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ABSTRACT 

Wu, J., Vankat, J.L. and Barlas, Y., 1993. Effects of patch connectivity and arrangement on 
animal mctapopulation dynamics: a simulation study. Ecol. Modelling, 65: 221-254. 

We constructed a simulation model of metapopulation dynamics consisting of two or 
three habitat patches using STELLA. our simulations show that, given the assumptions of 
the deterministic model, the metapopulation is doomed to global extinction with or without 
interpatch immigration when all local populations are below minimum viable population 
(MVP) size. This suggests that for a cluster of scattered small populations, it is preferable to 
focus on augmenting individual population sizes rather than enhancing interpatch immigra- 
tion. In the case when at least one of the subpopulations is above the MVP size, there is a 
critical size for that subpopulation above which the metapopulation persists and otherwise 
collapses. Also, when a metapopulation system is composed of more than two patches, the 
spatial configuration in terms of patch connection and the relative position of the above-MVP 
subpopulation will have significant effects on metapopulation dynamics and persistence. All 
simulation results from the three-patch animal metapopulation model suggest that both the 
number of interpatch connections and the magnitude represented by them are crucial for 
overall patch connectivity. The magnitude of interpatch immigration is positively related to 
the minimum size of the above-MVP subpopulation in both the two- and three-patch 
metapopulation systems due to population sink effect. The phenomenon is especially 
significant when subpopulations in sink patches are well below MVP. Appropriate introduc- 
tion of stochastic components into the model may increase its realism especially for the 
cases where all subpopulations are well below MVP. Although the current version of the 
model involves no more than three patches, it may serve as a general conceptual framework 
and a specific simulator for modeling metapopulation dynamics incorporating a variety of 
spatial arrangements of habitat patches. 
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INTRODUCTION 

Most if not all species live in patchy environments. This has become 
increasingly true because of landscape fragmentation throughout the world. 
Nature reserves, national parks, wildlife refuges, and fragments of natural 
landscapes isolated to varying degrees are all examples of patchy or mosaic 
habitats. The set of local (patch) populations of a species in spatially 
discrete habitats may be called a metapopulation. The term metapopula- 
tion, describing "a population of populations", was first coined by Eevins 
(1970) in a now-classical paper on group selection and extinction, although 
the idea that spatially heterogeneous populations experience local extinc- 
tions and recolonizations had been expressed in the context of population 
genetics (Wright, 1940), population dynamics (Andrewartha and Birch, 
1954; Ehrlich, 1965; den Boer, 1968; Ehrlich and Raven, 1969), and species 
diversity on isolated habitats (MacArthur and Wilson, 1963, 1967; see 
Simberloff, 1988 and Hanski and Gilpin, 1991 for reviews). However, it was 
not until the late 1980s that the concept of metapopulation was rediscov- 
ered and spurred greatly by interests in population dynamics in heteroge- 
neous environments, conscrvation biology, and landscape ecology (e.g., 
Quinn and Hastings, 1987; Opdam, 1988, 1991; Harrison et al., 1988; 
Merriam, 1988; Hanski, 1989, 1991; Harrison and Quinn, 1989; Hastings 
and Wolin, 1989; Gilpin, 1990, 1991; Wu, 1989, 1990, 1992a,b; Wu et al., 
1990; Wu and Vankat, 1991a,b; Merriam et al., 1991; Hanski and Gilpin, 
1991). 

"Modeling populations of plants and animals presents a greater chal- 
lenge than finding good representations of molecular behavior" (Roberts, 
1978). Models of population dynamics in heterogeneous environments have 
been developed during the past two decades. Most of them fall into two 
distinctive categories: patch-occupancy and diffusion-reaction models 
(Levin, 1976a,b, 1978; DeAngelis et al., 1986). Patch-occupancy models 
deal with a large number of patches and involve both single-species 
dynamics and multi-species coexistence (e.g., interspecific competition and 
predator-prey interactions). The state variables are usually the proportions 
of patches occupied and unoccupied by a species' populations or by 
different species. A simple and widely used patch-occupancy model is 
Levins' (1969, 1970) original model which describes the dynamics of a 
single species metapopulation in a heterogeneous environment composed 
of homogeneous (identical) patches: 

dp 
d t  - m p ( 1  - p )  - ep  

where p is the proportion of patches occupied by the species and m and e 
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are constants that are related to the colonizing ability and extinction rate of 
the species, respectively. Patch-occupancy models have been widely used in 
studies on the dynamics of patchy populations (e.g., Levins, 1970; Levins 
and Culver, 1971; Hanski, 1983, 1991). 

The framework of the diffusion-reaction models takes the following 
general form: 

dY(i)"/dt =f ( i ) " (Y" ,  X") + (net exchange with other patches) 

+ (net exchange with matrix) 

in which Y" is the vector (YI", Y2", . . . .  Yn") of state variables for a given 
patch u, X '' the vector (XI",  X 2 " , . . . ,  Xn") of parameters accounting for 
the same patch, and f "  the specific functional relationship (Levin, 1976b; 
also see Levin, 1976a; Okubo, 1980; Hastings, 1982; Allen, 1983a,b, 1987). 
These models take into account both temporal and spatial heterogeneity 
for given state variables, such as population densities, with the aid of 
analytical power of mathematical diffusion theory. These models can 
further be divided into continuous and discrete types according to their 
different conceptualization and mathematical details. A simple, yet repre- 
sentative, example of the continuous diffusion-reaction model may be in 
the partial differential equation form of 

aN(x,t) a[D aN(x,t)] 
-Nf( f )+ 

at ax 
where N(x, t) is the population density relative to the spatial position x, D 
is the diffusion rate of individuals of the population, and f (N)  is the 
population growth rate (Hastings, 1990). The corresponding discrete model 
may be written as 

df, 
d, - N J ( N i ) +  Y][di '( f i-N~)] 

where diy is the exchange rate of individuals between patch i and patch j 
and N i and Nj are population sizes in the two patches, respectively (cf. 
Levin, 1974). Patch-occupancy and diffusion-reaction models have made 
significant contributions to our current understanding of patch dynamics 
from a populational perspective. 

The interactions between patches in a fragmented landscape may play 
an important role in the dynamics and persistence of metapopulations. The 
persistence of species may be related to matrix characteristics and the 
number, area, spatial arrangement,  and disturbance regime of patches. 
These subject matters are also central concerns of the emerging field - 
landscape ecology (Forman, 1981; Forman and Godron, 1986; Vankat et 
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al., 1991; Wu and Vankat, 1991a,b) and conservation biology (Soule, 1986, 
1987; Wu, 1990, 1992a,b). On the other hand, metapopulat ion dynamics 
may, to a large extent, affect or determine the spatial-temporal heterogene- 
ity and pattern-process relationships of landscapes. 

The studies of the dynamics and persistence of such animal metapopula- 
tions may not only have great theoretical values for landscape ecology and 
conservation biology, but also may provide important practical implications 
for nature conservation and resources management.  Studies of metapopu- 
lation dynamics and stability have become an important and integral part 
of both conservation biology and landscape ecology (e.g., Fahrig et al., 
1983; Fahrig and Merriam, 1985; Urban and Shugart, 1986; Gilpin, 1987, 
1990; Henein and Merriam, 1990; May and Southwood, 1990; Smith and 
Peacock, 1990; Wu, 1990, 1992a,b; Opdam, 1991). 

The dynamics of a metapopulation are products of interactions of local 
and regional processes. Interpatch immigration plays a pivotal role in these 
dynamics, with animal populations differing significantly from plants in that 
the dispersals of seeds and other propagules do not directly affect the plant 
population size of the source patch but emigration of animals reduces the 
population size in the source patch (see Wu et al., 1990). This difference in 
dispersal between plants and animals may have significant consequences 
for the general behavioral pattern and specific dynamic properties of 
metapopulations. In this study, metapopulation models are developed with 
incorporation of the above-mentioned characteristics of animal dispersal. 
Effects of subpopulation sizes, intcrpatch immigration, and patch configu- 
rations on metapopulation dynamics and persistence are examined through 
a series of simulations. 

MODEL STRUCTURE AND FORMULATION 

The metapopulat ion models are composcd of two and three single-patch 
population models. The structural diagrams of the two-patch and three- 
patch animal population models are presented in Figs. 1 and 2, depicting 
the model variables and their relationships. It is assumed that local 
populations are subject to density-dependent regulation and that there 
exists a threshold population size below which local extinction would occur 
immediately. We define this critical population level as the minimum viable 
population (MVP) size which is basically a deterministic version of the 
concept defined by Shaffer (1981, 1987). Each habitat patch has a certain 
carrying capacity which might in turn be dctcrmined by its area and habitat 
diversity. For simplicity and convenience, however, this version of the 
model does not take account of the relationships between the carrying 
capacity and its potential determinants. A MVP value of 50 and a carrying 
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Subpop 1 

DLTNGR CarryingCap 1 CarryingCap 2 DLTNGR 

Fig. l. S t ructura l  d iagram of the two-patch animal  popula t ion  model.  

capacity of 500 are used in the simulations. These values can be easily 
modified to fit a particular species when relevant data are available. The 
use of a MVP value of 50 is arbitrary and will not fit all species. 

The degree of local crowding is modeled as the ratio of population size 
to the carrying capacity, which in turn determines per capita net growth 
rate. The relationship between crowding and per capita net growth rate is 
treated as a graphical function (Fig. 3), which can easily be modified to fit a 
particular density-dependently regulated species population. The general 
shape of the curve is agreeable with those reported for some field and 
experimental populations, including the ring-necked pheasant, the fruit-fly, 
and Antarctic fin whales (see Begon et al., 1986). Time delays in popula- 
tional regulation, reflecting time-lagged populational responses in per 
capita net growth rate to crowding effect, are also incorporated in the 
model. 

Local populations interact with each other through interpatch immigra- 
tion and emigration and, consequently, constitute a metapopulation in the 
given patchy habitat setting. The existence of interpatch immigration does 
not necessarily mean that there are physical conduits (i.e., dispersal corri- 
dors) present between patches. The emphasis here is the consequences of 
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Fig. 2. Structural diagram of the three-patch animal population model. 

interpatch immigration, not the means or mechanism of the process. We 
assume that the individuals moving out of a subpopulat ion go directly into 
other  connected patches. Therefore,  the metapopulat ion system is a con- 
served one in terms of immigration and emigration. In addition, the per 
capita (or percent)  emigration rate in these models  is assumed density-de- 
pendent;  specifically, it has a positive relationship with crowding (Fig. 4). 
The immigration rate of  a recipient patch is determined by its habitat 
availability for immigrants and the per capita emigration rate and popula- 
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Fig. 3. Assumed relationship between crowding (population-size/carrying-capacity ratio) 
and per capita net growth rate in the two and three-patch animal population models. 

tion size of the source patches. The habitat availability of a patch is 
negatively related to the degree of crowding, which is input as a graphical 
function (Fig. 5). 

The dynamics of a metapopulat ion are the totality of changes in its 
component  subpopulations. The size of each subpopulation at any moment  
is de te rmined  by its net  growth rate and net interpatch immigration rate. In 
this particular model, the sources for immigration are the subpopulations 
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Fig. 4. Assumed relationship between crowding and per capita interpatch emigration rate in 
the two- and three-patch animal population models. 
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Fig. 5. Assumed relationship between crowding and habitat availability for interpatch 
immigrations in the two and three-patch animal population models. 

themselves, as no outside dispcrsal pool is considered. This is much the 
case for today's f ragmented landscapes (Burgess and Sharpe, 1981; Gilpin, 
1987; Opdam, 1991). However, external immigration sources could be 
incorporated in the model when needed.  For such a closed system, emigra- 
tion and immigration are modeled in a combined term, as they are only 
relative terms for interactive habitat patches (i.e., interpatch emigration for 
one patch is interpatch immigration for the other). The relationships of 
which-influences-which type among all variables are explicitly depicted in 
structural diagrams (Figs. 1 and 2). All model equations, constants and 
table functions (corresponding to graphical inputs) are provided in the 
Appendix for both the two-patch and three-patch animal metapopulat ion 
models, respectively. 

MODEL SIMULATION AND ANALYSIS OF RESULTS 

1. Population dynamics without interpatch immigration 

Both the two-patch and three-patch animal population models are 
simulated with all interpatch immigration rates being set zero (i.e., 
ImRt Test = 0 in the STELLA equations) for the purpose of verification 
and unders tanding the fundamental  behavior of the basic unit model - the 
one-patch module.  

As shown in Fig. 6, the behavior of local populations exhibits complete 
agreement  with the model assumptions. When the initial sizes are 50 (the 
assumed MVP value), the isolated populations remain unchanged,  demon- 
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Fig. 6. S imula ted  dynamics of pa tch  popula t ions  wi thout  in te rpa tch  immigrat ion:  (a) effects 
of d i f ferent  initial popula t ion  sizes; (b) effects of d i f ferent  delay t imes engaged  in density- 
d e p e n d e n t  popula t ion  regulat ion.  

strating an unstable equilibrium point due to the deterministic nature of 
the model (curve 1 in Fig. 6a). The populations achieve the patch carrying 
capacity when they start with initial sizes larger than the MVP value 
(curves 3 and 4 in Fig. 6a). Local extinction occurs when the populations 
are below MVP (curve 2 in Fig. 6a). If the populations are larger than the 
carrying capacity, they decrease to and persist at the carrying capacity level 
(curve 5 in Fig. 6a). Therefore, the dynamics and persistence of the local 
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populations are deterministically dependent  upon their initial sizes. The 
time delay engaged in the density-dependent regulation of growth rate 
introduces fluctuations in local population dynamics and the altitude of 
oscillations increases with delay time (Fig. 6b). In fact, the model behaves 
much like its density-independent (exponential) counterpart  when the 
delay time is large enough to incapacitate the negative feedback control of 
population growth (see curve 4 in Fig. 6b). 

When immigrations exist among all patches, the dynamics of a metapop- 
ulation composed of two or more such subpopulations is necessarily more 
complicated. In this study, metapopulation systems consisting of two and 
three patches are simulated for a variety of scenarios with different 
interpatch immigration rates, initial subpopulation sizes, and spatial config- 
urations of patches. We first discuss the results from the two-patch model. 

2. Dynamics and persistence o f  the two-patch animal metapopulation system 

2.1 With both subpopulations below the minimum viable population s&e 
With the assumed density-dependent per capita interpatch immigration 

rate, the two subpopulations remain unchanged in size when they both 
start with the MVP size, an unstable equilibrium point (curve set 1 in Fig. 
7a). In reality, these populations would be highly subject to local extinction 
due to environmental, genetic, and demographic stochasticities that are 
markedly manifested in small populations (Goodman, 1987a,b; Shaffer, 
1987; Wu, 1992b). 

In contrast, when the initial sizes of the two subpopulations are below 
MVP or when one is below and the other at MVP, both go extinct. For 
example, when subpopulation 1 is 49 and subpopulation 2 is 50, both go 
extinct monotonically (curve set 2 in Fig. 7a). Even when the per capita 
emigration rate is increased by 10 times, the same result is obtained (Fig. 
7b). Therefore, the two-patch mctapopulation system is subject to both 
local and regional (or global) extinctions when no subpopulation is larger 
than the MVP size. These results for animals are fundamentally different 
from those for plants where persistence is possible in such situations (see 
Wu et al., 1990). 

2.2 With one subpopulation below and the other above the minimum viable 
population size 

Because the two-patch metapopulation system will obviously persist if 
both local populations are above the MVP size, a more interesting simula- 
tion scenario is to consider the situations where one subpopulation is below 
but the other is above MVP. Can the metapopulation system persist when 
only one local population is above the MVP value? 
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Fig. 7. Dynamics of the two-patch population system when both subpopulations are no 
larger than the MVP size: (a) with the per capita emigration rate in Fig. 4; (b) with a per 
capita emigration rate 10 times higher than the original one. The initial sizes for the 
subpopulations are both 50 for set 1 and 49 and 50 for set 2 in both (a) and (b). 

The  s imulat ions  show that both  the subpopula t ions  can persist at the 
patch carrying capacity level w h e n  the a b o v e - M V P  subpopula t ion  passes  a 
threshold  level  w h o s e  magn i tude  varies with the b e l o w - M V P  subpopula t ion  
size.  As  examples ,  for both  subpopula t ions  to persist, w h e n  the b e l o w - M V P  
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Fig. 8. Dynamics of two patchy populations kinked through immigrations: (a) both persist at 
the carrying capacity when the initial size is 45 for the first subpopulation and 57 for the 
second; (b) both go extinct when the initial size is 45 for the first subpopulation and 56 for 
the second. 

subpopulation size is 45, the minimum size of the above-MVP subpopula- 
tion is 57 (Fig. 8); when the below-MVP subpopulation is 25, the minimum 
size of the above-MVP subpopulation becomes 76 (Fig. 9); and when the 
below-MVP subpopulation is 0 (i.e., the patch is empty), the minimum 
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Fig. 9. Dynamics of two patchy populations linked through immigrations: (a) both persist at 
the carrying capacity when the initial size is 25 for the first subpopulation and 76 for the 
second; (b) both go extinct when the initial size is 25 for the first subpopulation and 75 for 
the second. 

populat ion size o f  the the occupied patch is 90 (Fig. 10). The  rapid decl ines  
o f  immigration rates in Figs. 8a, 9a, and 10a result primarily from the 
drastic reduction in habitat availability for incoming immigrants when  a 
subpopulat ion is approaching the carrying capacity of  its inhabited patch. 
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Fig. 10. Dynamics of two patchy populations linked through immigrations: (a) both persist at 
the carrying capacity when the initial size is 0 for the first subpopulation and 90 for the 
second; (b) both go extinct when the initial size is 0 for the first subpopulation and 89 for 
the second. 

For each size of one subpopulation, there is always a minimum size of 
the other above which the immigrant flow from the source patch (with the 
larger subpopulation) to the sink patch (with the smaller) is large enough to 
counteract the dieback of the initially-be|ow-MVP population. However, 
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Fig. 11. A phase-plane presentation of the minimum persistent population sizc for the 
two-patch population system, showing the domains of persistence and extinction. 

when either of the subpopulat ions is below a critical size, both subpopula-  
tions will go extinct (see Figs. 8b, 9b, and 10b). This is because the larger 
subpopulat ion drops below the MVP level as a result of its individuals 
flowing to the sink patch before  being able to bring the second subpopula-  
tion up to the MVP size - an example of failed rescue effect. 

Therefore,  there are only two possibilities for the metapopulat ion system 
in which one is below and the other  is above the MVP size: either both go 
extinct or both persist at the carrying capacity. However,  if a constant (i.e., 
densi ty- independent)  per capita emigration rate is used to replace the 
densi ty-dependent  rate in Fig. 4, the two subpopulat ions can reach differ- 
ent new steady states other  than the carrying capacity. For example, when 
per capita emigration rate is 0.0025 and the initial size is 55 for subpopula-  
tion 1 and 20 for subpopulat ion 2, the two subpopulat ions will reach two 
different new equilibria (496 and 10), respectively. This is primarily a result 
of the interplay of the constant percent  immigration rate and the initial 
sizes of the subpopulations.  This constant per  capita emigration rate case is 
not considered further here and all the results presented in this paper  are 
based on the densi ty-dependent  per  capita emigration rate. 

The domains of persistence and extinction for the two-patch metapopu-  
lation system; separated by a "pers is tence isocline," are depicted in Fig. 11. 
Because the same carrying capacity (500) is used for the two patches, the 
persistence isocline is necessarily symmetric relative to the diagonal axis. 
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Fig. 12. Effects of the magnitude of interpatch immigration on the dynamics and persistence 
of the two-patch metapopulation, with subpopulation 1 starting from below and subpopula- 
tion 2 starting from above MVP. 0.1, 0.5, 1, 2, 5, and I0 times the values of the original 
density-dependent per capita emigration rate arc used for different runs, respectively. 

The minimum size of one subpopulat ion increases with the decrease in size 
of the other  in a nearly linear fashion (Fig. 11). 

2.3 Effects of the magnitude of" interpatch immigration rate on metapopula- 
tion dynamics and persistence 

We conducted many simulation runs to investigate the effects of immi- 
gration rates of different magnitudes on the dynamics and the minimum 
persistent population sizes when only one subpopulat ion is above MVP. 
The different simulation scenarios used values of 0.1, 0.5, 1, 2, 5, and 10 
times the original per capita emigration rate (see Fig. 4). Figure 12 
graphically summarizes the simulation results. Again, the symmetry of the 
persistence isoclines reflect the assumption that the two habitat patches are 
identical except for populat ion sizes. 

The effects of interpatch immigration rate on the dynamics and persis- 
tence of the two-patch metapopulat ion system are dependent  on both the 
magnitude of the per capita emigration rate and the initial sizes of the 
subpopulat ions (Fig. 12). Several trends emerge out  of these simulation 
results. When one subpopulat ion is below MVP, the minimum size of the 
other  subpopulat ion required for persistence appears directly related to 
per  capita emigration rate. More specifically, the minimum persistent 
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population is overall the smallest for the lowest per capita emigration rate 
(0.1 times the original), intermediate for the one of 0.5 times the original, 
and largest for the one of 10 times the original. This increase in minimum 
population size decreases with greater per capita emigration rate and 
becomes trivial when per capita emigration rate is larger than 5 times the 
original (Fig. 12). 

The effects of these different immigration rates are population size-de- 
pendent,  as much larger impacts are found at smaller below-MVP subpop- 
ulation sizes. In other words, differences in the minimum persistent popu- 
lation size caused by the immigration rates of different magnitudes increase 
with decreasing initial size of the below-MVP subpopulation. In addition, 
the general relationship of the minimum persistent sizes (reflected by the 
shape of persistence isocline) for the two subpopulations varies with the 
magnitude of per capita emigration rate. A linear or nearly linear relation- 
ship is found when per capita emigration rate is 5 or 10 times the original, 
suggesting that the minimum size of the above-MVP subpopulation re- 
quired for persistence increases linearly when the below-MVP subpopula- 
tion decreases (Fig. 12). When per capita emigration rate is 0.1 times the 
original, the minimum size of the above-MVP subpopulation changes only 
slightly with the decreasing beiow-MVP subpopulation. The above two 
cases represent the situations where interpatch immigration rate is very 
large and very small, respectively. In contrast, when per capita emigration 
rate is the original or 0.5 times the original, the minimum size of the 
above-MVP subpopulation increases almost linearly and then tends to level 
off as the initial size of the below-MVP subpopulation decreases. 

Based on the simulation results of the two-patch model, it is clear that 
the role of interpatch immigration in metapopulat ion dynamics is rather 
complex. With the interpatch emigration rate in Fig. 4, two small subpopu- 
lations (e.g., 20 and 79) are both able to persist at the carrying capacity 
level (Fig. 11). But only the above-MVP population can persist without 
interpatch immigration. The stabilizing role of immigration in metapopula- 
tion dynamics is convincingly demonstrated in such cases (see Figs. 8 to 12). 
However, it is not necessarily true that the larger the immigration rate, the 
better chance for persistence. On the contrary, large interpatch immigra- 
tion rates require appreciably larger sizes of the above-MVP subpopulation 
in order for the metapopulat ion to persist when the below-MVP subpopu- 
lation is very small (e.g., below 30; see Fig. 12). What are the mechanisms 
behind these phenomena?  

A patch with a below-MVP population is in effect a "populat ion sink" in 
that its local, population growth rate is negative, creating a drain on the 
overall metapopulat ion system. This "populat ion sink effect" becomes 
stronger when the population gets even smaller (Fig. 3). Therefore, when 
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Subpop 2 

Subpop 1 Subpop 2 Subpop 3 

Subpop 1 Subpop 3 

Linear connection cases - two bi-directional dispersal links 

Subpop 1 

Subpop 2 Subpop 3 

A circular connection case - three bi-directional dispersal links 

Fig. 13. Two types of configuration simulated with the three-patch animal population 
model. 

an above-MVP patch and a be low-MVP patch are connected by interpatch 
immigration, there are two processes taking place in the same time: 
augmentat ion of the be low-MVP subpopulat ion and the deplet ion of the 
above-MVP subpopulation.  Obviously, the immigrant flux from the sink 
patch to the source patch is trivial as compared to the flow in the opposite  
direction as the population size of the sink patch is small. Consequently,  
whether  the metapopulat ion can persist depends  on the relative rate of the 
two processes. That is, both subpopulat ions persist if the sink patch is 
brought  up to the MVP size before the source patch being drained below 
the MVP size. Otherwise, both subpopulat ions go extinct. 

3. Dynamics and persistence of the three-patch animal metapopulation system 

The three-patch animal metapopulat ion model is simulated to examine 
two types of questions: how does interpatch immigration affect the dynam- 
ics of a metapopulat ion composed of three patches? Does  spatial configu- 
rations alter these effects and, if so, how? Two types of configurations of 
the three-patch system are simulated: linear connection and circular con- 
nection (Fig. 13). While there are two pairs of dispersal links in the linear 
configuration, three pairs are present  in the circular configuration. As in 
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the two-patch model, patches are "connected" in the sense of there being 
effective interpatch immigration either through dispersal corridors or due 
to proximity of patches. For both configurations, simulations are conducted 
for the situations where only one of the three subpopulations is above the 
MVP size. Within each configuration, different cases relative to the place- 
ment of the above-MVP subpopulation in the patchy system are consid- 
ered. In addition, the effects of immigration rates of different magnitudes 
on the three-patch metapopulation dynamics and persistence are also 
examined. 

3.1 Simulations of a linearly linked three-patch metapopulation system 
The first simulation scenario in the linear connection cases assumes that 

the two below-MVP subpopulations are equal. The above-MVP subpopula- 
tion can either be in one of the end patches or in the middle patch (see Fig. 
13). Ten combinations of patch placements with five different sizes of the 
below-MVP subpopulations are simulated and the results are summarized 
in Fig. 14. 

These simulations show that there exists a critical size of the above-MVP 
subpopulation above which all three subpopulations persist at the carrying 
capacity and below which all of them go extinct. This is consistent with the 
result from the two-patch model. However, the minimum size for persis- 
tence of the three-patch metapopulation system is determined not only by 
the initial size of the two below-MVP subpopulations but also by the spatial 
placement of the above-MVP subpopulation. For instance, if the above- 
MVP subpopulation is at the end of the linkage, its minimum size for 
persistence is 58 when the other two are 45 (Fig. 14a) and increases to 65 
when the other two decrease to 5 (Fig. 14e). However, if the above-MVP 
subpopulation is located in the middle, its minimum size for persistence is 
64 when the other two are 45 (Fig. 14a') and 94 when the other two are 5 
(Fig. 14e'). 

In general, the simulations of ten combinations show that the minimum 
sizes for persistence are much smaller when the above-MVP subpopulation 
is in an end patch than in the middle patch (compare a, b, c, d and e to a', 
b', c', d' and e' in Fig. 14). The differences in the minimum persistent 
population sizes due to the changes in the position of the above-MVP 
increase with the decrease in the size of below-MVP subpopulations. For 
instance, when the below-MVP subpopulations are 45, 40, 20, 10 and 5, the 
differences in the minimum persistent sizes are 6, 12, 25, 28, and 29, 
respectively (see the left column of Fig. 14). Therefore, the relative position 
of the above-MVP subpopulation in such a linearly linked metapopulation 
system seems to play a significant role in metapopulation dynamics and 
persistence. These results reflect interactions between the population sink 



2 4 0  J. w u  ET AL. 

Linear connection cases - two bi-direcfional dispersal links 

Assumed confizuration of the patchy system 

Subpop l Subpop 2 Subpop 3 
OR 

Subpop 2 

Subpop 1 Subpop 3 

Persistence Extinction 

1. Subooo 1 > MVP. Subooo 2 = Subt)oo 3 < MVP 

(a) 

(b) 

(c) 

(d) 

(c) 

2. Subpop 2 > MVP, Subpop 1 

(a') 

(b') 

(c') 

(d') 

(e') 

= Subpop 3 < MVP 

Fig. 14. S i m u l a t e d  m i n i m u m  p e r s i s t e n t  p o p u l a t i o n s  for a l inear ly  l inked ,  t h r e e - p a t c h  

p o p u l a t k m  s y s t e m  wi th  two s u b p o p u l a t i o n s  s t a r t i n g  f r o m  be low a n d  o n e  f rom above  t he  

M V P  va lue .  

effect and the relative positions of patches. It is more  effective for the only 
viable subpopulation,  when it is not well above the MVP size, to be in a 
position where  it rescues one of the two dying subpopulat ions first and 
then jointly rescues the other,  ra ther  than saves both below-MVP subpopu- 
lations simultaneously. In o ther  words, it is more effective for a source 
patch to convert  a sink patch to a second source patch ra ther  than act as 
the only source patch for two sink patches. 

The second simulation scenario is designed to examine if immigration 
rates of different  magnitudes will change the results discussed above. The  
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Assumed configuration of the patchy system 

Subpop 1 Subpop 2 Subpop 3 

0.5*ImRt 0.5*ImRt 

Linear connection cases - two bi-directional dispersal links: 
0.5-times the original per capita immigration rate 

Subpop 2 

OR 0 . 5 * ~ I m R t  

Subpop 1 Subpop 3 

Persistence Extinction 

1. Subpop 1 > MVP, Subpop 2 = SubpoD 3 < MVP 

(b) 

(c) 

(d) 

2. Subpop 2 > MVP, Subpop 1 

(a') 

(b') 

(c') 

(d') ( ~ ~ ~ ~  

= Subpop 3 < MVP 

Fig. 15. Simulated minimum persistent populat ions  for a linearly linked, three-patch 
populat ion system with 0.5 t imes the original per capita emigration rate, two subpopulations 
starting from below and one  from above the M V P  value. 

results for immigration rates of  0.5 and 5 times the original are graphically 
summarized in Figs. 15 and 16, respectively. In both cases, it is generally 
true that the minimum sizes for persistence are smaller when the above- 
MVP subpopulation is placed in an end patch than in the middle. How- 
ever, the differences in the minimum persistent population sizes due to the 
changes in the relative position of  the above-MVP are overall reduced for 
each case. Yet, as in the original per capita emigration rate case, the 
differences tend to increase with the decrease in the size of  the be low-MVP 
subpopulations (compare set 1 with set 2 in both Fig. 15 and Fig. 16). 

In addition, for a given size of  the two be low-MVP subpopulations,  the 
minimum size of  the above-MVP subpopulation for the persistence of  the 
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Assumed configuration of the natchv svstem 

Subpop l Subpop 2 Subpop 3 

oR 

5*ImRt 5*ImRt 

Persistence 

Linear connection cases - two bi-direcfional dispersal links: 
with 5-times the original per capita immigration rate 

Subpop 2 

5 * ~ R t  

Subpop 1 Subpop 3 

Extinction 

1. Subooo l > MVP. Subpoo 2 = Subpop 3 < MVP 

(b) 

(c) 

(d) 

2. Subpop 2 > MVP, Subpop 1 = Subpop 3 < MVP 

(a') 

(b') 

(c') 

(d') 

Fig. 16. S i m u l a t e d  m i n i m u m  p e r s i s t e n t  p o p u l a t i o n s  for  a l inear ly  l inked ,  t h r e e - p a t c h  

p o p u l a t i o n  s y s t e m  wi th  5 t i m e s  t h e  or ig ina l  p e r  c ap i t a  e m i g r a t i o n  ra te ,  two s u b p o p u l a t i o n s  
s t a r t i n g  f r o m  be low a n d  o n e  f rom above  t he  M V P  va lue .  

metapopula t ion system is smaller for low than for high interpatch immigra- 
tion rates. In the case of the above-MVP subpopulat ion being at the end 
patch, for example when the be low-MVP subpopulat ions are 40, the 
minimum persistence size increases from 55 to 61 to 73 as the per  capita 
emigration rate increases from 0.5 to 1 to 5 times the original value 
(compare Figs. 15b, 14b and 19b). When the be iow-MVP subpopulat ions 
are 10, the minimum persist size increases from 57 to 65 to 112 with the 
same change in per capita emigration rate (see Figs. 15d, 14d and 19d). 
These findings result from higher interpatch immigration rates increasing 
the loss of  individuals (drain effect) from the source patch, so that larger 
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minimum sizes for the above-MVP subpopulation are required in order to 
rescue the be low-MVP subpopulations.  

The third simulation scenario also assumes that only one of  the subpopu- 
lations is above MVP and that the other two are below MVP; however, in 
contrast with the first scenario, the two be low-MVP subpopulations are 
unequal.  In this case, not only can the above-MVP subpopulation either be 
in an end patch or in the middle, but also the two be low-MVP subpopula- 
tions can be in one of  the two positions: being connected or disconnected 
with the above-MVP subpopulation (cf. Fig. 13). For each pair of  below- 
MVP subpopulations,  there are three different combinations. Nine combi- 
nations are simulated to examine the effects of  interpatch immigration on 

Linear connection cases - two bi-direcfional dispersal links 

Assumed configuration of the oatchv system 

Subpop 1 Subpop 2 Subpop 3 
OR 

Subpop 2 

Subpop 1 Subpop 3 

Three suboooulations are all different in size. with one above and 
the other two below the MVP value 

Persistence Extinction 

(al) 

(a2) ( ~ @ z ~  

(a3) 

(bl) 

(b2) 

(b3) 

(cl) 

(c2) 

(c3) 

Fig. 17. S i m u l a t e d  m i n i m u m  pers i s t en t  p o p u l a t i o n s  for a l inear ly  l inked,  t h r e e - p a t c h  
p o p u l a t i o n  sy s t em w h e n  all three  s u b p o p u l a t i o n s  are d i f ferent  in s ize  and on ly  o n e  is a b o v e  
the  M V P  value .  
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m e t a p o p u l a t i o n  dynamics  and pers i s tence .  All numer ica l  resul ts  are graphi-  
cally s u m m a r i z e d  in Fig. 17. 

Fo r  a given pai r  of  b e l o w - M V P  subpopula t ions ,  the m i n i m u m  size of  the  
a b o v e - M V P  subpopu la t i on  for  pers i s tence  is lowest  when  the th ree  pa tches  
are  l inked in an ascending  or  descend ing  o r d e r  of  the i r  popu la t i on  sizes 
(a2, b2, and  c2 in Fig. 17) and highest  when  the a b o v e - M V P  su b p o p u l a t i o n  
is in the  midd le  (a3, b3, and c3 in Fig. 17). T h e  d i f fe rences  in the  m i n i m u m  
pers i s t en t  popu l a t i on  size due  to the posi t ion switch o f  the two b e l o w - M V P  
subpopu la t ions ,  with the a b o v e - M V P  subpopu la t ion  be ing  at the end ,  a re  
m uch  smal le r  than  those  due  to the changes  in the relat ive locat ion of  the 
a b o v e - M V P  subpopu la t ion  ( c o m p a r e  ai ,  bi ,  and ci  in Fig. 17, w h e re  i = 1, 
2, 3). T h e s e  resul ts  ref lect  the popu la t i on  sink ef fec t  m e n t i o n e d  ear l ier .  
T h e  conf igura t ion  in which the larger  b e l o w - M V P  subpopu la t ion  is in 

A circular connection case - three bi~lirectional dispersal links 

Assumed configuration 
of the patchy system 

Subpop 1 

Subtmp 2 Subpop 3 

1. Subpop 1 = Subpop 2 = Subpop 3 < MVP 

(a) 

2. Subooo 1 > MVP and 
Suboov 2 = Subooo 3 < MVP 

(bl) ~ 

(b2) 

3. Subpop I > MVP and 
Subooo 2 ~Subt~oo 3 < MVP 

( ~ . . , i ~  (b3) 

K ~ - - t I ~  0 

~ . . , l ~  (cl) 
K ~ ( ~ " ~  0 

(c2) 

~ . . . . 1 ~  (c3) f ~  
K ~ ( ~ ~ ~  0 

Fig. 18. Simulated minimum persistent populations for a circularly linked, three-patch 
population system when two of the three subpopulations are below and only one is above 
the MVP value. 
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between the above-MVP and the smaller below-MVP subpopulation, seems 
to reduce the magnitude of the sink effect rather effectively. More to the 
point, the direct connection between the above-MVP subpopulation and 
the smallest below-MVP subpopulation gives rise to the greatest "sinking 
gradient" and, consequently, results in the largest drain on the system. 

3.2 Simulations of a circularly linked three-patch metapopulation system 
Two general simulation scenarios based on different system configura- 

tions are adopted for the circularly linked three-patch system: homoge- 
neous versus heterogeneous immigration rates among patches (Figs. 18 and 
19, respectively). The homogeneous-immigration-rate scenario considers 
three situations in terms of population size: (1) three subpopulations are all 
at or below the MVP size (Fig. 18a); (2) two of the three are below MVP 
and equal (Fig. 18b); and (3) two are below MVP and unequal (Fig. 18c). 
The heterogeneous-rate case is divided into two different situations based 
on the relative position of the two different immigration rates (Fig. 19). 

A circular connection case with mixed bi-directional dispersal rates 

Assumed configuration of the patchy system 
for runs a, b, c and d 

Subpop 1 

ImRt~5*ImRt 

Subpop 2 t Subpop 3 

~ _ . .  (a) 
K ~ ' = ' ~ -  0 

(b) ~ ~ 0 

K ~ ( ~ ' - ~  0 

(d) ~ 

Assumed configuration 
of the patchy system 

for runs e and f 
Subpop 1 

S u b ~ t l ~ p  3 

.... (e) ~ 

Fig. 19. Simulated minimum persistent populations for a circularly linked, three-patch 
population system with two different immigration rates assigned for the three interpatch 
links, with subpopulation 1 being above and the other two below the MVP size. 
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Although more combinations in terms of different immigration rates, 
spatial configurations, and different subpopulation sizes are possible, only 
a limited number of cases are arbitrarily selected here to examine the 
general nature of the dynamics of such a metapopulation system. While the 
original per capita emigration rate in Fig. 4 is used in the homogeneous 
case, an additional immigration rate of 5 times the original is assigned to 
one of the three links for the heterogeneous situations. 

When the three subpopulations are all smaller than the MVP size (Fig. 
18a), the metapopulation cannot avoid extinction. The circular connection 
case with one above-MVP subpopulation and two equal-sized below-MVP 
subpopulations (Fig. 18b) is parallel to the linear connection case with the 
same population size conditions (both set 1 and set 2 in Fig. 16). The only 
difference between them is that the interpatch immigration link between 
patch 1 and patch 3 in the circular connection case is absent in the linear 
case. in terms of the minimum size of the above-MVP subpopulation for 
persistence, this particular circular connection situation is equivalent to the 
corresponding linear connection case where the above-MVP subpopulation 
is placed in the middle (compare Fig. 18 with Fig. 16). The circular 
connection case with one above-MVP subpopulation and two unequal-sized 
below-MVP subpopulations (Fig. 18c) is parallel to the linear case with the 
same population size conditions (Fig. 17). The only difference between 
these two is again the addition of an interpatch immigration link between 
patch 1 and patch 3 in the circular connection case. The addition of this 
link seems to have, to varying degrees depending on the below-MVP 
subpopulation sizes, a negative effect on the minimum persistent popula- 
tion size. Overall, the circular situations with three subpopulations all 
different in size have similar metapopulation dynamics to the correspond- 
ing linear situations when the above-MVP subpopulation is in the middle 
(compare Fig. 18c with Fig. 17). 

When one subpopulation is above MVP and the other two below MVP, 
the minimum size of the above-MVP subpopulation required for metapop- 
ulation persistence increases appreciably when the interpatch immigration 
link between patch 1 and 3 is increased to 5 times the original with the 
other two links being held unchanged (compare Fig. 19a,b,c,d with Fig. 
1862,b3,c3,cl, respectively). These results again reflect a positive relation- 
ship between interpatch immigration and draining rate for small subpopu- 
lations as discussed earlier. With the same conditions, the alternation of 
the relative position of the higher interpatch immigration link does not 
appear to affect the minimum persistent population size (compare Fig. 
19e,f with Fig. 19c,d). 
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DISCUSSION AND CONCLUSIONS 

A system dynamics model of metapopulations consisting of two or three 
habitat patches was constructed and simulated using STELLA. Although 
having considered only two- and three-patch cases, this approach can be 
used to model metapopulat ion systems composed of more patches. In 
reality, the local birth and death rates of organisms of the same species are 
very likely to be different in spatially discrete habitats (Pulliam, 1988). This 
metapopulat ion model incorporates such patch-specific demographic dif- 
ferences. When quantitative or qualitative data are available, interpatch 
distance and species dispersal distance, along with physical characteristics 
of dispersal corridors, can also be easily incorporated in the model to 
elaborate the emigration and immigration processes (see Wu et al., 1990). 
Patch area may be included by further specifying the patch carrying 
capacity a n d / o r  introducing population density-related variables. With 
these additions, the model will also be able to examine possible effects of 
isolation and area on metapopulat ion dynamics. The deterministic nature 
of the model keeps its simulation simple, but stochastic modifications (e.g., 
relative to MVP) may make the model more realistic. 

The simulations of the model following numerous different scenarios 
have produced interesting results concerning the dynamics and persistence 
of metapopulations.  Of course, it is crucial to remember  the assumptions 
behind the model when interpreting results. Therefore, it is important to 
emphasize the characteristics of the model metapopulation. First, the local 
populations have density-dependent net growth rates, although the specific 
relationship does not seems critical to the general behavior of the model. 
Second, the species modeled has a deterministic minimum viable popula- 
tion size. Although in reality it may not be a unique deterministic value, its 
typical or representative magnitude should possibly be estimated through 
population viability analysis (Shaffer, 1981, 1987; Gilpin and Soule, 1986; 
Gilpin, 1987). Third, there is no outside dispersal pool existing for the 
metapopulation; therefore, the only immigrations are among patches. 

Several general relationships regarding effects of local population sizes, 
interpatch immigration flux, and spatial patch configuration on metapopu- 
lation dynamics have emerged out of this simulation study. With the 
determinism in MVP and the model as a whole, the animal metapopulation 
is doomed to global extinction with or without interpatch immigration 
when all local populations are below MVP. In such cases, the magnitude of 
immigration within the metapopulat ion system only affects the transient 
dynamics (trajectory or time to extinction) but not the ultimate outcome of 
system persistence. This suggests that for a cluster of scattered small 
populations, it may be preferable to focus efforts on augmenting individual 
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population sizes (through, for example, artificial introduction and breeding 
programs) rather than enhancing interpatch immigration (e.g., placement 
of dispersal corridors). 

When at least one of the subpopulations is above the MVP size, 
interpatch immigration may play an important role in metapopulation 
dynamics and persistence. In such cases, there is a critical size for the 
above-MVP subpopulation above which the metapopulation persists and 
otherwise collapses. When a metapopulat ion system is composed of more 
than two patches, the spatial configuration in terms of patch connection 
and the relative position of the above-MVP subpopulation has significant 
effects on metapopulat ion dynamics and persistence. All simulation results 
from the three-patch animal metapopulation model suggest that both the 
number  of interpatch connections and the magnitude represented by them 
are crucial for overall patch connectivity (see Merriam, 1984; Hansson, 
1991; and Merriam et al., 1991 for reviews on connectivity). The impor- 
tance of spatial arrangement of patches in metapopulation persistence has 
been reported in several studies (Fahrig et al., 1983; Lefkowitch and 
Fahrig, 1985; Hansson, 1991). These results obviously have implications for 
landscape ecology and nature conservation. Also, although the current 
version of the model involves no more than three patches, it may serve as a 
general conceptual framework and a specific simulator for modeling 
metapopulat ion dynamics incorporating a variety of spatial arrangements 
of habitat patches. 

In general, connected patches are better than isolated ones in that 
interpatch dispersal provides opportunities for the below-MVP subpopula- 
tions to overcome their negative growth tendency and to stabilize at the 
carrying capacity. However, this is true only in a qualitative but not 
quantitative sense. The magnitude of interpatch immigration is actually 
found positively related to the minimum size of the above-MVP subpopula- 
tion in both the two- and three-patch metapopulat ion systems due to what 
can be called population sink or drain effect. This effect interacts with 
patch connectivity, generating complex patterns. The phenomenon is espe- 
cially significant when subpopulations in sink patches are well below MVP. 
In addition, the simulation results suggest that drain effect has a more 
profound influence on metapopulation dynamics and persistence for ani- 
mals than for plants. Given that recent literature in conservation biology 
and landscape ecology emphasizes primarily the positive effects of dispersal 
or immigration on the dynamics and stability of metapopulations, it is 
important to recognize that interpatch immigration may have a negative 
impact. 

Pulliam (1988), in his discussion of single species population dynamics 
and regulation in spatially heterogeneous environments, used the term 
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"sink habitats" to refer to patches where local reproduction is insufficient 
to balance local mortality. Pulliam argued that for many plant or animal 
species, a large proportion of their populations may frequently occur in 
sink habitats and may persist there due to continuous immigration from 
neighboring source patches. A sink patch behaves as "a net importer of 
individuals" while a source patch serves as "a net exporter of individuals" 
(Pulliam, 1988). The source-sink dispersal characteristics may be a result 
of natural selection and, therefore, evolutionarily stable (cf. Roff, 1974; 
Comins et al., 1980; Pulliam, 1988; Hanski, 1991). This simulation study 
connects Pulliam's source-sink idea with the MVP concept and elaborates 
the relationship between source-sink dynamics and interpatch immigra- 
tion. It has demonstrated that a sink patch may, when a large enough 
immigration flow is available, turn into a source patch to other smaller 
populations. Thus, source and sink are relative terms in metapopulation 
systems. 

The population sink effect is related primarily to two assumptions in the 
model: (1) interpatch immigration flux is conserved and no outside or 
global immigration pool is available to these patches; (2) without immigra- 
tion, local populations exhibit nonlinearly accelerating decay when their 
sizes fall below MVP while they have a logistic type of growth when their 
sizes are above MVP. Changes in these two model assumptions may alter 
the results presented here (Wu et al., 1990). In general, the dynamics and 
stability of metapopulations are the system-level manifestation of the 
interactions and interdependence among individual patches of a lower 
organizational level. They are ultimately determined by the nonlinear 
interactions between within-patch population growth and interpatch immi- 
gration flux. 
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APPENDIX 

A STELLA program listing of the two-patch animal metapopulation model 

Subpop l ( t )  = Subpop_l( t  - dt) + (NetGR 1 + ImRt21 - ImRt12) * dt 
INIT Subpop_l = 0 

INFLOWS: 
NetGR_I = AcIPCNGRI*Subpop_I  
ImRt21 = IF (ImRt_.Test*PCImRt21_< 1) THEN ImRt_Test * PCImRt21 * Subpop_2 * Habitat Avail 1 
ELSE Subpop_2 * Habitat Avail 1 
OUTFLOWS: 
ImRt12 = IF (ImRt_Tesl * PCImRt12 _< 1) THEN ImRt Test * PCImRt12* Subpop 1 

• Habitat Avail 2 ELSE Subpop_l *Habitat Avail 2 
Subpop_2(t)-= Sub-pop 2(t - dr) + (ImRt12 + NetGR 2 - ImRt21) * dt 

INIT Subpop_2 = 77 
INFLOWS: 
IrnRt12 = IF (ImRt Test * PCImRt12 _< 1) THEN ImRt Test * PCImRt12* Subpop_l 

=Habitat Avail 2 ELSE Subpop_l *Habitat Avail 2 
NetGR 2 = ~,ctPC-NGR2*Subpop_2 
OUTFLOWS: 
ImRt21 = IF (ImRt Test*PCImRt21_< 1) THEN ImRt_Test * PCImRt21 * Subpop 2 * Habitat Avail 1 
ELSE Subpop_2 * Habitat Avail 1 
ActPCNGR1 = IF DLT NGR>0 Tt~EN SMTH3(PCNGR 1, DLT NGR) ELSE PCNGR 1 
ActPCNGR2 = IF DLT_NGR>0 THEN SMTH3(PCNGR 2, DLT NGR) ELSE PCNGR 2 
CarryingCap_l = 500 
CarryingCap_2 = 500 
Crowding_l  = Subpop_l /Carry ingCap_l  
Crowding 2 = Subpop_2,'CarryingCap 2 
DLT NGR = 0 
ImF~- Test = 1 
Metapop = Subpop l+Subpop  2 
Habitat Avail 1 = GRAPH(Crowding_l)  

(0.00, 1.00), (0.0833, 0.985), (0.167, 0.965), (0.25, 0.945), (0.333, 0.91), (0.417, 0.865), 
(0.5, 0.8), (0.583, 0.705), (0.667, 0.565), (0.75, 0.35), (0.833, 0.00), (0.917, 0.00), (1, 0.00) 
Habitat Avail 2 = GRAPH(Crowding_2) 

(0.00, 1.00), (0.0833, 0.985), (0.167, 0.965), (0.25, 0.945), (0.333, 0.91), (0.417, 0.865), 
(0.5, 0.8), (0.583, 0.705), (0.667, 0.565), (0.75, 0.35), (0.833, 0.00), (0.917, 0.00), (1, 0.00) 
PCImRt12 = GRAPH(Crowding 1) 

(0.00, 0.0525), (0.1, 0.0775), (0.2, 0.117), (0.3, 0.175), (0.4, 0.26), (0.5, 0.32), (0.6, 0.362), 
(0.7, 0.39), (0.8, 0.412), (0.9, 0.43), (1.00, 0.442), (1.10, 0.455), (1.20, 0.465), (1.30, 0.477), 
(1.40, 0.487), (1.50, 0.5) 
PCImRt21 = GRAPH(Crowding_2) 

(0.00, 0.0525), (0.1, 0.0775), (0.2, 0.117), (0.3, 0.175), (0.4, 0.26), (0.5, 0.32), (0.6, 0.362), 
(0.7, 0.39), (0.8, 0.412), (0.9, 0.43), (1.00, 0.442), (1.10, 0.455), (1.20, 0.465), (1.30, 0.477), 
(1.40, 0.487), (1.50, 0.5) 
PCNG R_I = G RAPH(Crowding_l ) 

(0.00, ~0.15), (0.1, 0.00), (0.2, 0.076), (0.3, 0.088), (0.4, 0.088), (0.5, 0.088), (0.6, 0.086), 
(0.7, 0.082), (0.8, 0.062), (0.9, 0.032), (1.00, 0.00), (1.10, -0.032), (1.20, - 0.072), (1.30, -0.102), 
(1.40, -0.132), (1.50, -0.156) 
PCNGR_2 = GRAPH(Crowding 2) 

(0.00, -0.15), (0.1, 0.00), (0.2, 0.078), (0.3, 0.088), (0.4, 0.088), (0.5, 0.086), (0.6, 0.086), 
(0.7, 0.082), (0.8, 0.062), (0.9, 0.032), (1.00, 0.00), (1.10, -0.032), (1.20, - 0.072), (1.30, -0.102), 
(1.40,-0.132), (1.50,-0.156) 

A STELLA program listing of the three-patch animal metapopulation model 

Subpop l(t) = Subpop_l(t - dt) + (NeIGR_I + ImRt21 + ImRt31 - ImRt13 - IMR112) * dt 
INIT Subpop_l = 82 

tNFLOWS: 
NetGR 1 = ActPCNGRl*Subpop_l 
ImRt21-= if (ImRLTest * PCImRt_2 % 1) then IrnRt_Test * PCImRt 2* Subpop_2 

• Habitat Avail 1 else Subpop 2 *Habitat_Avail 1 
ImRt31 = IF (ImRt_Test * PCImRt_3_< 1) THEN ImRt Test * PCImRt 3* Subpop 3 

=Habitat Avail 1 ELSE Subpop_3*Habitat Ava~ 1 
OUTFLOWS: 
ImRt13 = IF (ImRt_Test * PClmRt_l _< 1) THEN ImRt Test * PCImRt 1" Subpop_l 

"Habitat_Avail_3 ELSE Subpop 1 *Habitat Avail 3 
ImRtl 2 = if (ImRt_Test * PCImRt_I _< 1)then IrnRt_Test ° PC ImRt_I* Subpop_l 

• Habitat Avail 2 else Subpop_l *Habitat Avail 2 
Subpop_2(t) = Subpop_2(t - dr) + (NetGR_2 + ImRt12 + 1toRt32 - ImRt21 - ImRt23) * dt 

INIT Subpo~2 = 20 
INFLOWS: 
NetGR 2 = ActPCNGR2*Subpop 2 
ImRt12-= it (ImRt Test * PCImRt_I _< 1) then ImRt_Test * PCIrnRt 1* Subpop 1 

• Habitat Avail 2 else Subpop 1 *Habitat_Avail 2 
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ImRt32 = IF (ImRl_Test * PCImRt_3 < 1) THEN ImRt Test" PCImRI_3* Subpop_3 
• Habitat Avail 2 ELSE Subpop_3"HabitatAvail 2 

OUTFLOW~ 
ImRt21 = it (ImRt_Test * PCImRt 2 <_ 1) then ImRt_Test * PCImRt 2" Subpop 2 

• Habitat Avail_l else Subpop 2 *Habitat Avail 1 
ImRt23 = if (I-toRt Test * PCImRt 2 <_ 1) then ImRt Test * PCImRt_2* Subpop_2 

• HabitatAvail 3 else Subpop 2 *Habitat Avail 3 
Subpop_3(t) = Subpop_3(t -dt) + (ImRt13 + ImRt23 + NetGR_3 - ImRt31 - lmRt32) *dt 

INIT Subpop_3 = 40 
INFLOWS: 
ImRn3 = IF (ImRt Test * PCImRt_I _< 1) THEN ImRt Test" PCImRt_I* Subpop_l 

"Habitat Avail 3 ELSE Sub~p_l *Habitat Avail 3 
ImRt23 = if (ImRt_Test * PCImRI 2 _< 1) then ImRt Test * PCImRt_2* Subpop 2 

• Habitat Avail 3 else Subpop_2 *Habitat Avail 3 
NetGR 3 = ActPCNGR3"Subpop_3 
OUTFLOWS: 
ImRt31 = IF (ImRt Test" PCImRt 3 < 1) THEN ImRt_Test* PCImRt_3" Subpop 3 

• Habitat_Avail_l ELSE Subpop_3 *Habitat Avail 1 
ImRt32 = IF (ImRt Test * PCImRt 3_< 1) THEN ImRt_Test * PCImRt_3* Subpop 3 

"Habitat Avail 2 ELSE Subpop_3*Habitat Avail 2 
ActPCNGR1-- il DLT_NGR>0 then SMTH3(PCNGR 1, DLT_NGR) else PCNGR_I 
ActPCNGR2 = if DLT_NGR>0 then SMTH3(PCNGR_2, DLT NGR) else PCNGR_2 
ActPCNGR3 = if DLT_NGR>0 then SMTH3(PCNGR_3, DLT NGR) else PCNGR_3 
CarryingCap_l = 500 
CarryingCap_2 = 500 
CarryingCap_3 = 500 
Crowding_l = Subpop_l/CarryingCap_l 
Crowding2 = Subpo~2/CarryingCa~2 
Crowding_3 = Subpop_3/CarryingCap_3 
DLT NGR = 0 
ImRt_Test = 1 

MetaPop = Subpop_l+Subpop_2+Subpop_3 
Habitat Avail 1 = GRAPH(Crowding_l) 

(0.0-0, 1.0-0), (0.0833, 0.985), (0.167, 0.965), (0.25, 0.945), (0.333, 0.91), (0.417, 0.865), 
(0.5, 0.8), (0.583, 0.705), (0.667, 0.565), (0.75, 0.35), (0.833, 0.00), (0.917, 0.00), (1, 0.00) 
Habitat_Avail_2 = GRAPH(Crowding_2) 

(0.00, 1.00), (0.0833, 0.985), (0.167, 0.965), (0.25, 0.945), (0.333, 0.91), (0.417, 0.865), 
(0.5, 0.8), (0.583, 0.705), (0.667, 0.565), (0.75, 0.35), (0.833, 0.00), (0.917, 0.00), (1, 0.00) 
Habitat Avail 3 = GRAPH(Crowding_3) 

(0.0-0, 1if0), (0.0833, 0.985), (0.167, 0.965), (0.25, 0.945), (0.333, 0.91), (0.417, 0.865), 
(0.5, 0.8), (0.583, 0.705), (0.667, 0.565), (0.75, 0.35), (0.833, 0.00), (0.917, 0.00), (1, 0.00) 
PCImRt_I = GRAPH(Crowding_l) 

(0.00, 0.001), (0.1, 0.016), (0.2, 0.039), (0.3, 0.078), (0.4, 0.13), (0.5, 0.17), (0.6, 0.203), 
(0.7, 0.224), (0.8, 0.242), (0.9, 0.255), (1.00, 0.266), (1.10, 0.275), (1.20, 0.282), (1.30, 0.288), 
(1.40, 0.296), (1.50, 0.3) 
PCImRI_2 = GRAPH(Crowding_2) 

(0.00, 0.001), (0.1, 0.016), (0.2, 0.039), (0.3, 0.078), (0.4, 0.13), (0.5, 0.17), (0.6, 0.203), 
(0.7, 0.224), (0.8, 0.242), (0.9, 0.255), (1.00, 0.266), (1.10, 0.275), (1.20, 0.282), (1.30, 0.288), 
(1.40, 0.296), (1.50, 0.3) 
PCImRt_3 = GRAPH(Crowding_3) 

(0.00, 0.001), (0.1, 0.016), (0.2, 0.039), (0.3, 0.078), (0.4, 0.13), (0.5, 0.17), (0.6, 0.203), 
(0.7, 0.224), (0.8, 0.242), (0.9, 0.255), (1.00, 0.266), (1.10, 0.275), (1.20, 0.282), (1.30, 0.288), 
(1.40, 0.296), (1.50, 0.3) 
PCNGR_I = GRAPH(Crowding_l) 

(0.00, -0.15), (0.1, 0.00), (0.2, 0.076), (0.3, 0.088), (0.4, 0.088), (0.5, 0.088), (0.6, 0.086), 
(0.7, 0.082), (0.8, 0.062), (0.9, 0.032), (1.00, 0.00), (1.10, -0.032), (1.20, - 0.072), (1.30, -0.102), 
(1.40,-0.132), (1.50, -0.156) 
PCNGR 2 = GRAPH(Crowding 2) 

(0.00, -0.15), (0.1, 0.00), (0.2, 0.076), (0.3, 0.088), (0.4, 0.088), (0.5, 0.088), (0.6, 0.086), 
(0.7, 0.082), (0.8, 0.062), (0.9, 0.032), (1.00, 0.00), (1.10, -0.032), (1.20, - 0.072), (1.30, -0.102), 
(1.40,-0.132), (1.50, -0.156) 
PCNGR 3 = GRAPH(Crowding_3) 

(0.00, -0.15), (0.1, 0.00), (0.2, 0.076), (0.3, 0.088), (0.4, 0.088), (0.5, 0.088), (0.6, 0.086), 
(0.7, 0.082), (0.8, 0.062), (0.9, 0.032), (1.00, 0.00), (1.10, -0.032), (1.20, - 0.072), (1.30, -0.102), 
(1.40, -0.132), (1.50, -0.156) 
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