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Abstract Quantifying the spatiotemporal patterns of air pollution in urban areas is essential
for studying ecological processes, environmental quality, and human health in cities. To
adequately characterize or monitor air pollution patterns, one important issue is scale because
the concentrations of air pollutants are temporally dynamic and spatially heterogeneous. Our
research addresses the scale issue in air quality monitoring and analysis by considering the
following research questions: (1) How does the spatial pattern of ozone change with the
temporal scale of analysis? (2) How does the spatial pattern of PM10 change with the temporal
scale of analysis? (3) What implications do these scale effects have for designing and
evaluating air pollution monitoring networks? We systematically examined these questions
based on data from official air pollution monitoring networks in the Phoenix metropolitan
region, Arizona, USA. Our results showed that spatial patterns of both ozone and PM10 may
change substantially with the temporal scale of analysis. Ozone patterns at broader (but not
finer) temporal scales were more consistent across years, and exhibited a more uniform,
regionalized pattern. PM10 patterns were less consistent across years than ozone, and exhibited
a more localized effect. Spatial patterns of PM10 also varied seasonally. Our study demon-
strates that it is critically important to consider the temporal and spatial scales in designing or
evaluating air monitoring networks in particular and in conducting air pollution research in
general.
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Introduction

Monitoring the spatial and temporal patterns of air pollutants in urban areas is necessary for
protecting human health and ensuring environmental justice. To accurately assess air pollutants
and identify populations at risk, a critically important first step is to determine how many air
sampling stations are needed and where they should be placed. Although it would be desirable
to have a dense network of air pollution monitors that covers the full spatial extent of an urban
region, this is infeasible because of physical, fiscal, and technical constraints. Establishing an
air monitoring site takes significant resources, and issues such as location, objective, power,
and security all have to be considered (Maricopa County Air Quality Department 2011;
Arizona Department of Environmental Quality 2011b). Thus, policy makers and resource
managers need multiple sources of information in order to maximize their limited resources
when designing or improving air monitoring networks. A fundamentally important but largely
ignored issue in evaluating and designing air pollution monitoring networks is spatiotemporal
scale. Scale is a central issue in ecological and geographic sciences and particularly in
landscape ecology which studies the relationship between spatial pattern and ecological
processes across a range of scales (Wu et al. 2000; Pickett and Cadenasso 1995; Turner
1989). Two key components of scale are grain size (corresponding to spatial or temporal
resolutions) and extent (the spatial expanse or time duration of a study) (Wu et al. 2006).
Spatial patterns, ecological processes, and their relationships are all scale-dependent, meaning
that their characteristics and controls vary with the scale of observation or analysis (Levin
1992; Wu and Loucks 1995). Accurately assessing air pollution in an urban area requires the
generation of time series of spatial patterns (maps) of air pollutants, and these patterns are most
likely scale dependent as with ecological patterns. This scale dependence of air pollution
patterns has important implications for the design of monitoring networks and the analysis of
data obtained from them. Capturing spatial and temporally heterogeneous air pollution patterns
can have important implications, including evaluating epidemiological effects or conducting
social justice studies at different scales of exposure (Digar et al. 2011; Loo 2007). While the
scale issues have been scrutinized extensively in ecology and geography, there is little
landscape ecological work done on how scale matters in monitoring and analyzing the
spatiotemporal patterns of air pollutants.

Thus, we attempted to address this research problem in the Phoenix metropolitan region,
one of the fastest-growing urban areas in the United States and home to more than 4 million
people (Luck and Wu 2002; Berling-Wolff and Wu 2004). With increasing anthropogenic
activity, health standards for air pollution are frequently violated in this desert city (Bolin et al.
2000; Arizona Department of Environmental Quality 2011a). Ground-level ozone and partic-
ulate matter less than ten microns in size (PM10) are the two pollutants currently of most local
concern, as the region is classified as being in non-attainment of standards for these pollutants
(Arizona Department of Environmental Quality 2009; U.S. Environmental Protection Agency
2009a). Specifically, our study was designed to address the following research questions:

1. How does the spatial pattern of ozone change with the temporal scale of analysis (i.e.
temporal extent)?

2. How does the spatial pattern of PM10 change with the temporal scale of analysis?
3. What implications do these scale effects have for designing and evaluating air pollution

monitoring networks?

We hypothesized that, due to its chemical characteristics, ozone would be a regionally-
scaled pollutant and its spatial pattern would be more uniform across space and more
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consistent between sampling years. We also hypothesized that ozone would have a more
apparent urban-to-rural gradient and be more stable outside of the urban area. By contrast, we
hypothesized that the spatial pattern of PM10 would be more localized in relation to sources
and less consistent across temporal scales.

Methods

Study area

The study is in the Phoenix metropolitan statistical area (MSA) in South-Central Arizona
(Fig. 1). The MSA, within Maricopa and Pinal Counties, is a thriving area with more than 20

Fig. 1 Topographical map of the Phoenix Metropolitan Statistical Area (shaded) and surrounding rural areas,
depicting the ozone and PM10 study areas and monitoring sites. Note that some sites combined both ozone and
PM10 monitors
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self-governing municipalities. The rural areas of Maricopa and Pinal counties contain signif-
icant agriculture, including livestock and irrigated cropland. The region has experienced
dramatic growth since the end of World War II, with population in the MSA expanding from
331,000 in 1950 to almost 4.2 million in 2010 (Wu et al. 2011). This growth has been
exponential, with populations in Pinal and Maricopa Counties increasing by 99.9 % and
24.2 %, respectively, between the 2000 and 2010 census (U.S. Census Bureau 2011).

The Phoenix region is geographically situated in a river valley and is surrounded by
mountainous topography. The region is located in arid, sub-tropical latitudes and has
predominantly high atmospheric pressure, and thus light winds and weak atmospheric
circulation. This prevailing lack of strong atmospheric circulation, in combination with
the valley location, impedes the dispersion of pollutants out of the urban area (Ellis
et al. 1999, 2000).

Industries and transportation in the Phoenix MSA region, such as agriculture, sand and
gravel mining, construction, vehicle traffic, and unpaved roads in the urban periphery, in
combination with the dry desert climate, create considerable sources for PM10 pollutants
(Maricopa County Air Quality Department 2009; Bolin et al. 2000). Ozone is a secondary
pollutant and is not directly emitted; however, the abundant sources of ozone precursors, e.g.
volatile organic compounds (VOCs), carbon monoxide (CO), and oxides of nitrogen (NOx),
mixed with the commonly warm, sunny days, create an environment where active photo-
chemical reactions produce significant amounts of ozone pollutants near the ground level (Ellis
et al. 1999; Maricopa County Air Quality Department 2009).

For this study, the Phoenix MSA region was divided into ozone and PM10 study
areas (Fig. 1). We designed these study areas based on their geographic features and
the location of existing pollution monitoring sites. We also explicitly chose these
areas, i.e. the homogenous metropolitan area with a shallow buffer of nearby rural
sites, for their assumed stationarity of data. Ozone is hypothesized to be a more
regionally-scaled pollutant that is easily transported because of its chemical lifecycle,
and as a secondary pollutant it can occur in broader areas not necessarily near its
precursor sources. On a diurnal basis, precursors, e.g. CO, VOC, and NOx, react with
sunlight to produce O3 molecules. However, at night, O3 in the nocturnal boundary
layer will react with nitric oxide (NO) in a titration reaction that converts NO to NO2

while ‘scavenging’, or destroying, O3 molecules. Ozone pollution in the urban core,
with ample NO sources, can often virtually disappear overnight, only to begin the
cycle anew the next morning; while rural areas have more persistent ozone concen-
trations which can travel through the atmosphere (Gregg et al. 2003; Seinfeld and
Pandis 2006; National Research Council 1991). Therefore, ozone concentrations are
also hypothesized to be much more temporally variable within urban areas while more
stable in rural areas. Thus, we designed the ozone study area to include rural areas
further away from the urban center, increasing the number of sites for the statistical
analyses, while still maintaining assumed stationarity. The ozone study area is ap-
proximately 2.3 million hectares in size and contains 32 pollution monitoring sites,
including several in downwind uninhabited wilderness areas (Fig. 1).

PM10, in contrast, is hypothesized to be a more localized pollutant. The PM10 study area is
approximately 1 million hectares in size, and contains 30 pollution monitoring sites (Fig. 1).
Because of the limitations of this assumed stationarity and the location of existing monitoring
sites, the PM10 study area is much smaller than the ozone study area. PM10 is hypothesized to
be a far more temporally variable and spatially localized pollutant than ozone, and the size of
the study area was designed to be smaller to maintain a reasonable assumption of stationarity
(Pohjola et al. 2002; Seinfeld and Pandis 2006).
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Data acquisition and processing

We obtained air pollution data for the study from the United States Environmental Protection
Agency’s (EPA) Air Quality System (AQS) database. These data were generated and submit-
ted to AQS by local government air pollution agencies at the state, county, and tribal levels.
This study utilizes data from 32 ozone and 30 PM10 monitoring stations operated by these
local agencies within the Phoenix MSA (Table 1). These air pollution monitors all complied
with the EPA’s Federal Reference Method or Federal Equivalency Method; thus the sampling
equipment was approved for taking official air pollution measurements and rigorous mainte-
nance and quality assurance plans for the equipment and data were required and verified (Code
of Federal Regulations 2009; Maricopa County Air Quality Department 2011; Arizona
Department of Environmental Quality 2011a).

We collected ozone data for the study in the time span of 2008 through 2010, with each of
the three years being analyzed separately and compared with each other. The finest temporal
resolution (or grain size) of these data is 1 h (i.e., raw data were one-hour averages). To
examine the effects of different temporal scales on the air pollution pattern analysis,
we focused on four temporal extents (i.e., time durations over which average values
of measurements were derived): 1 h (at 15:00 on July 15), 8 h (15:00–22:00 on July
15), 1 month (July), and a season (April–October) (Table 2). The seasonal average
was chosen instead of an annual average because many of the ozone monitoring sites
only operate during this time period.

We also analyzed PM10 data and compared them independently for the years 2008 through
2010. The temporal resolution for PM10 was a 24-h average measured 1 day out of every six
(1-in-6 day basis), as this is the operating schedule for some of the PM10 monitors. Most PM10

monitors operate on a finer time scale, collecting daily 24- or 1-h averages; however, all finer
averages were rolled into a 24-h average and all data outside of the 1-in-6 day schedule were
eliminated to create a consistent coarse resolution. These data were then analyzed at three
different temporal extents: daily, monthly, and annual; daily and monthly extents included both
winter and summer seasons (Table 2).

Data analysis

It is desirable to use a number of methods when performing geostatistical or spatial analysis,
such as variograms, covariances, or correlograms (Rossi et al. 1992). Comparing and con-
trasting the results from multiple methods and at multiple scales provide a more comprehen-
sive understanding with more robust conclusions (Wu 2004; Jelinski and Wu 1996). In that
spirit, this study uses several techniques to explore the data and address the research questions.

Table 1 List of agencies operating monitoring stations within the study area. Agencies submit their data to the
EPA’s AQS database which was the source of data for this study

Agency Type of agency # O3 stations # PM10 stations

Arizona Department of Environmental Quality State 3 2

Fort McDowell Yavapai Nation Tribal 1 1

Gila River Indian Community Tribal 2 1

Maricopa County Air Quality Department Local (County) 17 14

Pinal County Air Quality Control District Local (County) 5 9

Salt River Pima-Maricopa Indian Community Tribal 4 3

Urban Ecosyst (2014) 17:855–874 859



Trend analysis

The first technique used was trend analysis, a useful method of exploring data when no a priori
knowledge exists. For non-spatial data, a common procedure is to use regression to explore the
relationship between independent and dependent variables. This procedure is also appropriate
for spatial data, with the X-Y coordinates as the independent variable and the pollution
concentrations, or Z-value, as the dependent variable (Fortin and Dale 2005).

The data exploration was accomplished with the Trend Analysis tool in the ArcMap
Geostatistical Analysis Extension, a Geographical Information System (GIS) application
(ESRI 2010). Using the tool, the study area was overlaid with a grid within which monitoring
sites were placed according to their X-Y coordinates. The measured pollution concentrations
from each site were then displayed as vertical sticks in the Z axis (Fig. 2). The pollution
concentrations were projected on the X-Z and Y-Z plane to give a graphical depiction in a
spatially-explicit manner, i.e. north to south and east to west. A second-order polynomial
(quadratic) multiple regression trend line was fitted to the two Z planes to show the spatial
trend of the data (Fig. 2).

This analysis is a generalized ad hoc interpolation of the data with clear representation of
the spatial trends. It is a global interpolation and not intended to model local spatial patterns of
pollution. We compared multiple temporal extents and multiple years against each other to
examine how those trends would change with scale.

Correlation analysis

The second technique used was correlation analysis, similar to the method used by Ito et al
(2001, 2004). We compared data from all 32 ozone and 30 PM10 monitoring sites in a matrix
format and calculated the coefficient of determination between each pair of sites. These
correlations were cross-referenced with the distance between the sites and displayed in a
correlogram. A trend line was also fitted to each correlogram.

Correlograms provide a useful method of visualizing the spatial dependence between data
points in relation to distance, although it is a general method that makes no determination of
exogenous or endogenous processes effecting the pattern (Fortin and Dale 2005). The primary
reason for using correlation analysis in this study was to explore how the spatial dependence of
air pollution patterns would change with scale.

Table 2 Multiple time scales used to analyze the spatiotemporal patterns of ozone and PM10 in the Phoenix
metropolitan region

Pollutant Temporal
resolution

Study
years

Temporal extents

Ozone 1-h Averages,
continuous
sample
grain

2008–2010 Seasonal
(Apr–Oct)

Monthly
(July)

8-h (July 15,
15:00–22:00)

1-h (July 15,
15:00)

PM10 24-h Averages,
1-in-6 day
sample
grain

2008–2010 Annual Monthly
(Jan)

Monthly
(Aug)

Daily (Jan 7
[2008,
2009], Jan
8 [2010])

Daily (Aug
22 [2008],
23 [2009],
24 [2010])

Note that for PM10 the daily extent is applied to different days in the different sampling years based on the
running time of the 1-in-6 day schedule
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Semivariance analysis

The third technique used was semivariance analysis, which is useful for quantifying the
structure of spatial autocorrelation, and necessary for determining the values of unmeasured
locations using kriging (q.v. next section). Semivariance usually is plotted against the separa-
tion distances (or lag distance, h) between two points in space to create a semivariogram
(Fig. 3). The range in the semivariance plot indicates the distance within which spatial
autocorrelation exists and beyond which statistical independence in the data begins (Griffith

Fig. 3 Examples of generalized semivariograms—the spherical and Gaussian models. The key parameters of a
semivariogram are: the nugget variance (variability due to local random effects and measurement errors), the
range (distance up to which the spatial structure varies), the sill (plateau of semivariance values, or the end of
spatial autocorrelation), and the structural variance, which is the difference between the sill and the nugget
(variability due to spatial structure). The spatial lag, or distance between points, is h, and the semivariance value
is γ(h). This study found that ozone data fit the Gaussian model better, while PM10 data best fit the spherical
model. Refer to Online Supplement 2 for examples of actual experimental semivariograms from this study

Fig. 2 Illustration of the use of the Trend Analysis tool for depicting the spatial pattern of air pollutants in the
Phoenix metropolitan region. The monitoring sites for ozone are marked in green on the gridded map on the left,
and their concentrations are displayed in a 3-dimensional space on the right. The height of the Z-axis ‘stick’ is
proportional to the pollution concentration over a given temporal extent. The urban areas of Phoenix are also
depicted as a reference in relation to the surrounding rural areas
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1992; Rossi et al. 1992; Fortin and Dale 2005). Semivariance between each pair of samples is
computed based on the following equation:

bγ hð Þ ¼ 1

2n hð Þ
X

i¼1

n

zi − ziþh½ �2 ð1Þ

where: bγ hð Þ is the semivariance for interval distance class h, n(h) is the number of pairs of
samples for the lag interval h, zi is the is the measured sample value at point i, and zi+h is the
measured sample value at point i + h.

The software, GS+: Geostatistics for the Environmental Sciences (Gamma Design Software
2006) was used for the semivariance analysis. Sample locations were formed into lag intervals
with uniform distance. These lag intervals need to be small enough to capture the pattern,
though if they are too small it will be unnecessarily patchy (Fortin and Dale 2005). Specifi-
cally, the maximum lag distance was set smaller than one half the spatial extent of the dataset
(Meisel and Turner 1998). The shortest distance between sample points was used as the
uniform distance with PM10 data, though a slightly longer distance was used for ozone points
to reduce excessive patchiness. Data were log or square-root transformed as appropriate to
reduce skewness (Fortin and Dale 2005), and the h-lags were plotted in h-scattergrams to
identify extreme outliers to be removed, as a necessary process described by Rossi, et al.
(1992). The prepared data were modeled in isotropic semivariograms using the Gaussian
model for ozone and the spherical model for PM10, as these models consistently produced the
least error when paired with the respective parameter (Fig. 3, Online Resource 2). By
definition of the GS + software, the sill never meets the asymptote in the Gaussian model;
therefore range is estimated as the distance at which the sill is within 5 % of the asymptote
(Gamma Design Software 2006). See Online resource 1 and 2 for further details on the
parameters of the semivariance analysis.

Kriging

Kriging is a geostatistical interpolation method to estimate values at unsampled locations based
on the spatial autocorrelation structure quantified in the semivariance analysis (Cressie 1990;
Fortin and Dale 2005). When additional sampling is too expensive or difficult to accomplish,
as is often the case with air pollution monitoring, kriging provides an effective way of mapping
out the spatial pattern of the pollutant over the large area. Our kriging of the maps of ozone and
PM10 concentrations over the study area was conducted using the Geostatistical Analysis
Extension within ArcMap (ESRI 2010). All input settings were matched with those of
the GS + software to maintain consistency with our semivariance analysis. Thematic
maps were created at each temporal scale, for both ozone and PM10, so as to create a
visual comparison of spatial patterns between scales.

Results

Spatiotemporal patterns of ozone

Trend analysis of ozone

Our analysis of data from the 32 ozone monitoring sites showed that the spatial trend of ozone
concentration varied with different temporal extents in each of the three study years (2008–
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2010) (Fig. 4). The ozone pattern tended to be consistent across the 3 years on broader scales
(i.e., the seasonal and monthly extents), but not on finer scales (i.e., the 8-h and hourly
extents). On the seasonal and monthly scales, the highest ozone concentration consistently
occurred in the northeastern section of the study area, but this was not the case on the finer
scales (Fig. 4) Because the urban core is located toward the top middle of the study area and
because the dominant wind direction is to the northeast (Pardyjak et al. 2009), the highest
ozone concentration on the seasonal and monthly scales occurred in the rural mountainous
areas downwind of the urban center. On shorter temporal scales (especially the hourly extent),
the location of the highest concentration of ozone was much closer to the urban core, with the
urban areas generally having higher ozone levels than the rural areas (Fig. 4).

Fig. 4 Trend analysis results showing spatial patterns of ozone concentration at different temporal extents and in
different years in the Phoenix metropolitan region. The trend line on the 3D graphs depicts the concentration
trend of pollutants across the study area and changes to the trend line between scales is the focus of the trend
analysis method. Refer to Fig. 2 for details on the elements within each 3-D graph
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Correlation analysis of ozone

The degree of correlation in ozone concentration between monitoring sites generally decreased
with increasing between-site distances, but the specific pattern differed between the long
(seasonal and monthly) and short (8-h) scales (Fig. 5). The correlograms on the longer scales
were also similar between years. However, the distance-based correlation pattern of ozone at
the 8-h scale was different quantitatively from that on the longer scales, and highly variable
between the three study years (Fig. 5). Except for the 8-h scale in 2009, the results of
correlation analysis showed that the majority of ozone monitoring sites were highly correlated
with each other (over 70 %) within a distance of 30 km.

Semivariance analysis of ozone

The range—the distance over which ozone concentration was spatially autocorrelated—
changed with temporal scales and between the three study years (Fig. 6; Online resource 1).
In certain cases, the range for ozone was approaching 200 km, which is outside the spatial
extent of the study area. The longest spatial autocorrelation range was found at the monthly
scale, not at the longest temporal scale (seasonal). However, the range showed a consistent
decreasing trend as the temporal scale became shorter than a month (Fig. 6).

Fig. 5 Correlograms of ozone concentration on different temporal scales and in different years in the Phoenix
metropolitan region. Each X axis represents distance from 0 to 180 km. Each Y axis represents the coefficient of
determination (r2) from 0.00 to 1.00
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Kriging interpolation of ozone

The krigged maps showed that ozone concentrations across the study area were relatively low
at the seasonal scale, but increased appreciably with decreasing temporal scales (Fig. 7). The
northeast mountainous region of the study area had higher ozone concentrations on the
seasonal and monthly scales, with little variation in space and between years. This spatial
pattern of ozone began to change at the 8-h scale as the areas of high ozone concentrations
intensified with appreciable differences between years. At the 1-h scale, which is 3:00–4:00
P.M. in a summer afternoon, ozone levels were almost at their highest for the entire region
(Khoder 2009). At this fine scale, the spatial pattern of higher ozone concentrations occurred in
both the urban and rural areas, and also varied considerably between years (Fig. 7).

Spatiotemporal patterns of PM10

Trend analysis of PM10

Data for PM10 were analyzed for summer and winter seasons on three different temporal
scales: annual, monthly, and daily. The spatial pattern of PM10 was more variable between
years than that of ozone, but the general trend shown in spatial pattern was similar (Fig. 8). The
spatial trend of PM10 did not change appreciably between the temporal scales, but differences
were noticeable between summer and winter. In particular, PM10 levels tended to be higher in
the urban areas in winter, but in the rural areas in summer (Fig. 8). The spatial pattern at the
annual scale closely resembled that of August, implying that the summer pattern was predom-
inant most of the year.

One site, located in rural Pinal County south of the Phoenix metropolitan area, had higher
PM10 concentrations than all other sites, regardless of scale or season. This site, known as the
Cowtown monitor, was surrounded by agriculture operations (including cattle feedlots) and

Fig. 6 Effects of temporal scale (extents) on autocorrelation ranges of ozone. Range is the distance (in km) over
which spatial autocorrelation exists among the ozone monitoring sites, as determined in semivariogram analysis.
Note that the 1-h scale has much shorter ranges than the other scales, and more variation between years,
suggesting a major change in ozone patterns between the 1- and 8-h scales
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not far from housing developments (Arizona Department of Environmental Quality 2010). The
Cowtown monitor was sited as a hotspot monitor of local agglomerated sources, and as such
had particulate concentrations that were much higher than other monitors in the region
(Arizona Department of Environmental Quality 2010; U.S. Environmental Protection
Agency 2009b). The Cowtown monitor was included in the trend analysis, but excluded as
an outlier in the semivariogram analysis.

Fig. 7 Krigged maps of ozone concentrations, each of which is bordered by the ozone study area shown in
Fig. 1. Black dots represent the ozone monitoring sites; highways are represented as lines. Ozone concentrations
range from 0.028 to 0.080 PPM
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Correlation analysis of PM10

The PM10 correlation analysis was only conducted at the annual and monthly (winter and
summer) scales because there was only a single value at the daily scale. The distance-based
correlation patterns of PM10 were more variable between scales and between years than those
of ozone (Fig. 9). For the annual-scale pattern, high-levels of correlation (>70 %) appeared

Fig. 8 Spatial patterns of PM10 concentration at different temporal extents and in different years. Refer to Fig. 2
for details on the elements within each 3-D graph
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within 10 to 20 km. At the monthly scale, however, the correlation disappeared. August 2009
is an extreme exception, however, with most of the correlations being above the 80 %
level, even so far as 120 km. August 2009 had hotter and drier weather than August
2008 or 2010.

Semivariance analysis of PM10

The ranges of PM10 were, in general, less than 50 km in distance for different
temporal scales and study years (Fig. 10)—much shorter than those of ozone. Unlike
ozone, the ranges of PM10 tended to get longer with shorter temporal scales, with
ranges longer in winter than summer. Major differences in the PM10 patterns occurred
between the daily and monthly scales. January 2010, an exceptionally rainy month,
exhibited a multi-scale nested semivariogram (Robertson and Gross 1994). The first
sill evident in the semivariogram was reached at 20 km, similar to the other sample
years. The second sill was estimated by the GS + software to be reached at 159 km,
which is outside of the study area. The semivariogram on August 24, 2010, was also
different from the other sample years with an apparent linear pattern with no sill. The
study area was experiencing a weather event on that day with windy conditions out of the north,
which is unusual.

Fig. 9 Correlograms of PM10 concentration on different temporal scales and in different years in the Phoenix
metropolitan region. Each X axis represents distance from 0 to 140 km. Each Y axis represents the coefficient of
determination (r2) from 0.00 to 1.00
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Kriging interpolation of PM10

The Krigged maps of PM10 showed that concentrations tended to be higher in the southern
agricultural portion of the study area, while the urban areas in the northern portion had the
lowest concentrations, especially at higher elevations (Fig. 11). The overall spatial pattern at
the annual scale was fairly consistent between the three study years, all showing a PM10

‘hotspot’ in the south-central portion of the study area (the Cowtown monitor as mentioned
previously).

At the monthly temporal scale, the PM10 pattern varied between winter and summer, with
the summer pattern more closely resembling the annual pattern and having a distinct urban/
rural gradient. PM10 winter concentrations in the southern agricultural areas were lower and
more comparable with the northern urban areas. In January 2009, the urban area had the
highest PM10 concentrations in the study area. The pattern between study years at the monthly
scale was also similar to each other, although there appeared to be more variation between the
summer months. At the daily scale, the spatial pattern of PM10 showed the greatest variability
between scales and between years (Fig. 11).

Discussion

Changing ozone patterns on different temporal scales

Our study has shown that spatial patterns of ozone in the Phoenix metropolitan region may
change substantially with the temporal scale of analysis. For example, the results of trend
analysis and Kriging indicated consistently higher concentrations in the northeast portions of
the study area on the longer time scales (i.e. seasonal and monthly), but this pattern dissipated
on shorter time scales (i.e., the 8-h and 1-h scales). Likewise, the correlograms showed high
degrees of correlation with strong trends at the seasonal and monthly scales, but not at the finer

Fig. 10 Effects of temporal scale (extents) on spatial autocorrelation ranges of PM10, as determined in
semivariogram analysis. The semivariogram from Jan 2010 exhibited two nested sills giving a multi-scalar
range. The Aug 2010 daily semivariogram did not display a sill, as the data appeared to be linear in nature
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Fig. 11 Krigged maps of PM10 concentrations, each of which is bordered by the PM10 study area shown in
Fig. 1. Black dots represent the PM10 monitoring sites, and highways are represented as lines. The PM10

Concentration color scale ranges from 0 to 150 μg/m3
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scales. Our results from semivariance analysis further indicated that the spatial autocorrelation
ranges for ozone were quite sensitive to the temporal scale of analysis.

These patterns were not unexpected, given the meteorological conditions in this region of
Arizona and the chemical lifecycle of ozone and its relation to other urban pollutants, such as
NOx. Ozone requires the mix of VOCs, NOx or CO, and sunshine to be created, but excessive
NOx also scavenges O3 molecules at night when the ozone reaction stops. Thus urban areas
with high NOx sources often have a reduction in ozone concentrations overnight. In contrast,
rural areas often maintain steady concentrations of ozone after dark and over time, as there is
not a sufficient amount of NOx to scavenge it and the other sinks of O3, such as dry deposition,
occur much slower (Gregg et al. 2003). These dynamics likely account for the spatial patterns
of higher ozone concentrations in the downwind rural areas of the Phoenix metropolitan
region. Also, the average wind direction in the region is from west to east, and there are also
daytime anabatic winds which push ozone out of the urban areas and up against the mountains
east of the urban valley (Ellis et al. 1999). A nighttime katabatic wind will drain some of the
pollution back into the urban area, but the long-term effect is to have higher ozone concen-
trations in the eastern mountains.

These results confirm our hypothesis that ozone is a regional-scaled pollutant with long-
distance ranges for spatial autocorrelation (i.e. more uniform across space), at least over the
longer seasonal and monthly temporal scales. At the shorter 8-h and, especially, 1-h scales,
however, this hypothesis is no longer valid as ozone exhibits short-ranged patterns more
strongly influenced by local factors. A key message here is that the spatial patterns of ozone do
change with temporal scales.

Changing PM10 patterns on different temporal scales

The spatial patterns of PM10 also varied with temporal scales and between study years. In
particular, major scale effects occurred between summer and winter months, with summer
showing a much higher rural-to-urban pollution gradient than winter. The correlation analysis
showed that PM10 concentrations had little correlation over long distances at the monthly
scale, and this result was corroborated by the generally much shorter ranges from semivariance
analysis. Once again, meteorological factors and source locations were likely the dominating
determinants for the patterns of PM10.

PM10 is not as easily transported as finer particles because it is heavier and tends to settle
out of the atmosphere sooner (Chung et al. 2012). Nevertheless, some meteorological condi-
tions such as wind speed and relative humidity have a strong effect on PM10 concentration
levels, as well as the strong influence that nearby sources in the Phoenix valley have on PM10

concentrations (Wise and Comrie 2005). However in the wintertime, the southwestern deserts
are often subjected to atmospheric stagnation events. The atmosphere over this desert region is
typically dry and cool during the winter, and as sunset approaches, the ground surface begins
to cool faster than the atmosphere above it. The rapid cooling of the ground and boundary
layer atmosphere, resulting in temperature inversion, can create stable atmospheric conditions
at low altitudes (Pardyjak et al. 2009). This nighttime temperature inversion also
creates stagnant atmospheric conditions that contribute to trapping particulate pollution
close to its sources (Pardyjak et al. 2009). As the Phoenix metropolitan area is
geographically located in a valley, this effect is compounded and likely accounts for
the smaller urban-to-rural gradient observed in the winter. According to Wise and
Comrie (2005), with the typically dry atmospheric conditions in the region (summer
and elsewise), the observed patterns at the annual scale are likely due to the effect of
local sources of PM10.
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In general, the spatial patterns of PM10 showed more consistency between years than we
originally anticipated, but the considerable effects of temporal scale confirmed our hypothesis.
Also, the results seem to support our hypothesis that PM10 is a local pollutant influenced
mainly by nearby sources, though we found that seasonal meteorology is as important to PM10

patterns. In addition, the winter to summer pattern dynamics were as informative as the
spatiotemporal dynamics between different temporal scales.

Sample size and kriging

The use of Kriging techniques when interpolating data from an air monitoring network with a
small number of sampling sites has inherent risk involved. Kriging has reduced accuracy with
small sample sizes and different alternatives to this method have been suggested (Diem 2003).
For example, the study by Diem and Comrie (2002) specifically addressed the problem of a
sparse sample size by using a linear regression model to improve the accuracy of the
interpolation. However, linear regression models have their own disadvantages, such as the
necessity of significant resources and high-quality data (Diem and Comrie 2002). Although we
recognize the problems with Kriging to create accurate high-resolution pollution surfaces with
a small sample size, this study has focus primarily on the landscape-level pattern and its
changes between temporal scales. As such, we believe that our results are adequately robust for
this purpose.

Implications of scale in air pollution analyses

The findings of this study have important implications for the design and evaluation of air
pollution monitoring networks in large urban regions. In general, the temporal scale of
observation and analysis may substantially affect what air pollution patterns will be revealed.
These scale effects, if not adequately understood, may influence people’s perception and
misguide governmental policy decisions. To overcome this problem, researchers and decision
makers need to better understand the multi-scale patterns of air pollution in time and space, and
this scale multiplicity must be considered explicitly in designing or evaluating air monitoring
networks.

More specifically, air pollution monitoring networks should be designed so that both grain
size (the spatial and temporal resolutions of the monitoring network) and extent (the time
duration and spatial expanse of the network) are appropriate. For example, in the US, much
emphasis is often placed upon a community or region to comply with Federal air pollution
health standards, with each standard having differing averaging intervals such as annual, 24 h,
or 8 h. If the region’s government focuses on only a few single sites or local areas that are
exceeding specific standards, the density of monitors may be much higher than the rest of the
region (Nejadkoorki et al. 2011). This may lead to a deficient monitoring network that is
unable to capture the spatiotemporally heterogeneous patterns of air pollution over the entire
region. With these implications in mind and building upon the results from this study, we are
now conducting a comprehensive evaluation of the air pollution monitoring network in the
Phoenix metropolitan region, which will identify its deficiencies and redundancies based on
integrated data on environmental settings, demographics, and air quality measurements.

Scale multiplicity of air pollution patterns may also affect environmental justice research.
The studies of environmental justice, or equity, seek to identify unique socioeconomic
population groups exposed to disproportionate amounts of pollution risk. As shown in this
study, pollution patterns may change when the temporal scale of analysis is changed. For
example, if an environmental justice study only utilizes peak 1-h values to find populations
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affected by acute pollution exposure, it risks missing those population groups affected by
chronic exposure to monthly or annual pollution patterns. To cope with this problem, a multi-
scale approach is needed (Wu 2004, 2007). Part of our ongoing research is to take such an
approach, and as such, we are using the multi-temporal scale kriging results from this study to
explore a number of environmental equity-related research questions in the Phoenix metro-
politan region. For example, do certain population groups experience disproportionately higher
pollution risks? How would the detection of such potential environmental injustices change
with the scale of analysis?
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