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Abstract

Context Understanding how urban impervious sur-

faces (UIS) affect land surface temperatures (LST) on

different scales in space and time is important for

urban ecology and sustainability.

Objectives We examined how spatial scales, sea-

sonal and diurnal variations, and bioclimatic settings

affected the UIS–LST relationship in mainland China.

Methods We took a hierarchical approach explicitly

considering three scales: the ecoregion, urban cluster,

and urban core. The UIS–LST relationship was

quantified with Pearson correlation using multiple

remote sensing datasets.

Results In general, UIS and LST were positively

correlated in summer daytime/nighttime and winter

nighttime, but negatively in winter daytime. The

strength of correlation increased from broad to fine

scales. The mean R2 of winter nights at the urban core

scale (0.262) was 4.03 times as high as that at the

ecoregion scale (0.065). The relationship showed large

seasonal and diurnal variations: generally stronger in

summer than in winter and stronger in nighttime than

in daytime. At the urban core scale, the mean R2 of

summer daytime (0.208) was 3.25 times as high as that

of winter daytime (0.064), and the mean R2 of winter

nighttime (0.262) was 4.10 times as high as that of

winter daytime (0.064). Vegetation and climate sub-

stantially modified the relationship during summer

daytime on the ecoregion scale.

Conclusions Our study provides new evidence that

the UIS–LST relationship varies with spatial scales,

diurnal/seasonal cycles, and bioclimatic context, with

new insight into the cross-scale properties of the

relationship. These findings have implications for

mitigating urban heat island effects across scales in

China and beyond.

Keywords Urban impervious surfaces � Land

surface temperatures � Urban heat islands � Urban

landscape sustainability � China

Introduction

The world has been urbanizing at an unprecedented

rate since the 1950s, with more than 53 % of the global

population now living in urban areas (Liu et al. 2014;

Wu et al. 2014). Consequently, the global area of
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urban impervious surfaces (UIS) has increased rapidly

(Elvidge et al. 2007; Xian and Homer 2010). UIS

refers to human-made land covers in urban areas

through which water cannot penetrate, including

rooftops, parking lots, roads, driveways, and side-

walks (Arnold and Gibbons 1996; Weng 2012; Ma

et al. 2014). In 2010, the global UIS was about

595,971 km2, accounting for 0.45 % of the world’s

land area (Sutton et al. 2010; Liu et al. 2014). UIS

eradicates previous vegetation, covers up soils, and

profoundly modifies the local biophysical settings,

resulting in myriad effects on biodiversity and

ecosystem functions, hydrological and biogeochemi-

cal cycles, and local and regional climate. Thus,

impervious surface coverage has been considered as

‘‘a key environmental indicator’’ (Arnold and Gibbons

1996).

The urban heat island (UHI) phenomenon is one of

the best-documented UIS-related environmental prob-

lems (Oke 1982; Arnfield 2003; Voogt and Oke 2003;

Buyantuyev and Wu 2010; Zhou et al. 2014a). UHI

refers to the phenomenon that air and land surface

temperatures (LST) are higher in an urban area than its

surrounding rural area (Oke 1982; Arnfield 2003). In

this study, we focused only on the surface UHI

because it is related more directly to land surface

characteristics (Gallo et al. 2002; Voogt and Oke

2003; Zhou et al. 2014b). Surface UHI occurs as a

result of the replacement of vegetation by UIS,

decreasing latent heat flux and increasing sensible

heat flux and anthropogenic heat release (Yuan and

Bauer 2007; Buyantuyev and Wu 2010). Increased

land surface temperatures may increase energy use

and water consumption, decrease air quality, alter

biotic communities, and affect human health (Grimm

et al. 2008; Wu 2014). Therefore, understanding the

relationship between UIS and LST is important for

understanding the interactions between climate

change and UHI, and improving urban environmental

sustainability (Wu 2013, 2014).

The relationship between UIS and LST has become

a major research focus in urban studies during the past

few decades, particularly in the context of climate

change and urban environmental conditions (Zhou

et al. 2004; Chen et al. 2006; Zhang et al. 2009a, b; Li

et al. 2011; Luo and Li 2014; Zhou et al. 2014b; Kuang

et al. 2015). Most of these studies have focused on

LST, not UHI intensity (i.e., urban–rural temperature

differences). The quantification of UHI is affected by

the delineation of ‘‘urban’’ and ‘‘rural’’ boundaries,

whereas LST measurements can be made on the pixel

level. Because most of these studies have focused on

single cities and individual urban regions, a compar-

ative and multi-scale understanding of the UIS–LST

relationship is still lacking. Specifically, the spatial

scale-dependence and seasonal and diurnal variations

of the UIS–LST relationship over broad regions are

not well understood, although relevant studies do exist

(Zhang et al. 2009a; Imhoff et al. 2010; Zhang et al.

2010, 2012; Luo and Li 2014; Zhou et al. 2014b).

Also, bioclimatic settings (associated with ecoregions

and climatic regions), likely an important modulator

of the surface UHI (Imhoff et al. 2010; Zhang et al.

2010, 2014; Bounoua et al. 2015), have not been

adequately considered in the study of the UIS-LST

relationship.

A substantial number of the recent UHI studies

have come out of China because of its unprecedented

speed and scale of urbanization in human history, as

well as increasing concerns with urbanization-induced

environmental problems (Wu et al. 2014). Since 1992,

China’s UIS area has been expanding at a rate of

6.54 % per year, which is probably the highest around

the world (Ma et al. 2014). With a wide range of

bioclimatic conditions and uneven urban growth rates

across the country, China provides an ideal laboratory

for studying how UIS affects LST and urban climate in

general. Taking advantage of a comprehensive dataset

of land covers and surface temperatures which covers

the entire mainland China, our study was designed to

address the following questions: (1) How does the

UIS–LST relationship change from the local city to the

ecoregion scale? (2) How does the UIS–LST relation-

ship change diurnally and seasonally on different

spatial scales? (3) How do vegetation and climate

affect the UIS–LST relationship on different scales?

Methods

Study area and data acquisition

Our study area was mainland China, which did not

include Taiwan and the islands in South China Sea

(Fig. 1). We used five types of remote sensing data in

our analysis: Moderate Resolution Imaging Spectro-

radiometer (MODIS)/Aqua 8-day LST composite

data, nighttime light (NTL) data, MODIS 16-day
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NDVI composite data, high-resolution images avail-

able on Google Earth, and land use/cover data. The

sources and relevant details of these data are described

below.

The version 5 MODIS/Aqua 8-day LST composite

data (MYD11A2) with a spatial resolution of

1 9 1 km in 2009 were obtained from the National

Aeronautics and Space Administration (NASA)/

Fig. 1 Locational maps of

the study sites in mainland

China on three spatial

scales: a 12 ecoregions, b 15

urban clusters, and c 45

urban core areas. The 12

ecoregions are (1) Junggar

Basin Semi-Desert (JBSD),

(2) Manchurian Mixed

Forests (MMF), (3)

Northeast China Plain

Deciduous Forests

(NCPDF), (4) Mongolian-

Manchurian Grassland

(MMG), (5) Huang He Plain

Mixed Forests (HHPMF),

(6) Central China Loess

Plateau Mixed Forests

(CCLPMF), (7) Changjiang

Plain Evergreen Forests

(CPEF), (8) Daba

Mountains Evergreen

Forests (DMEF), (9)

Sichuan Basin Evergreen

Broadleaf Forests (SBEBF),

(10) Jian Nan Subtropical

Evergreen Forests (JNSEF),

(11) Yunnan Plateau

Subtropical Evergreen

Forests (YPSEF), (12) South

China–Vietnam Subtropical

Evergreen Forests

(SCVSEF)

Landscape Ecol (2016) 31:1139–1153 1141

123



Goddard Space Flight Center (GSFC) (http://ladsweb.

nascom.nasa.gov/data/search.html). MYD11A2 LST

data were retrieved from clear-sky (99 % confidence

level) observations at 1:30 AM and 1:30 PM local

solar times, using a generalized split-window algo-

rithm (Wan and Dozier 1996). The data were average

clear-sky LSTs over the period of 8 days (Wan 2007),

with errors within 1 K in most tested cases (Wan

2008). The version 4 Defense Meteorological Satellite

Program’s Operational Linescan System (DMSP/

OLS) NTL data in 2009 were acquired from the

National Oceanic and Atmospheric Administration

(NOAA)/National Geophysical Data Center (NGDC)

(http://ngdc.noaa.gov/eog/dmsp/downloadV4compo

sites.html). The NTL data were given in 30-arc-second

grids. We projected the NTL data onto an Albers

conical equal area projection and resampled the data to

a pixel size of 1 km, based on a nearest neighbor

resampling algorithm.

The version 4 MODIS/Terra 16-day NDVI com-

posite data were obtained from NASA/GSFC (http://

ladsweb.nascom.nasa.gov/data/search.html) for the

year of 2009, with a spatial resolution of 1 9 1 km.

We also took advantage of high-resolution images

(e.g., Aerial Imagery, QuickBird, and IKONOS)

available on Google Earth, which contained rich spa-

tial information on land covers with a spatial resolu-

tion of less than 5 m. National land use/cover datasets

of China were provided by the data sharing infras-

tructure of the earth system science (http://www.

geodata.cn/Portal/index.jsp). Monthly precipitation

and temperature data in 2009 were obtained from the

China Meteorological Data Sharing Service System

(http://cdc.nmic.cn/home.do).

Selection of multiple spatial scales

To adequately address the problem of scale depen-

dence of the UIS–LST relationship, we explicitly

considered three spatial scales: the ecoregion, urban

cluster (i.e., the agglomeration of closely connected

cities), and urban core (i.e., the area with contiguous

urbanized pixels expanding from the city center)

(Fig. 1). The main justification for choosing these

three scales is that most existing UHI-related studies

have been carried out on these scales, and thus our

results would be comparable to previous ones.

Fig. 1 continued
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Although each of the three scales has been used in

previous studies, our study is among the first to

consider them simultaneously in a hierarchical

manner.

To ensure enough data for adequately addressing

the research questions without overburdening the

analysis, we selected 12 of the 64 ecoregions in China

classified by Olson et al. (2001), according to the

following criteria: (1) the ecoregion is located within a

major climate zone, (2) it includes the most rapidly

urbanizing areas in that region during the recent

decade, and (3) it contains a large enough number of

UIS pixels for regression analysis (Fig. 1a). Then, 15

urban clusters were chosen from the 12 ecoregions,

which included both national-level (e.g., Beijing-

Tianjin-Hebei, Yangtze River Delta, and Pearl River

Delta) and regional-level urban clusters (e.g., Hohhot-

Baotou-Ordos, Jinzhong, and Dianzhong) (Fig. 1b).

The map of urban clusters was created according to the

criteria outlined in Fang et al. (2005) and Fang (2011),

which included, among others, at least one megacity

with a total population of larger than one million, an

urbanization rate of above 50 %, and per capita GDP

of greater than 3000 US dollars. Finally, within each

urban cluster, we selected three urban cores of the

largest prefecture-level cities, each of which was

composed of contiguous urban pixels (Fig. 1c). The

specific methods for delineating urban cores are

described in the next section.

Quantification of urban impervious surfaces

A number of remote sensing-based methods have

been used to extract UIS (Lu et al. 2014). In this

study, we used the method developed by Ma et al.

(2014) to quantify UIS in mainland China because

of its improved accuracy. Five steps were carried

out to estimate the percent UIS value for each pixel

in urban cores. First, a thresholding technique was

adopted to extract urban cores, using the prepro-

cessed NTL data and land use/cover data (Liu et al.

2012). The optimal threshold was determined when

the urban cores extracted from the NTL data best

matched the urban cores extracted from the land

use/cover data in terms of the spatial extent. Second,

we calculated Vegetation Adjusted NTL Urban

Index (VANUI) in urban cores, with the following

formula (Zhang et al. 2013):

VANUI ¼ 1 � NDVIð Þ � NTLnor ð1Þ

where NDVI is the annual mean NDVI derived from

MODIS, and NTLnor is the normalized value of the

preprocessed NTL data. NTLnor was computed as:

NTLnor ¼
NTL� NTLmin

NTLmax � NTLmin

ð2Þ

where NTLmin and NTLmax are the minimum and

maximum values in the NTL data (0 and 63, respec-

tively). Third, we randomly generated samples with a

window size of 1 9 1 km in urban cores and obtained

their actual percent UIS values using Google Earth

images. Fourth, we developed linear regression mod-

els using the VANUI values of samples as the

independent variable, and the actual percent UIS

values of samples as the dependent variable. Fifth, we

applied the linear regression models and the VANUI

values acquired from step 2 to estimate the percent

UIS values in mainland China in 2009. To capture

regional differences in geography and socioeconomic

conditions, we divided China into eight regions and

performed all the steps for each region (Ma et al.

2014). Our earlier accuracy assessment showed that

this method had a much higher accuracy than other

existing methods using NTL data: the average root-

mean-square error (RMSE) was 0.128, mean absolute

error (MAE) was 0.105, systematic error (SE) was -

0.008, and correlation coefficient (R) was 0.846 (Ma

et al. 2014).

Land surface temperatures and bioclimatic data

We calculated the seasonal (i.e., summer and winter)

average LST values for daytime (1:30 PM) and

nighttime (1:30 AM), respectively. Summer includes

June, July, and August, and winter includes December,

January, and February (Imhoff et al. 2010; Zhou et al.

2014a). Taking seasonal mean LST for both daytime

and nighttime can reduce the LST data sensitivity to

environmental fluctuations (e.g., weather conditions).

NDVI, precipitation, and temperature data were

used to investigate how the UIS-LST relationship

would change with bioclimatic context. Average

NDVI data in summer and winter were calculated

for all urban core pixels in each region on different

spatial scales to reflect the ecological context. Average

precipitation and temperature data for both seasons

were obtained from the meteorological stations
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located within urban cores in each region to reflect the

climatic background (Zhou et al. 2014a). There were

193 meteorological stations in urban core areas at the

ecoregion scale, 107 at the urban cluster scale, and 37

at the urban core scale.

Data analysis

Among all existing studies of the UIS-LST rela-

tionship, linear regression has been the most com-

monly used method (Yuan and Bauer 2007; Imhoff

et al. 2010; Zhang et al. 2010), but other methods

such as exponential or logarithmic regressions have

also been used (Xu 2010; Myint et al. 2013). In this

study, we compared four models (i.e., linear,

exponential, logarithmic, and power models) based

on the values of Akaike’s information criterion

(AIC) and coefficient of determination (R2) to

determine the best model to quantify the UIS-LST

relationship. The best model is the one with the

lowest value of AIC and the highest value of R2

(Akaike 1978; Zhou et al. 2014b). In our study, the

linear regression model turned out to be superior to

other models at all three spatial scales. Thus, we

conducted linear regression to quantify the relation-

ship between UIS and LST, using the values of both

variables for all urban core pixels in each region on

different scales. All statistical analyses were per-

formed with SPSS 16.0 (SPSS Inc.).

Results

UIS-LST relationship at the ecoregion scale

At the ecoregion scale, UIS and LST were signifi-

cantly correlated for summer and winter as well as for

day and night, and the correlation was positive in

summer daytime/nighttime and winter nighttime, and

negative in winter daytime (Fig. 2a–d; Table S1).

Nearly all the ecoregions had a positive Pearson

correlation coefficient in summer days/nights and

winter nights (Fig. 3a). By contrast, half of the

ecoregions had a negative Pearson correlation coeffi-

cient in winter days, with the average value of -0.19

(Fig. 3a; Table S1). In general, the UIS–LST relation-

ship at the ecoregion scale was stronger in summer

than in winter, and stronger in daytime than in

nighttime for summer but weaker in daytime than in

nighttime for winter (Figs. 3a and 4; Table S1). In

other words, the relationship differed both seasonally

and diurnally. Most of the Pearson correlation coef-

ficients were larger than 0.30 in summer and smaller

than 0.20 in winter (Fig. 3a; Table S1). During

summer, the mean R2 of daytime was nearly twice

that of nighttime, but the mean R2 of nighttime was

about 2 times as high as that of daytime during winter

(Fig. 4). As noted later, this result of higher averaged

R2 in summer days than summer nights was not

obtained on the other two scales.

The R2 values of the UIS-LST relationship varied

substantially among ecoregions, without a clear trend

in space except for summer daytime (Fig. 5a–d). The

R2 values for summer daytime had a declining trend

from high to low latitudes (Fig. 5a). Particularly,

JBSD exhibited the largest R2 value of 0.42 during

summer daytime (Fig. 5a; Table S1). By contrast, the

summer daytime R2 values of ecoregions in southern

China (e.g., CPEF, DMEF, JNSEF, and SCVSEF)

were all smaller than 0.05 (Fig. 5a; Table S1).

UIS–LST relationship at the urban cluster scale

At the urban cluster scale, UIS and LST were also

significantly correlated, with pronounced seasonal and

diurnal variations (Fig. 2e–h; Table S2). The relation-

ship between the two variables was always positive

except for winter daytime during which the relation-

ship was negative or positive (Fig. 3b). The mean

value of Pearson correlation coefficient was 0.35 for

summer days, 0.44 for summer nights, and 0.32 for

winter nights (Fig. 3b; Table S2). Three quarters of the

ecoregions had a negative Pearson correlation coeffi-

cient for winter days, with a mean value of about

-0.20 (Fig. 3b; Table S2). Similar to the general

pattern at the ecoregion scale, the UIS–LST relation-

ship was stronger in summer than in winter, but the

relationship was generally stronger in nighttime than

in daytime for both seasons (Figs. 3b and 4; Table S2).

For example, the mean R2 of summer daytime was

almost 4 times that of winter daytime, and the mean R2

of winter nighttime was 3.2 times that of winter

daytime (Fig. 4). The R2 values of different urban

clusters also showed a high degree of spatial variabil-

ity, without any clear trends in space for all time

periods (Fig. 5e–h).
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UIS-LST relationship at the urban core scale

At the urban core scale, UIS and LST were again

found significantly correlated with each other. The

great majority of the Pearson correlation coefficients

for summer daytime/nighttime and winter nighttime

were positive, whereas most of those for winter

daytime were negative (Figs. 2i–l and 3c; Table S3).

The highest value of Pearson correlation coefficient

was 0.80 for summer days, 0.75 for summer nights,

and 0.80 for winter nights, while the lowest value of

Pearson correlation coefficient was -0.54 for winter

days (Table S3). The R2 values of the relationship

between UIS and LST varied seasonally and diurnally,

and were generally higher in summer than in winter

and higher in nighttime than in daytime (Fig. 4). The

mean R2 value was 0.21 for summer days, 0.32 for

summer nights, 0.06 for winter days, and 0.26 for

winter nights (Fig. 4). So, the R2 values of the UIS-

LST relationship at the urban core scale were gener-

ally higher than those at the two larger scales, and they

were also variable in space, without a clear trend

(Fig. 5i–l).

Discussion

How does the UIS-LST relationship change

with spatial scales?

Our results show that the relationship between urban

impervious surfaces and land surface temperatures

differed with spatial scales for the four different times

of analysis—daytime, nighttime, summer, and winter,

with mean R2 values increasing substantially from the

ecoregion to the urban cluster and urban core scales

(Fig. 4). For example, in both summer and winter, the

mean R2 at the urban core scale was about 2 times that
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Fig. 2 Examples of linear regressions between urban impervi-

ous surfaces (UIS, %) and land surface temperatures (LST, �C)

on three spatially nested scales—ecoregion (Northeast China

Plain Deciduous Forests, NCPDF), urban cluster (Harbin–

Daqing–Changchun), and urban core area (Changchun) and at

four different times (summer day, summer night, winter day, and

winter night)
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at the ecoregion scale for daytime and about 4 times

for nighttime (Fig. 4). This means that the UIS–LST

relationship became stronger on the average when the

scale of analysis was focused more on the urban core.

The relatively weak relationship between UIS and

LST on the broader scales (the urban cluster and the

ecoregion) was mainly because the different biocli-

matic conditions of ecoregions modified the effect of

UIS on LST. Imhoff et al. (2010) and Zhang et al.

(2010) have shown that the regional-scale ecological

context can act as an important modulator of the

surface UHI. In our study, the mean UIS values at

different spatial scales were similar (Fig. 6a), but the

mean NDVI values decreased substantially from 0.45

at the ecoregion scale to 0.30 at the urban cluster scale

and 0.28 at the urban core scale (Fig. 6b). Vegetation

has a negative effect on LST via increasing evapo-

transpiration (Buyantuyev and Wu 2010; Imhoff et al.

2010; Zhou et al. 2014b). Thus, our results suggest that

the relative impacts of vegetation on LST increase

from the urban core to the urban cluster and ecoregion

scales because of higher proportions of vegetation

cover on the broader scales, which consequently

weakens the UIS–LST relationship.

The range of R2 values of the relationship (i.e., the

difference between the highest and the lowest R2

values) also increased with decreasing scales, indicat-

ing that the variability in the strength of the relation-

ship was the highest on the urban core scale and the

lowest at the ecoregion scale. For example, the range

of R2 values for summer nights was 0.56 at the urban

core scale, 0.39 at the urban cluster scale, and 0.21 at

the ecoregion scale. The highest range of R2 values

occurred at the urban core scale for summer days, with

the largest R2 value of 0.65 and the smallest R2 value

of 0.00 (Fig. 4). The large variability in the effect of

UIS on LST on the urban core scale may be due to

large variations in building materials as well as the

composition and configuration of impervious surfaces

(Zhou et al. 2011; Zhang et al. 2012, Zheng et al. 2014;

Myint et al. 2013). For example, dark impervious

surfaces (e.g., asphalt) can absorb and retain a high

amount of heat, resulting in strong warming effects,

whereas white and bright-colored impervious surfaces

(e.g., high albedo concrete roads and white rooftops)

can help reduce LST as they reflect most of the

incoming solar radiation and maintain a low amount of

heat (Georgescu et al. 2014). Also aggregated imper-

vious surfaces and urban canyons have more intense

warming effects than interspersed and flat urban

morphological patterns (Oke 1981; Eliasson 1996;

Chen et al. 2012).

The spatial pattern of R2 values also showed large

variations across scales. At the ecoregion scale, the

UIS-LST relationship changed with bioclimatic set-

tings, with R2 decreasing from high to low latitudes for

summer days (Fig. 5a). This latitudinal trend may be
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Fig. 3 Pearson correlation coefficients for the UIS–LST

relationship at four different times (summer day, summer night,

winter day, and winter night) and on three different spatial scales

of analysis (ecoregions, urban clusters, and urban core areas)
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attributable to directional changes in temperature,

precipitation, and vegetation (Imhoff et al. 2010;

Zhang et al. 2010). This trend was not observed at

urban cluster and urban core scales (Fig. 5e–l), on

which the spatial pattern of the UIS-LST relationship

might be affected more strongly by other biophysical

and anthropogenic factors. For example, Zhou et al.

(2014a) found that both white-sky albedo (i.e.,

bihemispherical reflectance) and anthropogenic heat

emissions were strongly correlated with the surface

UHI intensity in China’s 32 major cities, with white-

sky albedo explaining 42 % of the variance in summer

daytime and anthropogenic heat emissions accounting

for 65 % of the variance in winter nigthtime.

The relationship between R2 values at different

times varied greatly with spatial scales as well

(Fig. 7). At the ecoregion scale, no correlation was

found between daytime R2 and nighttime R2 for

summer and winter, or between summer R2 and winter

R2 for daytime and nighttime (Fig. 7a–d). At the urban

cluster scale, one significantly positive relationship

was found between summer R2 and winter R2 in

nighttime (Fig. 7h). At the urban core scale, however,

all the relationships between R2 values at different

times were significantly positively correlated (Fig. 7i–

l). For example, summer nighttime R2 and winter

nighttime R2 were highly correlated at the urban core

scale, with a Pearson correlation coefficient of nearly

0.80 (Fig. 7l). These results suggest that at least some

of the key factors influencing the UIS–LST relation-

ship during daytime, nighttime, summer, and winter

are common at the local urban scale, but not on

broader scales.

How does the UIS–LST relationship change

diurnally and seasonally?

Our study has shown that there was a significantly

positive relationship between UIS and LST on three

spatial scales and for all time periods but winter days

(Fig. 3; Tables S1, S2, and S3). The positive relation-

ship has been reported in previous studies (Yuan and

Bauer 2007; Imhoff et al. 2010; Zhou et al. 2014a),

which can be explained by the well-understood

mechanisms of urban heat islands involving near-

surface energy budgets (Buyantuyev and Wu 2010;

Zhou et al. 2014b). The surface energy balance can be
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Fig. 5 Spatial pattern of the R2 of the UIS–LST relationship on three spatial scales: ecoregions (a–d), urban clusters (e–h), and urban

core areas (i-l) and at four different times: summer day, summer night, winter day, and winter night
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written as: Netall�waveradiationþAnthropogenic

heat releases ¼ Latentheat fluxþSensibleheat fluxþ
Groundheat flux (Arnfield 2003; Clinton and Gong

2013; Zhou et al. 2014a). Increased UIS can reduce

latent heat fluxes by decreasing evapotranspiration

from soil-vegetation systems, and increase ground

heat fluxes and sensible heat fluxes by absorbing more

solar energy and subsequently releasing heat into the

air. In addition, increases of UIS can also indirectly

augment anthropogenic heat emissions by transporta-

tion, industry, and building infrastructure, all of which

lead to increases in LST (Zhang et al. 2010; Zhou et al.

2014a; Kuang et al. 2015).

In contrast, UIS and LST were negatively corre-

lated in winter daytime for most study sites on all

three scales (Fig. 3; Tables S1, S2, and S3). This

may be caused by multiple reasons. First, the high

thermal inertia of building materials and shading by

tall buildings may act somewhat like vegetation

(Oke 1982; Buyantuyev and Wu 2010; Myint et al.

2013). Second, cold and dry soil surfaces without

vegetation during winter days may have a lower

specific heat capacity than impervious surfaces (e.g.,

the specific heat values of dry soils, asphalt, and dry

cement are 0.80, 0.92, and 1.55 kJ/Kg �C, respec-

tively). Thus, during cold winter days the temper-

ature of impervious surfaces tends to rise more

slowly than non-impervious surfaces nearby, result-

ing in a ‘‘cooling effect’’.

Previous studies reported that UIS and LST were

significantly correlated with each other for all seasons

(Yuan and Bauer 2007; Myint et al. 2013; Zhou et al.

2014b). Our study reveals large seasonal variability in

the UIS–LST relationship on all three spatial scales,

with higher mean R2 values in summer than in winter

(Fig. 4). This implies that the variance of LST can be

better explained by UIS in summer than in winter. This

seasonal variability may be attributed to the differ-

ences in solar radiation and the length of the day

between summer and winter. In summer, the solar

radiation is higher and the day is longer than in winter,

which allows UIS to absorb and store more sunlight,
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thereby affecting LST more strongly (Buyantuyev and

Wu 2010).

The UIS–LST relationship also had substantial

diurnal differences on all three spatial scales, with

stronger correlations in nighttime than in daytime,

except for summer at the ecoregion scale (Fig. 4). This

suggests that UIS has a larger effect on LST during

nighttime than daytime. During daytime, vegetation

can effectively decrease LST by increasing latent heat

flux, and thus reduce the influence of UIS on LST. At

night, the cooling effect of plants is minimal because

of the lack of evapotranspiration (Buyantuyev and Wu

2010). Moreover, there is a high level of anthro-

pogenic heat emissions at night, which can also

increase the effect of UIS on LST.

How do vegetation and climate affect the UIS–

LST relationship on different scales?

A number of studies have shown that vegetation and

climate can influence the surface UHI (Imhoff et al.

2010; Zhang et al. 2010; Zhou et al. 2014a), but their

effects on the UIS–LST relationship are yet to be

understood. Our study has demonstrated that these two

factors may affect the UIS–LST relationship substan-

tially, but the effects vary greatly with spatial scales

and time periods. Specifically, larger effects were

found for summer days at the ecoregion scale (Fig. 8;

Table S4), but little impact was observed for any time

period at the other two scales (Figs. S1, S2, and S3). At

the ecoregion scale, vegetation cover significantly

weakened the UIS-LST relationship for summer days

(Fig. 8a). More than 60 % of the variance in summer

daytime R2 was explained by mean NDVI alone. This

means that UIS tends to have a larger effect on LST in

ecoregions with lower vegetation cover. For example,

JBSD had the largest R2 value of 0.42 during summer

daytime, while having the lowest mean NDVI of 0.16

in summer (Fig. 8a). But vegetation had little impact

on the UIS-LST relationship for summer nights and

winter, mainly because of the absence or minimal

amount of evapotranspiration during nighttime and

winter (Yuan and Bauer 2007; Zhou et al. 2014a,

2014b) (Fig. S1a-c).

Similar to vegetation, climatic conditions (i.e.,

precipitation and temperature) were only found to

affect the UIS–LST relationship during summer

daytime and at the ecoregion scale (Figs. 8b–c and

S1d–i). High precipitations and high temperatures

tend to relax the relationship between UIS and LST

(i.e., reducing its R2), with more than 58 % and 37 %

of the variations in summer daytime R2 of the UIS–

LST relationship explained by mean precipitation and

temperature, respectively (Fig. 8b–c). This suggests

that ecoregions situated in dry and cold climates

generally have higher R2 values for summer days than

those under humid and hot climates. Humid and hot

regions often have much higher soil moistures which

dampen the effect of UIS on LST (Zhou et al. 2014a).

Latitudinal variations of climatic factors and vegeta-

tion (or NDVI) together seem to explain the general

trend that the UIS–LST relationship weakens from

north to south in China, as indicated by declining R2

(Fig. 5a).

At the urban cluster and urban core scales, the

effects of vegetation and climate on the UIS–LST

relationship were not detected (Figs. S2 and S3),

probably because other factors at these finer scales

played a more dominant role in determining the

relationship. A number of environmental and
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socioeconomic factors, such as landscape configura-

tion, surface albedo, anthropogenic heat emissions,

and city size in terms of urban population and

urbanized land, have been shown to affect the

magnitude and spatial pattern of surface UHIs (Tran

et al. 2006; Jenerette et al. 2007; Buyantuyev and Wu

2010; Zhou et al. 2011; Clinton and Gong 2013; Zhou

et al. 2014a). All of these factors may influence the

UIS-LST relationship at the urban cluster and urban

core scales, which demands further studies.

Conclusions

Our study has demonstrated that both the strength and

variability of the relationship between urban impervi-

ous surfaces and land surface temperatures tend to

increase from broader regional scales to the local

urban scale. The UIS–LST relationship also varies

diurnally and seasonally, with a positive correlation

for summer daytime/nighttime and winter nighttime

and a negative correlation for winter daytime. The

relationship is generally stronger in summer than in

winter, as well as stronger in nighttime than in

daytime. Bioclimatic conditions can substantially

modulate the UIS–LST relationship for summer

daytime across ecoregions, so that the relationship is

stronger in dry and cold regions and weaker in wet and

hot regions.

Although previous studies have shown that UIS

is generally a good predictor of LST (Sheng et al.

2015; Zhang et al. 2012; Zhou et al. 2014b), our

study reveals that UIS predicts LST primarily on

the local urban scale. This suggests that the amount

and configuration of UIS can be manipulated via

landscape planning most effectively at local urban

scales to mitigate urban heat island effects. Large

variations in the strength of the UIS–LST relation-

ship on the local urban scale further imply that this

mitigation potential is quite substantial. In addition,

our findings on the scale multiplicity, temporal

variations, and context dependence of the UIS–LST

relationship have important implications for better

understanding the environmental impacts of urban

impervious surfaces. One obvious lesson is that the

results of single-scale, single-place, or single-time

studies of UIS effects are partial or even mislead-

ing. This calls for multiscale, multi-seasonal, and

paired day-night studies in multiple regions. Thus,

using urban impervious coverage as ‘‘a key envi-

ronmental indicator’’ is promising, but can be quite

complex.

Acknowledgments We thank Zhifeng Liu and Zexiang Sun

for their assistance with data acquisition and processing. We

also thank anonymous reviewers for their valuable comments.

This research was supported in part by the National Basic

Research Programs of China (Grant No. 2014CB954302 and

2014CB954303) and the National Natural Science Foundation

of China (Grant No. 41321001).

References

Akaike H (1978) On the likelihood of a time series model.

Statistician 217–235

Arnfield AJ (2003) Two decades of urban climate research: a

review of turbulence, exchanges of energy and water, and

the urban heat island. Int J Climatol 23(1):1–26

Arnold CL, Gibbons CJ (1996) Impervious surface coverage—

the emergence of a key environmental indicator. J Am

Plann Assoc 62(2):243–258

Bounoua L, Zhang P, Mostovoy G, Thome K, Masek J, Imhoff

M, Shepherd M, Quattrochi D, Santanello J, Silva J, Wolfe

R (2015) Impact of urbanization on US surface climate.

Environ Res Lett 10(8):084010

Buyantuyev A, Wu J (2010) Urban heat islands and landscape

heterogeneity: linking spatiotemporal variations in surface

temperatures to land-cover and socioeconomic patterns.

Landscape Ecol 25(1):17–33

Chen L, Ng E, An X, Ren C, Lee M, Wang U, He Z (2012) Sky

view factor analysis of street canyons and its implications

for daytime intra-urban air temperature differentials in

high-rise, high-density urban areas of Hong Kong: a GIS-

based simulation approach. Int J Climatol 32(1):121–136

Chen X, Zhao H, Li P, Yin Z (2006) Remote sensing image-

based analysis of the relationship between urban heat

island and land use/cover changes. Remote Sens Environ

104(2):133–146

Clinton N, Gong P (2013) MODIS detected surface urban heat

islands and sinks: global locations and controls. Remote

Sens Environ 134:294–304

Eliasson I (1996) Intra-urban nocturnal temperature differences:

a multivariate approach. Clim Res 7:21–30

Elvidge CD, Tuttle BT, Sutton PC, Baugh KE, Howard AT,

Milesi C, Bhaduri B, Nemani R (2007) Global distribution

and density of constructed impervious surfaces. Sensors

7(9):1962–1979

Fang C (2011) New structure and new trend of formation and

development of urban agglomerations in China. Sci Geogr

Sin 31(9):1025–1034

Fang C, Song J, Zhang Q, Li M (2005) The formation, devel-

opment and spatial heterogeneity patterns for the structures

system of urban agglomerations in China. Acta Geogr Sin

60(5):827–840

Landscape Ecol (2016) 31:1139–1153 1151

123



Gallo KP, Adegoke JO, Owen TW, Elvidge CD (2002) Satellite-

based detection of global urban heat-island temperature

influence. J Geophys Res 107(D24):1–16

Georgescu M, Morefield PE, Bierwagen BG, Weaver CP (2014)

Urban adaptation can roll back warming of emerging

megapolitan regions. Proc Natl Acad Sci 111(8):

2909–2914

Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai

X, Briggs JM (2008) Global change and the ecology of

cities. Science 319(5864):756–760

Imhoff ML, Zhang P, Wolfe RE, Bounoua L (2010) Remote

sensing of the urban heat island effect across biomes in the

continental USA. Remote Sens Environ 114(3):504–513

Jenerette GD, Harlan SL, Brazel A, Jones N, Larsen L, Stefanov

WL (2007) Regional relationships between surface tem-

perature, vegetation, and human settlement in a rapidly

urbanizing ecosystem. Landscape Ecol 22(3):353–365

Kuang W, Liu Y, Dou Y, Chi W, Chen G, Gao C, Yang T, Liu J,

Zhang R (2015) What are hot and what are not in an urban

landscape: quantifying and explaining the land surface

temperature pattern in Beijing, China. Landscape Ecol

30(2):357–373

Li J, Song C, Cao L, Zhu F, Meng X, Wu J (2011) Impacts of

landscape structure on surface urban heat islands: a case

study of Shanghai, China. Remote Sens Environ 115(12):

3249–3263

Liu Z, He C, Zhang Q, Huang Q, Yang Y (2012) Extracting the

dynamics of urban expansion in China using DMSP-OLS

nighttime light data from 1992 to 2008. Landsc Urban Plan

106(1):62–72

Liu Z, He C, Zhou Y, Wu J (2014) How much of the world’s

land has been urbanized, really? A hierarchical framework

for avoiding confusion. Landscape Ecol 29(5):763–771

Lu DS, Li GY, Kuang WH, Moran E (2014) Methods to extract

impervious surface areas from satellite images. Int J Digit

Earth 7(2):93–112

Luo X, Li W (2014) Scale effect analysis of the relationships

between urban heat island and impact factors: case study in

Chongqing. J Appl Remote Sens 8(1):1–13

Ma Q, He C, Wu J, Liu Z, Zhang Q, Sun Z (2014) Quantifying

spatiotemporal patterns of urban impervious surfaces in

China: an improved assessment using nighttime light data.

Landsc Urban Plan 130:36–49

Myint SW, Wentz EA, Brazel AJ, Quattrochi DA (2013) The

impact of distinct anthropogenic and vegetation features on

urban warming. Landscape Ecol 28(5):959–978

Oke TR (1981) Canyon geometry and the nocturnal urban heat

island: comparison of scale model and field observations.

J Climatol 1(3):237–254

Oke TR (1982) The energetic basis of the urban heat island. Q J

R Meteorol Soc 108(455):1–24

Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND,

Powell GV, Underwood EC, D’amico JA, Itoua I, Strand

HE, Morrison JC, Loucks CJ (2001) Terrestrial ecoregions

of the world: a new map of life on earth a new global map of

terrestrial ecoregions provides an innovative tool for con-

serving biodiversity. Bioscience 51(11):933–938

Sheng L, Lu D, Huang J (2015) Impacts of land-cover types on

an urban heat island in Hangzhou, China. Int J Remote Sens

36(6):1584–1603

Sutton PC, Elvidge CD, Tuttle BT, Ziskin D (2010) A 2010

mapping of the constructed surface area density for S.E.

Asia—preliminary results. Proceedings of the 30th Asia–

Pacific Advanced Network Meeting:182–190

Tran H, Uchihama D, Ochi S, Yasuoka Y (2006) Assessment

with satellite data of the urban heat island effects in Asian

mega cities. Int J Appl Earth Obs Geoinf 8(1):34–48

Voogt JA, Oke TR (2003) Thermal remote sensing of urban

climates. Remote Sens Environ 86(3):370–384

Wan Z (2007) Collection-5 MODIS land surface temperature

products users’ guide. ICESS, University of California,

Santa Barbara

Wan Z (2008) New refinements and validation of the MODIS

land-surface temperature/emissivity products. Remote

Sens Environ 112(1):59–74

Wan Z, Dozier J (1996) A generalized split-window algorithm

for retrieving land-surface temperature from space. IEEE

Trans Geosci Remote Sens 34(4):892–905

Weng Q (2012) Remote sensing of impervious surfaces in the

urban areas: requirements, methods, and trends. Remote

Sens Environ 117:34–49

Wu J (2013) Landscape sustainability science: ecosystem ser-

vices and human well-being in changing landscapes.

Landscape Ecol 28(6):999–1023

Wu J (2014) Urban ecology and sustainability: the state-of-the-

science and future directions. Landsc Urban Plan

125:209–221

Wu J, Xiang W-N, Zhao J (2014) Urban ecology in China:

historical developments and future directions. Landsc

Urban Plan 125:222–233

Xian G, Homer C (2010) Updating the 2001 national land cover

database impervious surface products to 2006 using landsat

imagery change detection methods. Remote Sens Environ

114(8):1676–1686

Xu H (2010) Analysis of impervious surface and its impact on

urban heat environment using the normalized difference

impervious surface index (NDISI). Photogramm Eng

Remote Sens 76(5):557–565

Yuan F, Bauer ME (2007) Comparison of impervious surface

area and normalized difference vegetation index as indi-

cators of surface urban heat island effects in landsat ima-

gery. Remote Sens Environ 106(3):375–386

Zhang P, Bounoua L, Imhoff ML, Wolfe RE, Thome K (2014)

Comparison of MODIS land surface temperature and air

temperature over the continental USA meteorological

stations. Can J Remote Sens 40(2):110–122

Zhang P, Imhoff ML, Bounoua L, Wolfe RE (2012) Exploring

the influence of impervious surface density and shape on

urban heat islands in the northeast United States using

MODIS and landsat. Can J Remote Sens 38(04):441–451

Zhang P, Imhoff ML, Wolfe RE, Bounoua L (2010) Charac-

terizing urban heat islands of global settlements using

MODIS and nighttime lights products. Can J Remote Sens

36(3):185–196

Zhang Q, Schaaf C, Seto KC (2013) The vegetation adjusted

NTL urban index: a new approach to reduce saturation and

increase variation in nighttime luminosity. Remote Sens

Environ 129:32–41

Zhang X, Zhong T, Wang K, Cheng Z (2009a) Scaling of

impervious surface area and vegetation as indicators to

1152 Landscape Ecol (2016) 31:1139–1153

123



urban land surface temperature using satellite data. Int J

Remote Sens 30(4):841–859

Zhang Y, Odeh IO, Han C (2009b) Bi-temporal characterization

of land surface temperature in relation to impervious sur-

face area, NDVI and NDBI, using a sub-pixel image

analysis. Int J Appl Earth Obs Geoinf 11(4):256–264

Zheng B, Myint SW, Fan C (2014) Spatial configuration of

anthropogenic land cover impacts on urban warming.

Landsc Urban Plan 130:104–111

Zhou D, Zhao S, Liu S, Zhang L, Zhu C (2014a) Surface urban

heat island in China’s 32 major cities: spatial patterns and

drivers. Remote Sens Environ 152:51–61

Zhou L, Dickinson RE, Tian Y, Fang J, Li Q, Kaufmann RK,

Tucker CJ, Myneni RB (2004) Evidence for a significant

urbanization effect on climate in China. Proc Natl Acad Sci

USA 101(26):9540–9544

Zhou W, Huang G, Cadenasso ML (2011) Does spatial config-

uration matter? Understanding the effects of land cover

pattern on land surface temperature in urban landscapes.

Landsc Urban Plan 102(1):54–63

Zhou W, Qian Y, Li X, Li W, Han L (2014b) Relationships

between land cover and the surface urban heat island:

seasonal variability and effects of spatial and thematic

resolution of land cover data on predicting land surface

temperatures. Landsc Ecol 29(1):153–167

Landscape Ecol (2016) 31:1139–1153 1153

123


	A hierarchical analysis of the relationship between urban impervious surfaces and land surface temperatures: spatial scale dependence, temporal variations, and bioclimatic modulation
	Abstract
	Context
	Objectives
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Study area and data acquisition
	Selection of multiple spatial scales
	Quantification of urban impervious surfaces
	Land surface temperatures and bioclimatic data
	Data analysis

	Results
	UIS-LST relationship at the ecoregion scale
	UIS--LST relationship at the urban cluster scale
	UIS-LST relationship at the urban core scale

	Discussion
	How does the UIS-LST relationship change with spatial scales?
	How does the UIS--LST relationship change diurnally and seasonally?
	How do vegetation and climate affect the UIS--LST relationship on different scales?

	Conclusions
	Acknowledgments
	References




