and migration

(Baguette and Van Dyck 2007), the development of

population genetic structure (Kool et al. 2011), source-

sink dynamics (Figueira and Crowder 2006) and

potential responses to climate change (Munday et al.

2009; Wasserman et al. 2012). Connectivity also affects

conservation decisions involving aspects of reserve

network design (Cerdeira et al. 2010), restora-

tion (Raeymaekers et al. 2008), controlling invasive

species (Hulme 2009), and administration of transboun-

dary resources (Chester 2006; Treml and Halpin in
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press). Over time, perspectives on connectivity have

evolved considerably, departing from the view that

populations are uniformly distributed and panmictic,

towards a more nuanced notion of networks of patches

and demes often engaged in self-replenishment, as well

as dynamic and asymmetric exchanges. Yet, despite the

attention connectivity has received, much work is still

required in order to understand its underlying causes and

consequences, and to incorporate our understanding of

connectivity into operational management strategies.

Although general reviews of population connectivity

have appeared elsewhere (Crooks and Sanjayan 2006;

Hilty et al. 2006; Cowen and Sponaugle 2009), we here

focus on trends in connectivity research, highlight

ongoing developments, technologies and applications,

and discuss emerging challenges and opportunities.

Conceptualizing connectivity

Initially, connectivity was described in the terrestrial

context as ‘‘the degree to which the landscape

facilitates or impedes movement among resource

patches’’ (Taylor et al. 1993). Over time however,

different research perspectives and operational needs

have led to alternative ways of defining connectivity

(Panel 1). For example, Pineda et al. (2007) distin-

guish between transport, dispersal and connectivity in

marine systems (connectivity being a function of

transport, larval survival, settlement and post-larval

survival), Pringle (2003) addresses the importance of

hydrologic connectivity, and Lowe and Allendorf

(2010) discuss aspects of demographic and genetic

connectivity. A challenge in population connectivity

research lies in defining what constitutes a population,

subpopulation or patch, and in semi-continuous hab-

itats, distinguishing patches may be difficult and/or

counterproductive. Consequently connectivity, how-

ever defined, may vary greatly, depending not only on

the abundance and density of individuals, but also on

habitat characteristics and the spatial and temporal

scales of interest. For example, low levels of exchange

might not be significant in a short-term demographic

context, but might be vital for maintaining genetic

diversity (Lowe and Allendorf 2010). Furthermore,

population connectivity is not limited to the movement

of individuals, but can also be defined according to

gene flow (Hedgecock et al. 2007), or even more

abstract concepts, such as the transfer of information

or behaviour (Ahmad and Teredesai 2006).

Although population connectivity can be inter-

preted in different ways under different circumstances,

the approaches share a fundamental property in

common. In all cases, connectivity corresponds to a

structured set of relationships between spatially and/or

temporally distinct entities, or put another way—

connectivity is the outcome of dependencies between

populations or individuals. Exploring the nature of

these dependencies and relationships, as well as the

consequences of their form, is what underpins con-

nectivity research.

Empirically quantifying population connectivity

Direct methods

A variety of different techniques have been used to

directly measure connectivity between populations

(Table 1). Tracking organisms through field observa-

tion is the most basic means of evaluating population

connectivity, but this can be challenging when mon-

itoring large populations or broad spatial extents,

particularly when the organisms being observed are

small or cryptic. To address this difficulty, mark-

recapture techniques have been used extensively in

the past (Webster et al. 2002) and continue to be

the primary means of assessing connectivity today

(Jacobson and Peres-Neto 2010), providing estimates

of population size and movement patterns, often in a

habitat-specific context. For organisms that are too

small or fragile to carry physical tags, chemical-based

analyses are often used (Rubenstein and Hobson 2004;

Hobson 2008; Pauli et al. 2009; Durbec et al. 2010),

particularly for aquatic populations. Researchers have

been able to identify probable source populations

based on chemical signatures present in otoliths and

statoliths (sensory bones/stones found in fish and

invertebrates respectively) (Thorrold et al. 2007;

Woods et al. 2010), and more recently, artificial

tagging techniques have been used to label and

identify parents and progeny of marine species

(Almany et al. 2007). Similar approaches have been

used to study terrestrial mammal and bird populations

(West et al. 2006; Newsome et al. 2007; Faaborg et al.

2010).
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Recently, there has been a dramatic expansion in

the ability to remotely monitor animal movements,

physiological measurements and associated envi-

ronmental data (biologging—Rutz and Hays 2009).

Large quantities of data are becoming available

from these efforts, and are proving invaluable for

understanding animal migration, behaviour and

ecology for many species at a greater level of

detail and at a broader range of scales than

previously possible. For example, pop-up satellite

archival tags (PSATs) have been used to track large

numbers of pelagic predators and sea turtles over

extremely large distances (Rutz and Hays 2009).

Radar technology is also now providing ways of

comprehensively tracking large collections of small

and delicate organisms such as butterflies (Ovas-

kainen et al. 2008c).

Major advances are also being made towards the

development of large-scale, fine-grained sensor net-

works for monitoring animal movement (Porter et al.

2005; Borgman et al. 2007). Cameras and environ-

mental sensors linked to wireless communication

systems provide a means of automatically detecting

fine-scale movement patterns in real time (Hamilton

et al. 2007; Kays et al. 2009). These data can then be

filtered and queried to identify and summarize mass

occurrences of movement events. These types of

networks have been applied in terrestrial environ-

ments for monitoring tiger populations (Karanth et al.

2006), and are becoming increasingly prevalent in

coastal and ocean systems as well (Martin Taylor

2009). Imaging systems are also being developed that

are capable of capturing images of microscopic

plankton (Cowen and Guigand 2008), which can then

be processed using algorithms to identify species and

characterize their spatial distribution within the water

column (Tsechpenakis et al. 2007). Coupling these

technologies with ocean sensing grids would provide

an unprecedented opportunity to monitor the real-time

spatial characteristics of connectivity in aquatic

environments.

Connectivity studies have been greatly assisted by

the extensive development of GIS and remote-sensing

data, however obtaining comprehensive and simulta-

neous data with a high degree of resolution remains

challenging, especially for features that are not highly

visible. Further development of remote-sensing plat-

forms will be necessary, as well as comprehensive

field research for ground-truthing remotely sensed and

modelled data. It will also be important to collect time-

series data to assess the effects of temporal changes in

connectivity (e.g. successional dynamics, anthropo-

genic change). Understanding temporal aspects of

connectivity will be key for understanding species

responses (such as range expansion) to progressive

habitat fragmentation and climate change (Heller and

Zavaleta 2009).

Indirect methods

Direct tracking of organisms provides the most

accurate information on animal movement over

demographic time-scales, but over longer time scales

(e.g. evolutionary) a different approach is needed.

Population genetics provides a means of assessing

connectivity integrated over many generations, com-

pressing time scales that otherwise would not be

observable. Rapid expansion in the availability of

genetic markers (Parker et al. 1998; Broquet and Petit

2009; Francesco Ficetola and Bonin 2011) and

dramatic increases in computing power have opened

up new opportunities for identifying patterns of

genetic connectivity (Balkenhol et al. 2009; Lowe

and Allendorf 2010). Restriction fragment-length

polymorphism (RFLP) and mtDNA analyses have

largely given way to variable-number tandem repeat

(VNTR—e.g. microsatellites) analysis, and with dras-

tic decreases in both the cost and amount of time

required to carry out genetic research, large reposito-

ries of population genetic data are becoming available

for a variety of species and locations (Storfer et al.

2010). These data can be used to examine isolation by

distance patterns, to back-trace migration paths and to

identify potential stepping-stone populations using

specialized software programs (such as MIGRATE-

N—Beerli and Palczewski 2010). Assignment tests

are also being used to identify barriers, spatial

structuring and recent migration patterns (Excoffier

and Heckel 2006; Faubet and Gaggiotti 2008). These

developments have led to the expansive growth and

development of the fields of landscape and seascape

genetics (Manel et al. 2003; Holderegger and Wagner

2006; Selkoe et al. 2008).

Parentage analysis is increasingly being used as a

means of assessing demographic connectivity over the

time-scale of a single generation (Jones and Ardren

2003; Jones et al. 2005; Planes et al. 2009; Jones et al.

2010). This is typically achieved by comprehensively
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sampling the population, obtaining molecular marker

frequencies (e.g. microsatellites), numerically simulat-

ing progeny, and using log-likelihood scores to match

the actual progeny with the most likely parent or parent

pair (Saenz-Agudelo et al. 2009). Parentage analysis

offers tremendous benefits in that it provides quanti-

tative and unambiguous measures of connectivity

(Harrison et al. 2012), as well as a strong means of

validating other means of assessing connectivity (Ber-

umen et al. 2010). However, the requirement that the

population be comprehensively sampled (Marshall

et al. 1998) makes large-scale studies difficult, or in

many cases, impossible. Methods have been developed

to help account for incomplete sampling (Duchesne

et al. 2005; Mobley 2011), but for the time being, this

approach will be generally limited to smaller, mostly-

closed populations or small groups of populations.

With major developments in next generation

sequencing technology (Hudson 2008), extensive

analyses of single nucleotide polymorphisms (SNPs)

will become increasingly feasible and affordable. This

is opening up the potential for genome-wide associ-

ation studies (GWAS—Donnelly 2008), making it

possible to compare differences between individuals

and cohorts at the nucleotide level, the lowest possible

level of genetic resolution. Reviews by Allendorf et al.

(2010), Avise (2010) and Ouborg et al. (2010) all stress

the ongoing shift towards the use of genomic data in

conservation applications. Making effective use of the

rapidly expanding sources of data will necessitate the

development of not only new methods for searching

and filtering genomic data for intra- and inter-popu-

lation signals, but also the development of appropriate

statistical tests to determine their significance. This

will require moving beyond the use of simple genetic

models into the extensive application of multivariate

analytical techniques (Jombart et al. 2009).

Although population genetic data have the ability to

reveal connectivity patterns over long time periods,

they also present challenges, since a large amount of

variability is introduced into the data as a result of

stochastic population processes (e.g. birth, mortality,

and mutation) and natural plasticity in biological

parameters (e.g. life-history characteristics). The influ-

ence of contemporary landscape or seascape patterns

can also be confounded by historical influences, such as

demographic bottlenecks, geographic barriers or pat-

terns of anthropogenic habitat loss (Kool et al. 2011).

Furthermore, there is also a mismatch between the time

scale of genetic processes and the time scales of

management interest, and reconciling them will require

identifying the characteristic scales of the system, as

well as innovative ways of adapting our understanding/

knowledge across different scales. However, with the

development of multiple genetic marker types, new

opportunities will emerge for empirically examining

genetic connectivity patterns over various time scales,

particularly as our ability to process, analyse and

compare very large data sets improves with increased

computing power.

Modelling and analysing connectivity

Sampling large spatial and temporal extents with a

high degree of resolution is often impossible, and

consequently researchers are forced to turn to models

in order to investigate these types of environments.

There are many challenges associated with modelling

and analysing connectivity however (Panel 2), and

many different approaches have been used in both

metapopulation and landscape ecology (Tables 2, 3).

Statistics and measures

The earliest and simplest means of assessing connec-

tivity involved using buffer distances or through the

use of statistics summarizing the size and arrangement

of landscape patches classified in a binary manner

(habitat vs. non-habitat—Dale et al. 2002). Dispersal

kernels can be used as a means of scaling the effect of

distance on connectivity (Moilanen and Nieminen

2002), however this approach typically assumes that

the dispersal process is radially symmetric and not

influenced by intervening habitat structure, which may

not be true (Mitarai et al. 2008). Population geneticists

have also made extensive use of isolation by distance

plots, comparing physical distance (typically geo-

graphic, but see White et al. 2010) versus some

measure of genetic distance (e.g. Pinsky et al. 2010).

Saura and Pascual-Hortal (Pascual-Hortal and Saura

2006; Saura and Pascual-Hortal 2007) have developed

indices that characterize the reachability of habitat

patches. Reachability considers habitat patches them-

selves as spaces where connectivity occurs, taking into

account resources existing within patches (intra-patch

connectivity), together with those available through

connections with other habitat patches (inter-patch
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Table 3 Linkages between approaches for modelling and analysing connectivity

Modelling/analytical approaches Linkage explanation

From (Table 2 row) To (Table 2 row)

Neighbourhood
statistics (1)

Graph theory (7) Join count statistics can be linked to graph theory through the construction of
spanning trees

Matrix theory (8) Statistics can be obtained through aggregating and summarizing the matrix data

Differential
equations (9)

Statistics can be obtained through integrating, differentiating, combining, or solving
sets of equations

Dispersal kernels (2) Spatially structured
diffusion (5)

Spatially structured diffusion adds spatial structure to the dispersal process/
Dispersal kernels can be constructed from spatially explicit diffusion models by
averaging across all points in all directions over different lag distances

Individual-based
models (6)

Dispersal kernels can be used to define movement rules for individual-based
models/Dispersal kernels can be estimated from individual-based models by
aggregating positions of individuals into a frequency histogram, binning on
distance travelled relative to a release point

Graph theory (7) Dispersal kernels can be used to link weights for graph based analysis/Graph
connections can be aggregated at various distance intervals to generate dispersal
kernels

Matrix theory (8) Values for connectivity matrix elements can be obtained from dispersal kernels by
using the kernel as a lookup function in conjunction with information about
distances between populations

Differential
equations (9)

If parametric, dispersal kernels can be used to define differential equations/Sets of
differential equations can directly define or be combined to generate a dispersal kernel

Least cost path
analysis (3)

Circuit theory (4) Circuit theory can be viewed as an extension to least cost path analysis, allowing for
multiple pathways, and addressing strength of corridor use across the landscape

Graph theory (7),
Matrix theory (8)

Connectivity values between pairs of patches or populations derived from LCP
analyses can be used as individual cell entries in a connectivity matrix or
individual links in a graph

Differential
equations (9)

Shortest paths across surfaces defined by differential equations can be solved
numerically or using Euler–Lagrange equations

Circuit Theory (4) Individual-based
models (6)

Using the values from a circuit theory layer, individual pathways can be
reconstructed using a cellular automaton-type approach. The resistance values
from circuit theory also correspond to the movement rules that an individual
follows when traversing a given habitat type/Multiple paths derived from
individual based models can be summarized using focal or block statistics to yield
surfaces resembling circuit pathways

Spatially structured
diffusion (5)

Individual-based
models (6)

Individual paths can be generated from a diffusion process using differential
equation solvers in conjunction with a random walk model/Individual-based
models could also be used to generate spatial diffusion-type surfaces using focal or
block statistics

Differential
equations (9)

Spatially structured diffusion directly uses partial differential equations

Individual-based
models (6)

Graph theory (7),
Matrix theory (8)

Matrix models arise from individual-based stochastic models where each individual
moves through its life cycle independently. Probabilities or numbers of successful
individuals making the transition between patches can be used as matrix cell
entries or graph edge values

Graph Theory (7) Matrix theory (8) Graphs can be built directly using connection information stored in adjacency or
distance matrices and vice versa

Differential
equations (9)

Differential equations and graph theory (and consequently matrix theory) can be
linked by considering differential equations as the continuous (or limit) form of
difference equations for discrete systems. Difference equations can be used to
describe relationships between semi-continuous locations in space and time
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connectivity), and consequently connectivity can be

generated by large individual high-quality patches,

from connections between patches, or a combination

of both. Saura and Rubio (2010) also demonstrated

how the probability of connection metric (PC) could

be expressed in terms of the relative contribution of an

individual component towards overall habitat avail-

ability in the landscape, and how that score could be

partitioned into three components—intra-patch con-

nectivity, dispersal flux through the patch, and the

contribution of a component to the connectivity

between other habitat patches (i.e. as a stepping-

stone). Additional landscape metrics have been

reviewed by Kindlmann and Burel (2008).

Pathfinding

Least-cost path (LCP) analysis also provides a means

of scaling distance values between patches, and

continues to be influential in landscape ecology

(Urban et al. 2009). With LCP analysis, connectivity

values are based on the path of least resistance

between any two landscape elements. Exact and

approximate algorithms exist for the computation of

LCPs, but computation time remains a challenge for

high-dimensional landscapes (Urban et al. 2009). In

addition, LCP computation requires species-specific

resistance values for different habitat types, which can

be difficult to parameterize. Electric circuit theory has

also been used in an ecological context to investigate

path-type connectivity (McRae et al. 2008), and can be

considered as an extension to LCP analysis. Like LCP

analysis, circuit theory operates on the basis of

deriving resistance values between patches, but rather

than identifying a single path, this framework allows

for multiple paths between patches. This is a concep-

tually important development, since it becomes pos-

sible to investigate swaths as connections, as well as

multiple corridor routing options (Ferreras 2001).

Spatially structured diffusion

Spatially structured diffusion provides another way of

analysing animal movements in heterogeneous land-

scapes using mark-recapture and tracking data (Ovas-

kainen 2004; Ovaskainen et al. 2008a). It operates by

incorporating directional biases towards particular

habitats at patch boundaries using a diffusion frame-

work. Rather than considering discrete corridors,

spatially structured diffusion integrates in a continu-

ous manner across all possible movement pathways,

and allows for rigorous estimates of species observ-

ability, as well as movement rates and mortalities in

different habitat types, and transition rates between

different pairs of habitats (Ovaskainen et al. 2008b).

Occupancy times in landscape elements, hitting prob-

abilities of landscape elements, quasi-stationary occu-

pancy distributions, time evolution of occupancy

distribution as function of initial condition, and

occupancy probability densities between two obser-

vation points can also be derived directly from the

diffusion process (Ovaskainen 2008).

Individual-based simulation

For complex environments with extremely high levels

of spatial and temporal variability, individual-based

models (IBMs) (Grimm and Railsback 2005) are being

used to generate increasingly realistic simulations

based on real-world data (Paris et al. 2007; Kool et al.

2010). IBMs operate on the basis of programmatically

assigning properties and behaviour to individuals and

then allowing them to interact within a stochastic

simulation environment (Levey et al. 2008; Kool et al.

2011). Although individual-based models are flexible

in terms of their structure and dynamics, they require

programming expertise, are difficult to parameterize

rigorously, and cannot be manipulated, analysed and

reconfigured in the manner of algebraic equations.

Graph theory

Graph theory has been extensively used to study the

structure and properties of connectivity networks, as

well as providing a means of displaying and visualizing

them (Urban et al. 2009; Galpern et al. 2011; Luque

et al. 2012). Graph theory provides a means of

efficiently analysing large and complex networks, as

well as their emergent properties and key structural

characteristics. For example, measures of centrality

(e.g., betweenness, degree, closeness) identify the

position or role of a node with respect to its neighbours

or the entire network (Estrada and Bodin 2008; Opsahl

et al. 2010), and detecting nodes that exert a high

degree of influence over the dynamics of the entire

system. Network community structure can be evalu-

ated through various clustering methods (Clauset et al.

2004; Palla et al. 2005), characterizing associations
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between individuals or groups. The degree distribution

of a network is the probability distribution of the

number of edges a node will have across the entire

network, providing an indication of resilience and

communicability within the network (Minor and Urban

2008). A network with a skewed degree distribution

and several large hubs would suggest resilience to

random node failure, and fast spread across the network

(Proulx et al. 2005). Metanetworks (networks that

model the relationships between other networks) have

also been proposed as a means of linking species

networks with spatial networks (Luque et al. 2012;

Rubio and Saura 2012). For in-depth reviews of graph

and network metrics, refer to Rayfield et al. (2011).

Although it is important to be mindful of some of the

potential limitations of relying on a graph-theoretic

approach (Moilanen 2011), recent applications in both

terrestrial and marine systems (Treml et al. 2008;

Minor et al. 2009; Erös et al. 2012), as well as rapidly

expanding interest in the analysis of social networks

(Bodin and Crona 2009; Borgatti et al. 2009) suggests

that graph theory will remain an active part of

connectivity research for some time.

Matrix analysis

Matrix models provide another means of analysing

connectivity flows (Caswell 2001), and have recently

been used to project connectivity structure over time

(Kool 2009), providing a link between individual-

based biophysical dispersal models and population

genetic structure (Foster et al. 2012). The sensitivity

and elasticity of connectivity matrices (Caswell 2001,

2007) can be used to identify connections that exert the

greatest influence on the overall system, and ordering

matrices through sorting (Tsafrir et al. 2005), reduc-

tion (Bode et al. 2006) or recursive partitioning (Jacobi

et al. 2012) makes it possible to evaluate natural

clusters of exchange. More advanced techniques, such

as singular value decomposition, and matrix pertur-

bation theory for analysing connectivity and designing

optimal networks have also been explored (Aiken and

Navarrete 2011; Jacobi and Jonsson 2011).

Linkages between approaches

Many similarities exist between the various connec-

tivity measures and analyses used in landscape

ecology, metapopulation ecology, and connectivity

research (Table 3). Cluster analysis based on nearest-

neighbour distances is closely connected to the

construction of minimum spanning tree type graphs.

Critical distances used in graph theory are structurally

the same as buffer or neighbourhood measures in

metapopulation studies and statistical habitat model-

ling (Visconti and Elkin 2009). Pair-wise distance

matrices used inside connectivity measures can be

constructed based on declining-by-distance dispersal

kernels or via least cost path computations (Urban

et al. 2009). Graph theoretic approaches and matrices

can be explicitly linked via the construction of an

adjacency matrix representing the strength of connec-

tions between nodes. Caswell (2001) noted that matrix

models can be linked to IBMs, and arise naturally from

stochastic models where each individual moves

through its life cycle independently. The various

methods are in many cases closely related ways of

approaching the same problem—characterizing rela-

tionships among patches, populations or demes.

Rather than focusing on a particular modelling

framework, it is more profitable to classify spatial

studies and connectivity measures according to their

structural characteristics (Panel 1).

Challenges and opportunities

Modelling and analysing connectivity presents a

number of challenges. Landscape dynamics (e.g.

successional changes, fragmentation) have the poten-

tial to confuse connectivity observations, leading to

underestimates or even an apparent lack of connec-

tivity effects (Hodgson et al. 2009a), and imperfect

detection of species in sites has long been recognized

as a problem for metapopulation studies, leading to

biases in parameter estimation, including overestima-

tion of population turnover, extinction and coloniza-

tion rates, dispersal distances and connectivity as a

whole (Mackenzie et al. 2003). Overestimation of

connectivity can then lead to underestimation of

conservation needs. One way of addressing this is

through the use of stochastic state-space models

(Patterson et al. 2008b). Under this framework, a

process model is coupled with a separate observation

model, providing a means of partitioning the sources

of variability that are truly associated with the process

from those associated with observation. Spatial auto-

correlation is also an important consideration for

connectivity studies (González-Megı́as et al. 2005).
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Autocorrelation in observations can occur due to

correlation in local habitat quality, spatially correlated

dynamics or synchronizing factors such as weather

(Van Teeffelen and Ovaskainen 2007). If spatial

autocorrelation is ignored, then events are taken as

independent when in truth they are not, leading to

incorrect parameter estimates and false estimates of

statistical significance. Autocorrelation is particularly

a problem when habitat data are represented using

high-resolution grids of semi-continuously varying

habitat quality (Drielsma and Ferrier 2009), and

consequently individual spatial units (i.e. individual

raster cells) cannot be taken as dynamically indepen-

dent from their neighbourhood. This has operational

significance because most spatial habitat data cur-

rently exists in raster format, and high-resolution

analyses are necessary to link the data with on-the-

ground conservation applications (Elith and Leath-

wick 2009).

A number of opportunities exist for moving con-

nectivity research forward by taking advantage of

advances made in other fields. Some of the challenges

facing connectivity researchers correspond to prob-

lems in other disciplines, and existing solutions can be

brought to bear in a biological context. For example,

solvers for the knapsack problem from computer

science have been applied to optimizing environmen-

tal designs (Higgins et al. 2008), and the entire

framework of graph-theoretic connectivity is an

import from mathematical/computational sciences

(Urban and Keitt 2001). Allesina and Pascual (2009)

demonstrated how an adaptation of the Google

PageRank algorithm could be used to identify key

species whose loss could result in cascading extinc-

tions, and the same could be used to identify groups of

co-dependent patches or demes. Stochastic control

theory (Wang et al. 2008) could be used to develop

management strategies that dynamically respond to

changes in connectivity, and bandwidth-allocation

models (Ogryczak et al. 2008) could be modified to

determine how resources could be most effectively

distributed to maintain existing connectivity structure.

Many of these questions relating to connectivity

research appear to fall under the domain of com-

plex adaptive systems, and complexity in general

(Miller and Page 2007). However, it is also important

to recognize that populations are not binary switches,

and ecological systems frequently exhibit non-linear

and strategic behaviour. By design, many algorithms

and analytical methods focus on maximal or minimal

aspects of the system, but in many cases, the variabil-

ity and distribution of responses are just as important,

sometimes even more. Developing ways of assessing

and testing how models, metrics and analyses results

are affected by different forms of variability, as well as

behaviour that evolves over time will be essential for

moving forward with population connectivity

research.

Management applications

Connectivity is a critical consideration in biodiversity

conservation and management. Interactions between

humans and landscapes occur through spatially

defined interactions, which influence connectivity

(Crooks and Sanjayan 2006). Spatial considerations

were originally incorporated into conservation

through the use of critical maximum dispersal dis-

tances and minimum patch size requirements, and

spatial aggregation was achieved using boundary

length penalties (Sarkar et al. 2006). Boundary length

penalties penalize high edge-to-area ratios when

carrying out optimization of reserve networks, leading

to more globular delineations for individual sites and

to more aggregated network solutions. This technique

is still widely used in reserve network design, since

structural aggregation is beneficial from both an

ecological and economic perspective with respect to

reserve establishment and management (Ball et al.

2009).

Presently, many different connectivity indices,

both structural and functional, can be calculated

using publicly available software packages such as

FRAGSTATS (McGarigal et al. 2002), PATHMA-

TRIX (Ray 2005), Conefor (Saura and Torné 2009),

Marine Geospatial Ecology Tools (MGET—Roberts

et al. 2010), or generic GIS software. These

connectivity measures can be used as explanatory

variables in further statistical analysis and modelling

of conservation decisions. Conservation-oriented

single-species spatial analysis can be carried out

using empirically fitted metapopulation models

(Drielsma and Ferrier 2009) or spatial population

viability analyses (Naujokaitis-Lewis et al. 2009),

although data demands of detailed dynamic models

are generally high. Detailed mechanistic analyses of

dispersal are also possible, for example, via spatially
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structured diffusion. Additionally, specialized soft-

ware exists for advanced path-based analysis

(McRae et al. 2008), and corridor building (Cushman

et al. 2009).

Several software packages are publicly available

for addressing connectivity in multi-species system-

atic conservation planning. The ResNet software

package incorporates connectivity considerations into

reserve network design via path-like graph-theoretic

considerations (Ciarleglio et al. 2009). MARXAN and

MARXAN with Zones implement patch size require-

ments and the boundary length penalty technique (Ball

et al. 2009; Watts et al. 2009). The grid-based

Zonation software implements species-specific para-

metric neighbourhood responses in a non-directional

(terrestrial) environment (Moilanen and Wintle 2007)

and for freshwater networks with strongly directed

connectivity (Leathwick et al. 2010). It also imple-

ments pair-wise and many-to-one connectivity

responses between species, between environments,

between existing and proposed conservation areas

(Lehtomäki et al. 2009), or between the present and the

future in the climate change context (Carroll et al.

2010).

Despite significant progress during the past decade,

many challenges remain in understanding how to best

include connectivity in conservation management,

when the needs of multiple species and environments,

habitat quality and connectivity, direct costs and

opportunity costs, short-term and long-term objec-

tives, and multiple alternative conservation actions

must be balanced (Pressey et al. 2007). Johst et al.

(2011) were able to develop an analytical method for

examining trade-offs between different landscape

attributes, but integrating multiple forms of connec-

tivity into the same analysis, using sparse data to

effectively parameterize conservation analyses, and

understanding the most robust and appropriate use of

connectivity criteria in spatial conservation planning

are all areas requiring further study. There are also

questions regarding appropriate role of connectivity in

conservation relative to strategies that primarily target

habitat area or habitat quality—the two most funda-

mental determinants of regional carrying capacity for

any species (Hodgson et al. 2009b). Using simula-

tions, Visconti and Elkin (2009) were able to quan-

titatively show that connectivity metrics that take into

account patch quality performed significantly better

with regards to correctly ranking patches according to

their contribution to overall metapopulation viability.

Reinforcing connectivity for one species may add

breeding habitat for another, implying potentially

great benefits from strategies such as agri-environment

schemes (Donald and Evans 2006). However, working

with connectivity alone does not provide information

regarding what is necessary or adequate for conserva-

tion. While connectivity can inform decision-makers

about patterns of dispersal and colonization, alone it

does not provide comprehensive information on local

population dynamics, age/stage structure, or popula-

tion growth and extinction.

As another general concern, connectivity is an

uncertain management criterion despite it being the

one most commonly proposed as a solution for con-

servation under climate change (Heller and Zavaleta

2009). There are numerous conceptual and operational

definitions for connectivity, making discussion about

connectivity prone to linguistic uncertainty in com-

munication. Choices of connectivity metrics are also

prone to human decision uncertainty about what form

of connectivity measure is applied and for what

species (or other biodiversity features). Further com-

plicating use of connectivity as a management crite-

rion is epistemic uncertainty (lack of knowledge)

about the correct structure and parameterization of

connectivity. Consequently, application of connectiv-

ity in multi-species conservation management needs

to be implemented with care and in a manner robust to

uncertainty. While our ability compute connectivity

metrics improves, our understanding about the appro-

priate use of connectivity in conservation management

does not improve at the same rate, and our linguistic

and decision uncertainty have not been reduced.

Synthesis

A significant part of the value of connectivity research

lies in assembling the individual pieces of a landscape

or seascape together into in integrated spatially and

temporally explicit whole. Studying populations an

integrated manner makes it possible to test the

consistency of our understanding of the system, and

reveals if critical components are not being accounted

for. Moreover, by examining the various components

in concert, other aspects emerge. The first is the

critical importance of scale. Depending on the spatial

and temporal scales at which one observes a landscape
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or seascape, patches may change, blend into one

another, or cease to effectively exist altogether.

Understanding the scales at which different landscape

processes operate, as well as ways of identifying those

scales is essential for devising efficient monitoring

strategies, as well as determining functional connec-

tions. This is no trivial task, since scales will vary not

only among the different processes, but also according

to how individual species perceive and use their

environment. Consequently, in addition to seeking out

unifying principles, it is equally important to critically

evaluate the causes and consequences of variability

between individuals, species and assemblages, and to

address the interactions between them. Fusing the

homogeneity of an integrated design with variability

down to the genetic level requires reconciling top-

down, holistic approaches with bottom-up, reduction-

ist approaches. The complexity of dispersal and

connectivity, augmented by the need to account for

additional factors such as the role of demographic

processes or to integrate with social and economic

systems might seem cause for despair, but this is a

challenge for which connectivity researchers are well-

suited. Teasing signal from noise, partitioning intra-

and inter-group variation, and developing conceptual

models that explain system behaviour using the

minimum amount of detail required are common

practice in connectivity research. Fortunately, is it not

necessary to develop methods entirely de novo.

Although models designed for mechanical systems

may be too simple for biological systems, they can at

least serve as a basis for further development.

Communication across disciplines will also be crucial

when developing conservation and management strat-

egies. Connectivity scientists need to be transparent

about what their measurements and models mean, and

the assumptions behind them. It is also essential to

distil and simplify this knowledge into an accessible

form—through the development of tools, and outreach

beyond scientific publications. From managers, a clear

articulation of their needs is required, as well as a

transparent assessment of constraints: logistical, social

and economic. Naturally, this will be an iterative and

interactive process, but facilitating these connections, as

well as identifying where productive new linkages could

be formed will be important moving forward. Lastly,

understanding the implications of long-term connectiv-

ity will involve strengthening links with population

genetic theory, including aspects of speciation and

biogeography. Over time, inter-population processes

will be dependent on intra-population ones, such as

reproductive success, carrying capacity and habitat

quality. Fundamentally, an improved understanding of

connectivity is needed to fully appreciate the likely

development of biodiversity patterns under climate

change and other human pressures.

Summary

From advances in physical tracking, to the application

of new genetic techniques, as well as ongoing

developments in modelling and analysis, it is clear

that much work has been done, and is still going on to

improve our understanding of connectivity. Methods

for measuring connectivity have greatly improved in

both extent and resolution, spatially and temporally. A

wide range of options exist for monitoring organisms

at a variety of scales in terrestrial and aquatic

environments. Similarly, many techniques are avail-

able to characterizing connectivity and to represent its

underlying processes. From relatively simple mea-

sures, such as summary statistics through to dynamic

individual-based models and spatially structured dif-

fusion models, researchers have many choices

depending on data availability and structure, as well

as how the results will ultimately be used. It is also

important to give strong consideration to how con-

nectivity data and models can be integrated into

conservation and management strategies. To this end,

a number of software tools have been developed, but

ensuring that this information is effectively used will

require careful consideration of what operational

definitions of connectivity are most relevant to the

problem at hand, as well as its relative importance in

the decision-making process. Also, while our under-

standing of connectivity is improving, there will still

be a strong need to gather field data on individual and

species-level behaviour, habitat quality, and demog-

raphy. Nevertheless, the progress to date in detecting

and recognizing connectivity patterns, and under-

standing the processes responsible for generating them

is highly encouraging, and we look forward to seeing

the benefits that an improved understanding of con-

nectivity will provide in the future.
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