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A B S T R A C T

Urban impervious surfaces (UIS) influence the structure and function of urban systems, and are widely con-
sidered a key indicator of urban environmental conditions. However, the amount and pattern of UIS both change
with spatial scale, which complicates the computation and interpretation of UIS as an indicator. A better un-
derstanding of the spatial scaling relations of UIS is needed to resolve this predicament. Thus, the main objective
of this study was to explore how UIS would change with increasing spatial extent and population size across
urban hierarchical levels, using data from the three largest urban agglomerations in China. In addition, a
comparative analysis of six world metropolitan regions was conducted to test the generality of the UIS scaling
relations. Scalograms and standardized major axis regression were used to investigate the scaling relations with
respect to spatial extent and city size, respectively. Our major findings include: (1) the total amount of UIS
increased, whereas the percentage of UIS decreased, in a staircase-like fashion when the spatial extent of analysis
expanded from within a local city to the entire urban agglomeration; (2) the spatial scaling of UIS followed a
rather consistent and tight power law function within a local city, but became less consistent and less tight
beyond a local city; (3) the scaling relations of the total amount of UIS were more consistent than those of the
percentage of UIS, and the total amount of UIS scaled more tightly with urban area than with urban population
size. These findings shed new light on the scale dependence of UIS, suggesting that a multiscale approach should
be adopted for quantifying UIS and for using it as an urban environmental indicator.

1. Introduction

Urbanization worldwide has converted more and more natural and
agricultural lands into urban impervious surfaces (UIS) – i.e., human-
made land covers in urban areas through which water cannot penetrate,
including rooftops, roads, driveways, sidewalks, and parking lots
(Arnold & Gibbons, 1996; Ma, He, & Wu, 2016; Ma, Wu, & He, 2016;
Weng, 2012). In 2010, the global total of UIS was about 0.6 million km2

(or 0.45% of the global land area excluding Antarctica and Greenland),
and it has continued to increase rapidly (Liu, He, & Wu, 2016; Liu, He,
Zhou, & Wu, 2014; Zhou et al., 2015). For example, the total amount of
UIS of mainland China was 10,614.23 km2 in 1992, and increased to
31,147.63 km2 in 2009, tripling within 17 years (Ma et al., 2014).

While UIS occupies relatively a small portion of the land area on a
regional or global scale, its myriad environmental impacts are

disproportionately large (Arnold & Gibbons, 1996; Forman, 2016;
Grimm et al., 2008; Luck, Jenerette, Wu, & Grimm, 2001). UIS can
change the land surface energy balance, resulting in urban heat islands
(Buyantuyev & Wu, 2010; Ma, Wu et al., 2016; Oke, 1982); increase the
volume and intensity of urban runoff, leading to urban flooding (Brun &
Band, 2000; Weng, 2001); and reduce water quality, degrading aquatic
biodiversity and wetland ecosystems (Brabec, 2002; Goetz & Fiske,
2008). Thus, impervious surface coverage is not only a major measure
of urbanization itself, but also a key indicator of environmental con-
ditions (Arnold & Gibbons, 1996; Wu, 2014).

Thus, it is important to quantify the amount and spatial distribution
of UIS for better understanding urbanization patterns and their en-
vironmental consequences. Towards this end, much work has been
done during the past few decades based on remote sensing data
(Elvidge et al., 2007; Lu, Li, Kuang, & Moran, 2014; Ma et al., 2014; Ma,
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Wu et al., 2016). However, while we know that urban systems are
hierarchically structured, in which large urban regions are composed of
smaller sub-regions which in turn comprise individual cities (Batty,
2008; Li, Li, & Wu, 2013; Wu, 1999; Wu & David, 2002), little research
has been done to quantify how UIS changes with spatial scale along the
hierarchy of administrative levels. Yet, knowing how UIS is structured
spatially from the local city to the regional urban agglomeration – i.e.,
the spatial scaling of UIS – is essential for understanding the patterns
and processes of urbanization as well as their environmental impacts on
multiple scales.

Quantifying the spatial pattern of UIS necessarily requires a multi-
scale approach, and scaling relations need to be developed for de-
scribing multiscale patterns and making predictions across scales, as
numerous studies in ecological and geographical sciences have shown
that spatial pattern is scale-dependent (Jelinski & Wu, 1996; Levin,
1992; Liu et al., 2016; Saura, 2004; Shen, Darrel Jenerette, Wu, &
Gardner, 2004; Wu, 2004; Wu, Shen, Sun, & Tueller, 2002). Scaling
usually refers to the translation of information across spatial and tem-
poral scales or organizational levels, which frequently involves chan-
ging grain size, extent, or both (Wiens, 1989; Wu, 1999; Wu, Bruce
Jones, Li, & Loucks, 2006). Wu et al. (2002) and Wu (2004) system-
atically examined the scaling relations of commonly used landscape
metrics with respect to changing grain size and extent, and identified
three general categories: simple scaling functions (linear or power
laws), staircase-like functions, and unpredictable behavior. These
findings have consequently been confirmed and amended by several
studies (Argañaraz & Entraigas, 2014; Frazier, 2016; Frohn & Hao,
2006; Saura & Castro, 2007; Shen et al., 2004). These scaling relations
are informative for understanding the multiscale structural properties
of landscapes, and allow for cross-scale predictions when they can be
expressed as mathematical functions (Wu, 2004; Wu et al., 2002).

Do such scaling relations exist for UIS when we measure them from
a local city to its surrounding urban region and the even greater urban
agglomeration? To address this question, we systematically examined
the spatial scaling of UIS with respect to changing extent in three major
urban megaregions of China, and then we further tested the generality
of the UIS scaling relations by conducting similar analyses with several
major metropolitan regions around the world. The study was designed
to address the following questions: How does UIS change with in-
creasing spatial extent across the administrative levels of urban hier-
archy? How do the total amount and percentage of UIS scale differently
in space? How does the scaling of UIS in space compare with the scaling
of UIS with respect to urban population? Do the scaling relations of UIS
derived from Chinese metropolitan regions apply to the world’s other
metropolitan regions?

2. Methods

2.1. Study area

China, as one of the fastest urbanizing nations around the world, has
experienced a rapid and large-scale expansion of UIS, with an annual
growth rate of 6.54% since 1992 (Ma et al., 2014). As the urban growth
rate continues to accelerate in terms of both urbanized land area and
urban human population, a number of urban agglomerations with dif-
ferent levels of economic and social development have emerged across
China (Fang, 2011; Fang, 2015; Wu, Xiang, & Zhao, 2014). The three
largest national-level urban agglomerations are the Beijing-Tianjin-
Hebei (BTH) urban agglomeration, the Yangtze River Delta (YRD)
urban agglomeration, and the Pearl River Delta (PRD) urban agglom-
eration. These three urban agglomerations together account for nearly
40% of the total UIS area, 36% of gross domestic product, and 18% of
the total population of China (Ma et al., 2014; State Council of the
People’s Republic of China, 2014). We chose BTH, YRD, and PRD as the
focal sites of our study (Fig. 1) because of their extraordinary en-
vironmental and socioeconomic importance, as well as their complete

urban hierarchy that extends from the local city to the much broader
region of urban agglomeration. In addition, these three urban ag-
glomerations are not only the largest in China, but also have contrasting
spatial patterns and urbanization trends due to different population
densities and socioeconomic conditions (Kuang, Chi, Lu, & Dou, 2014).
All the above characteristics facilitate an in-depth analysis of the spatial
scaling of UIS.

We delineated the boundary of each urban agglomeration based on
Fang (2011), and derived the demographic and economic data de-
scribed below from the Department of Urban Surveys of National
Bureau of Statistics of China (2011) and the Population Census Office
under the State Council and Employment Statistics of National Bureau
of Statistics of China (2013). The BTH is located in the North Plain-
eastern coastal region of China, with a total land area of 182,000 km2.
In 2010, the total population of this region reached 83.79 million with
an urbanization level of 59.95%, and its total GDP exceeded 3776 bil-
lion CNY. The YRD lies in the eastern coastal region of China, covering
an area of 107,500 km2. The total population in 2010 was 106.51
million with an urbanization level of 69.75%, and the total GDP was
7591 billion CNY. The PRD is distributed in the southern coastal region
of China, covering an area of 54,100 km2. In 2010, the PRD had 56.13
million people and an urbanization level of 82.72%, and its total GDP
exceeded 3700 billion CNY.

Our analysis followed a hierarchical approach to urban studies (Li
et al., 2013; Ma, Wu et al., 2016; Wu, 1999; Wu & David, 2002), ex-
plicitly considering three administrative levels within each urban ag-
glomeration (Fig. 1): the city proper, the metropolitan region, and the
urban agglomeration as a whole. The three levels formed a spatially
nested urban landscape hierarchy as each city proper belonged ex-
clusively to a metropolitan region which in turn was part of an urban
agglomeration. Specifically, the BTH, YRD, and PRD each contained a
megacity (the Beijing metropolitan region, the Shanghai metropolitan
region, and the Guangzhou metropolitan region, respectively) whose
city proper was chosen as the lowest level of analysis (Fig. 1).

2.2. Data acquisition and processing

The UIS map of China in 2009 with a spatial resolution of 1×1 km
(Ma et al., 2014) was used in this study. In an earlier study, we de-
veloped an improved way of mapping UIS for large regions and quan-
tified the UIS dynamics of China from 1992 to 2009 (Ma et al., 2014).
The study utilized four types of remote sensing data to estimate the UIS
of China in 2009: the Defense Meteorological Satellite Program’s Op-
erational Linescan System (DMSP/OLS) nighttime light (NTL) data
(http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html), the
Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day
Normalized Difference Vegetation Index (NDVI) composite data
(https://ladsweb.nascom.nasa.gov/search/), high-resolution images
available on Google Earth, and land use/cover data (http://www.
geodata.cn/). The NTL data given in 30-arc-second grids and the an-
nual mean NDVI data derived from the MODIS 16-day 1-km NDVI
composite data in 2009 were projected onto an Albers Conical Equal
Area Projection and resampled to a pixel size of 1 km based on a nearest
neighbor resampling algorithm. The land use/cover data of China for
2010 were used as the reference data for extracting urban areas in
2009. Urban areas in this study refer to places with intensive human
activities and extensive human-made land covers that include urban
impervious surfaces, parks, and swimming pools/artificial ponds
(Potere & Schneider, 2007; Wang et al., 2012). Detailed information on
how these urban areas were classified is found in Ma et al. (2014). The
accuracy assessment showed that our results of China’s UIS had a much
higher accuracy than previous estimates using NTL data, with the
average root-mean-square error (RMSE) of 0.128, mean absolute error
(MAE) of 0.105, systematic error (SE) of −0.008, and correlation
coefficient (R) of 0.846 in 2009 (Ma et al., 2014). More details on the
acquisition and processing of remote sensing data and estimation of UIS
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can be found in Ma et al. (2014).
LandScan population data in 2010 were obtained from the Oak

Ridge National Laboratory (ORNL) (http://web.ornl.gov/sci/landscan/
landscan_data_avail.shtml). The data are 30 arc seconds grids, covering
−180 to 180 degrees in longitude and −90 to 84 degrees in latitude.
The values of the grids are integer population counts, representing an

ambient population distribution (average over 24 h). The ambient po-
pulation distribution integrates diurnal movements and collective
travel habits of people into a single measure, and thus is a population
distribution in totality, not just in terms of the locations where people
live (Dobson, Bright, Coleman, Durfee, & Worley, 2000). We projected
the data onto an Albers Conical Equal Area projection and resampled

Fig. 1. Locational map of the three major urban agglomerations of China (a) and a schematic illustration of the concentric circle approach to changing spatial extent in the three main
urban agglomerations of China (b). The three major urban agglomerations of China include the Beijing-Tianjin-Hebei urban agglomeration, the Yangtze River Delta urban agglomeration,
and the Pearl River Delta urban agglomeration. Three levels of the administrative hierarchy are identified explicitly within each urban agglomeration: the city proper, the metropolitan
region, and the urban agglomeration as a whole.
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the data to a pixel size of 1 km based on a nearest neighbor resampling
algorithm. The population counts in urban areas were extracted for
each urban agglomeration. The boundaries of administrative units were

based on the National Geomatics Center of China at the scale of 1:
4,000,000.

For examining the generality of our findings from Chinese

Fig. 2. Locational map of six world metropolitan regions: Phoenix of USA, Baltimore of USA, Santiago of Chile, London of England, Paris of France, and Berlin of Germany (a), with an
illustration of increasing spatial extent with the concentric circle approach (b).

Q. Ma et al. Landscape and Urban Planning 175 (2018) 50–61

53



metropolitan regions, we selected six well-known metropolitan regions
from other parts of the world: the Baltimore metropolitan region and
the Phoenix metropolitan region in the United States, the Santiago
metropolitan region in Chile, the London metropolitan region in the
United Kingdom, the Paris metropolitan region in France, and the
Berlin metropolitan region in Germany (Fig. 2a). The six world me-
tropolitan regions were chosen because of their high urbanization levels
and different urban development patterns, as well as their geographic
representativeness (two regions in North America, three regions in
Europe, and one region in South America). The impervious surfaces
area data in 2010 for all the six metropolitan regions were obtained
from the National Oceanic and Atmospheric Administration (NOAA)/
National Center for Environmental Information (NCEI) website
(https://ngdc.noaa.gov/eog/dmsp/download_global_isa.html). The
same hierarchical approach was used in analyzing these six world
metropolitan regions (Fig. 2b).

2.3. Quantifying UIS scaling relations with respect to spatial extent

We adopted the scalogram approach (Wu, 2004; Wu et al., 2002) to
quantify the effects of changing spatial extent on UIS across urban

administrative levels, using a series of concentric circles with increasing
radii (Fig. 1b; Table 1). The origin of concentric circles was located at
the administrative center of the selected metropolitan region in each
urban agglomeration (Fig. 1b). The spatial extent was represented by
the total area of a concentric circle, within which the amount of UIS
was calculated. Then scalograms were constructed by plotting the total
area and percentage of UIS against the spatial extent (i.e., incrementally
larger concentric circles across the three urban administrative levels).

2.4. Quantifying UIS scaling relations with respect to urban population and
urban area

The power law scaling relation is usually expressed as: Y= aXb. In
the case of spatial scaling or spatial allometry (Wu & Li, 2006), Y is a
variable of interest, X is the spatial scale (grain size or extent), a is the
normalization constant, and b is the scaling exponent (i.e., the slope of
the straight line in a log-log plot). If b=1, Y and X have a simple linear
relationship (called isometric scaling), meaning that Y changes with X
proportionally. If b≠ 1, then the relationship is called allometric
scaling (Wu & Li, 2006). In this study, we used standardized major axis
(SMA) regression to examine if power-law scaling relations exist

Table 1
List of the radii of concentric circles used in the study at different urban administrative levels for the three key urban agglomerations of China. The largest spatial extent for each
administrative level corresponds to the area of the concentric circle just large enough to enclose the whole urban region for the corresponding level.

Changing the radii of concentric circles (km)

CP of Beijing Beijing BTH CP of Shanghai Shanghai YRD CP of Guangzhou Guangzhou PRD

4 4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6 6
8 8 8 8 8 8 8 8 8
10 10 10 10 10 10 10 10 10
12 12 12 12 12 12 12 12 12
14 14 14 14 14 14 14 14 14
16 16 16 16 16 16 16 16 16
18 18 18 18 18 18 18 18 18
20 20 20 20 20 20 20 20 20
22 22 22 22 22 22 22 22 22
24 24 24 24 24 24 24 24 24
26 26 26 26 26 26 26 26 26
28 28 28 28 28 28 28 28 28
30 30 30 30 30 30 30 30 30

35 35 35 35 35 35 35 35
40 40 40 40 40 40 40 40
45 45 45 45 45 45 45
50 50 50 50 50 50 50
55 55 55 55 55 55 55
60 60 60 60 60 60 60
65 65 65 65 65 65 65
70 70 70 70 70 70 70
75 75 75 75 75
80 80 80 80 80
85 85 85 85 85
90 90 90 90 90
95 95 95 95 95
100 100 100 100 100
110 110 110 110 110
120 120 120 120 120
130 130 130 130

140 140 140
150 150 150
160 160 160
170 170 170
180 180 180
190 190 190
200 200 200
220 220 220
250 250
300 300
350 350

Note: CP represents the city proper, BTH represents the Beijing-Tianjin-Hebei urban agglomeration, YRD represents the Yangtze River Delta urban agglomeration, and PRD represents the
Pearl River Delta urban agglomeration.
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between the UIS measures (Y) and spatial extent or urban population
size (X).

The SMA regression is a least-squares method with the purpose of
not predicting one variable from another variable as linear regression
aims to do, but describing how two variables are related, typically as a
linear relationship on logarithmic scales (Warton, Wright, Falster, &
Westoby, 2006). Thus, the SMA regression can be used to test if a power
law-like relationship (e.g., an allometric relation) is supported by data,
and to determine what the specific value of the scaling exponent is. By
contrast, the ordinary least squares (OLS) regression is generally used to
test for an association between Y and X and to predict Y from X through
estimating the line which is fitted to minimize the sum of squares of
residuals measured in the Y axis (Warton et al., 2006). The purpose of
this study was not to test for a correlation between UIS, urban area, and
urban population, but to investigate if power law-like relationships
exist between them and to compare slopes for their relationships. In this
case, the SMA regression is more appropriate than the OLS regression
(Fuller & Gaston, 2009; Li, Han, & Wu, 2006).

We first calculated the total area of UIS, urban population size (i.e.,
the total ambient population in urban areas), and urban area, and then
conducted SMA regression analysis to derive the scaling relations of UIS
with respect to increasing urban population and urban area, respec-
tively. Confidence intervals for the estimated scaling exponent (b) were
computed, with one-sample tests of scaling exponent with a null hy-
pothesis b=1. All statistical analyses were performed with SMATR
Version 2.0.

3. Results

3.1. Scaling relations of UIS with respect to changing spatial extent

As mentioned earlier, we chose both the total area and percentage of
UIS to explore how UIS scales with spatial extent across urban admin-
istrative levels (the city proper, the metropolitan region, and the urban
agglomeration). In this section, we organized our results according to
these administrative levels and the two UIS measures (the total area and
percentage).

3.1.1. Scaling relations of the total area of UIS
Within a city proper, as the spatial extent (represented by the areas

of concentric circles) increased, the total area of UIS for the three cities
proper all followed a power law with a scaling exponent of between 0
and 1 (Fig. 3a-c). Within a metropolitan region, as the spatial extent
increased beyond the city proper level, the total area of UIS continued
to increase, but at a slower rate (Fig. 3d-f). As the spatial extent further
increased beyond the metropolitan region, the scalograms of the total
area of UIS showed an upward staircase-like curve for the three urban
agglomerations (Fig. 3g-i). The total area of UIS continued to increase
rapidly beyond the metropolitan region for the BTH and YRD urban
agglomerations (Fig. 3g, h), but ceased to increase for the PRD urban
agglomeration (Fig. 3i).

3.1.2. Scaling relations of the percentage of UIS
Within a city proper, the percentage of UIS decreased linearly with

increasing spatial extent (again represented by the areas of concentric
circles) for the city proper of Beijing (Fig. 4a), followed a power law
with a scaling exponent of between −1 and 0 for the city proper of
Shanghai, and showed a downward staircase-like curve (with two
segments of linear change) for the city proper of Guangzhou (Fig. 4c).
As the spatial extent further increased to cover the entire metropolitan
region, the percentage of UIS continued to decrease, but at a slower rate
(Fig. 4d-f). Further increasing the spatial extent from the metropolitan
region to the urban agglomeration resulted in little change in the per-
centage of UIS for all the three metropolitan regions (Fig. 4g-i).

While the general pattern of the scalograms for the three urban
agglomerations looked similar, the details actually varied among them.

Moving from the city proper level to the urban agglomeration level, the
YRD urban agglomeration (Fig. 4h) showed the largest drop in the
percentage of UIS whereas the PRD urban agglomeration (Fig. 4i) ex-
hibited the least. The percentage of UIS in the BTH urban agglomera-
tion decreased rapidly first, then stayed relatively unchanged, and then
increased slightly (Fig. 4g). The scalograms of the percentage of UIS
(Fig. 4) mirrored, to some degrees, those of the total area of UIS (Fig. 3),
but differences between them were visually apparent.

3.1.3. Comparison of UIS scaling relations between Chinese and other world
metropolitan regions

The log-log scalograms of the six selected world metropolitan re-
gions showed a general pattern quite similar to those of the Chinese
metropolitan regions (comparing Figs. 5 and 6): with increasing spatial
extent of analysis from the city center, increases in the total area of UIS
were fast and linear (or following a power law) at first, then slowed
down (e.g., Shanghai), and then picked up again (e.g., Beijing) or
stayed relatively unchanged (e.g., Guangzhou). Specifically, the scalo-
grams of Berlin and Paris closely resembled that of Beijing; the scalo-
grams of Baltimore and London looked like that of Shanghai; and the
scalograms of Phoenix and Santiago were similar to that of Guangzhou
(Fig. 6). All scalograms exhibited scale breaks corresponding roughly to
the boundaries of urban administrative levels (Figs. 5 and 6). Scale
breaks are visualized more readily in a log-log plot in which a straight
line represents a power law scaling (Wu et al., 2006).

3.2. Scaling relations of UIS with respect to urban population and urban
area

For all the three major urban agglomerations of China, the total area
of UIS increased with urban population size and urban area following a
power-law function (Fig. 7; Table 2). All the power-law scaling relations
were statistically significant, with P-values of smaller than 0.001 and R2

ranging from 0.755 to 0.954 (Fig. 7; Table 2). The values of the scaling
exponent varied greatly between the urban population- and urban area-
based scaling relations. In the scaling relation between the total area of
UIS and urban population size, the values of the scaling exponent were
all smaller than 1 (i.e., 0.728 for BTH, 0.721 for YRD, and 0.809 for
PRD). However, the values of the scaling exponent in the scaling rela-
tion between the total area of UIS and urban area were all larger than 1
(i.e., 1.139 for BTH, 1.116 for YRD, and 1.103 for PRD).

4. Discussion

4.1. How does UIS change with increasing spatial extent across the urban
administrative hierarchy?

The major objective of this study was to quantify how UIS changes
with increasing spatial extent across the three major administrative
levels of urban hierarchy – the city proper, the metropolitan region, and
the urban agglomeration. Our results show that, in general, the total
area of UIS increased and the percentage of UIS decreased with in-
creasing spatial extent, and the scaling relations varied across the three
hierarchical administrative levels (Figs. 3–5). Within the city proper
and between administrative levels of urban hierarchy, the spatial
scaling relation was a power law (including the linear function as a
special case of a power law with the scaling exponent being one). The
scalograms of the city proper-metropolitan region-urban agglomeration
hierarchy, however, exhibited a staircase-like pattern. The turning
points where scaling relations change relatively abruptly in a scalogram
represent scale breaks (Wu, 1999; Wu et al., 2006). These scale breaks
in the spatial scaling relations of UIS found in our study corresponded
largely to the administrative boundaries or the urban hierarchical levels
(Figs. S1 and S2). At the same time, these scale breaks also roughly
corresponded to the locations of multiple centers for each urban ag-
glomeration. For example, the approximate locations of other centers
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(e.g., Tianjin, Tangshan, and Shijiazhuang) of the BTH urban agglom-
eration were identified by the scalogram approach, which corresponded
to the three scale breaks (Fig. S3). These results demonstrated that
spatial scalograms were able to effectively identify the multiple scales
across a broad urban region with multiple urban centers (Wu, 2004;
Wu, Gao, & Tueller, 1997; Wu, Jelinski, Luck, & Tueller, 2000; Wu
et al., 2002). These results corroborate the “scaling ladder” theory,
which was based on hierarchy theory and spatial patch dynamics (Wu,
1999; Wu & David, 2002).

Why do UIS scaling relations exhibit a staircase-like pattern with
several scale breaks across the three major administrative levels of
urban hierarchy? Our previous study showed that major influencing
factors for the spatiotemporal patterns of UIS in China varied sub-
stantially across hierarchical administrative levels, with demographic
factors (e.g., urban population) dominating at the county level (Ma, He
et al., 2016). The city-proper level in this study corresponded roughly to
the county level, and thus demographic factors may contribute to the
power-law scaling of UIS within this scale domain. Taking the city
proper of Beijing as an example, it accounted for only 8.34% of Beijing’s
land area, but made up nearly 60% of the total population in Beijing for
the year of 2010 (Beijing Municipal Bureau of Statistics NBS Survey
Office in Beijing, 2011). High population densities seemed to play an
important role in shaping the spatial pattern of UIS within the city
proper. However, as the spatial extent increased beyond the city proper
level, population densities declined markedly, resulting in the first
staircase-like pattern of UIS and the occurrence of a scale break (Fig.
S1a). As the spatial extent further increased beyond the Beijing me-
tropolitan region, other metropolitan regions (e.g., Tianjin) with large

populations and extensive UIS were incorporated, leading to another
staircase or scale break (Fig. S3). Overall, the spatial patterns of UIS
were determined by a suite of demographic, economic, and traffic
factors, as well as environmental settings, across scales (Ma, He et al.,
2016).

4.2. Do the spatial scaling relations of UIS derived from Chinese
metropolitan regions apply to metropolitan regions in other countries?

Or, do UIS scaling relations transcend national and continental
boundaries? Our results show that two metropolitan regions in North
America (i.e., Phoenix and Baltimore), three metropolitan regions in
Europe (i.e., London, Paris, and Berlin), and one metropolitan region in
South America (i.e., Santiago) all exhibited spatial scaling relations
similar to those of the Chinese metropolitan regions (Figs. 5 and 6).
Within the city proper, the total area of UIS increased quickly and in a
power law-like fashion. But beyond the local city scale, the spatial
scaling relations of UIS showed three somewhat different kinds of
patterns: (1) UIS stayed relatively unchanged for Guangzhou, Phoenix,
and Santiago; (2) UIS kept increasing at a slower rate for Shanghai,
Baltimore, and London; and (3) the increase in UIS slowed down and
then sped up again for Beijing, Paris, and Berlin (Figs. 5 and 6).

The differences in scaling pattern over broader spatial scales beyond
the local city are reflective of the multiscaled configurations of me-
tropolitan regions and urban agglomerations. If an urban region has
multiple urban centers that are close to each other, the spatial scaling
pattern would be of the first type (e.g., Guangzhou). In this case, most
of UIS are located in a relatively small spatial extent, and the total area

Fig. 3. Scalograms of the total area of urban impervious surfaces with respect to increasing spatial extent of analysis (represented as the areas of concentric circles) in three major
megalopolitan regions of China at the three urban administrative levels: the city proper (a-c), the metropolitan region (d-f), and the urban agglomeration (g-i).
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of UIS begins to have little change after the spatial extent extends be-
yond the metropolitan region level. If an urban region has multiple
urban centers that are connected at different degrees, the spatial scaling
pattern would be of the second type (e.g., Baltimore). In this case, UIS
with different densities are continuously distributed within a relatively
large spatial extent, and thus the total area of UIS keeps increasing at a
slower speed even beyond the local city and metropolitan region levels.
If an urban region has multiple urban centers that are relatively far
from each other, the spatial scaling pattern would be of the third type
(e.g., Beijing). In this case, the total area of UIS increases a little beyond
the local city, but picks up the speed again after another metropolitan
region is encountered.

The above discussion is supported by the scalograms of UIS for the
six metropolitan regions which show scale breaks that correspond well
to the boundaries of their administrative levels. These scale breaks, as
well as those in the scalograms of the Chinese urban agglomerations,
may further imply that different urban administrative levels (or scale
domains) are dominated by different biophysical and socioeconomic
controls, thus resulting in different spatial patterns of UIS. This finding
of UIS scale multiplicity suggests that curbing the sprawl of UIS or
improving the spatial pattern of UIS will require efforts from different
levels of urban administrative hierarchy, each of which should have
different priorities. For the city proper level, population policies may be
key to effective management of UIS, especially in China (Ma, He et al.,
2016). For the metropolitan region and urban agglomeration levels, the
UIS management should pay more attention to concerted development
of demographic, economic, and transportation sectors, so as to optimize

the spatial patterns of UIS and help achieve urban sustainability.

4.3. Can we predict UIS across spatial scales or administrative levels of
urban hierarchy?

The answer from our results is yes and no. Predicting UIS within the
city proper or between urban hierarchical levels can be done readily
with a simple power law function, as our results have shown. However,
directly predicting UIS from a local city to an urban agglomeration is
probably not feasible because deriving a mathematical equation for the
varying staircase-like changes is formidable if not impossible. This
means that using one simple scaling function to extrapolate or inter-
polate UIS across a broad region with multiple administrative levels
may lead to unwarranted results. In this case, the scaling-ladder ap-
proach is more effective, in which a simple scaling function is used only
within the same scale domain defined by scale breaks (Wu, 1999). In
our study, such scale domains were readily identifiable by the straight
line segments in the log-log scalograms (e.g., Figs. 5 and 6).

Our results also show that UIS was more predictable within the city
proper than over the metropolitan region and urban agglomeration,
with more variable scaling relations at the higher levels. Also, the
scaling relations of the total area of UIS were more consistent and
predictable than those of the percentage of UIS at all three adminis-
trative levels (Figs. 3–5). This is similar to the previous findings that,
with increasing spatial extent of analysis, the total area of a patch type
in a landscape is more consistently predictable than the area percentage
of that patch type (Wu, 2004). Similarly, the total number of patches in

Fig. 4. Scalograms of the percentage of urban impervious surfaces with respect to increasing spatial extent of analysis (represented as the areas of concentric circles) in three major
megalopolitan regions of China at the three urban administrative levels: the city proper (a-c), the metropolitan region (d-f), and the urban agglomeration (g-i).
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a landscape has a much more consistent scaling relation than the patch
density of the landscape (Wu, 2004; Wu et al., 2002).

4.4. How does UIS scale with urban population and urban area?

City size-based scaling relations, such as the well-known rank-size
distribution (a.k.a. Zipf’s law for cities) have long been investigated
(Batty, 2008; Bettencourt, 2013; Bettencourt, Lobo, Helbing, Kühnert,
& West, 2007; Gabaix, 1999). A number of studies have reported that
many properties of cities follow power-law scaling functions, including
GDP, total electrical consumption, crimes, gasoline stations, road sur-
face, interactions per capita, wealth creation, and innovation
(Bettencourt, 2013; Bettencourt et al., 2007). These are allometric
scaling relations of cities which usually use urban population size to
represent city size as the independent variable. Although our study
focused mainly on the spatial allometry of UIS, in which the spatial
extent of urban area is the independent variable, the scaling of UIS with

respect to urban population is also of immediate relevance.
Our results show that the total area of UIS had a power-law scaling

relation with city size, represented by either urban population size or
urban area (Table 2; Fig. 7). The scaling exponent was larger than 1
(superlinearly) with respect to urban area, but smaller than 1 (sub-
linearly) for urban population size. These results indicate that UIS in-
creased faster than urban area, and the increase rate of UIS accelerated
with urban area. This is consistent with the finding by Kuang, Liu,
Zhang, Lu, and Xiang (2013) that during 2000–2008 the growth rate of
UIS in China (53.30%) were larger than that of China’s urban area
(43.46%). On the other hand, the urban population-based scaling of UIS
indicates that urban population increased more rapidly than the area of
UIS, and this was more so as urban population became larger. Our re-
sults corroborate the prediction by Bettencourt et al. (2007) that the
scaling exponents for urban indicators associated with materials and
hard infrastructure, such as gasoline stations and road surfaces, are less
than 1, whereas those associated with social interactions, such as

Fig. 5. Log-log plots of the total area and percentage of urban impervious surfaces against spatial extent for Beijing (a-b), Shanghai (c-d), and Guangzhou (e-f). The red dots indicate the
locations on the X-axis corresponding to the approximate boundaries that enclose the two urban administrative levels – the city proper and the metropolitan region to assist inter-
pretation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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information, innovation, and wealth, are larger than 1. However, Gao,
Huang, He, Sun, and Zhang (2016) reported that the annual growth rate
of urban areas was 2.45% greater than that of urban population in
China during 1990–2010. This is different from our finding probably
because we used the ambient population data which more accurately
reflect the current population distributions, whereas Gao et al. (2016)
used the census data which did not include most ambient populations in
transportation networks (e.g., airports and railroads) of a region.

Can urban population be a reliable surrogate for urban area in the
spatial scaling of UIS? Our results show that, although the area of UIS
scaled both with urban area and urban population size, the scaling
relation seemed much tighter for urban area than for urban population
size, due to the higher values of coefficient of determination (Fig. 7).
This means that using urban area to predict the area of UIS will have a
higher accuracy than using urban population size.

5. Conclusions

Several conclusions about the spatial scaling of UIS can be made
from our study. First, the total area of UIS increases and the percentage
of UIS decreases with spatial extent of analysis from a city center, but
these changes exhibit a staircase-like pattern for large regions that
contain multiple administrative levels. Second, changes in the total area
and percentage of UIS can be predicted with simple scaling functions
(e.g., a power law) within a local city or between two adjacent urban
hierarchical levels, but not over the entire metropolitan region or urban
agglomeration. Third, the scaling relations of UIS generally are more
consistent and reliable within single cities than between higher urban
hierarchical levels. Fourth, the scaling relations of UIS are more con-
sistent and reliable for the total area of UIS than for the percentage of
UIS. Fifth, the amount of UIS scales both with urban area (scaling ex-
ponent of larger than 1) and urban population size (scaling exponent of

Fig. 6. Log-log plots of the total area of urban impervious surfaces against spatial extent for the six selected world metropolitan regions: Phoenix of the US (a), Baltimore of the US (b),
Santiago of Chile (c), London of England (d), Paris of France (e), and Berlin of Germany (f). The red dots indicate the locations on the X-axis corresponding to the boundaries of
metropolitan regions to assist interpretation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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smaller than 1), but urban area is a more accurate predictor of UIS than
urban population size. In addition, the increase rate of UIS is larger than
that of urban area, but smaller than that of urban population. These
findings together help us better understand and predict how the total
amount and percentage of UIS change across space, which is important
to the study and improvement of urban environments. Because rapid
urbanization is usually associated with fast expansion of UIS, these
findings are particularly useful for understanding the processes and
consequences of rapidly evolving urban landscapes in developing
countries around the world.
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Delta urban agglomeration (c-d), and the Pearl River Delta urban agglomeration (e-f).

Table 2
Scaling exponent in the relationship of the total area of UIS with urban population size
and urban area in the three major urban agglomerations of China.

Log-log
Relationship

Index BTH YRD PRD

UIS-Population
size

Scaling exponent 0.728 0.721 0.809
95% Confidence
interval

0.663–0.798 0.664–0.783 0.695–0.942

R2 0.755 0.825 0.839
P-value < 0.001 <0.001 <0.001
Observations 114 103 31

UIS-Urban area Scaling exponent 1.139 1.116 1.103
95% Confidence
interval

1.086–1.193 1.067–1.167 1.017–1.197

R2 0.937 0.949 0.954
P-value < 0.001 <0.001 <0.001
Observations 114 104 31
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.landurbplan.2018.03.
010.
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