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Abstract 
 

 Interpolation is essential to most studies of spatial patterns in ecology.  However, there has 
been a lack of quantitative techniques for interpolation of spatial data.  This paper introduces a new 
method for studying spatial patterns, the two-dimensional net-function interpolation.  The method 
can be used to interpolate unmeasured sample locations based on known values at nearby grid 
points.  Specific examples from ecological studies in the Inner Mongolia Grassland, China are 
discussed to illustrate the use of the method.  A brief comparison between the net-function 
interpolation and kriging is also made.  The method may provide a useful tool assisting collection of 
field data of spatial patterning of physical and biological entities, and would allow ecologists to 
obtain vegetaion, soil and other ecological maps based on field observations with greatly reduced 
effort and over relatively large extent.  Beyond that, the net-function technique seems to have 
potential for other fields (e.g., mining, forestry, meteorology, and structural geology) in which spatial 
interpolation plays a crucial role. 
 

I. Introduction  
 

 The mosaic pattern and its multiplicity in spatial and temporal scales for a variety of 
ecological systems have long been noticed and studied by plant community ecologists (Watt, 1925, 
1947; MacFadyen, 1950; Greig-Smith, 1952, 1983; Kershaw, 1957, 1960; Anderson, 1967, 1971; 
Pielou, 1977; Whittaker and Levin, 1977; Kershaw and Looney, 1985; C. Yang et al., 1984; Yang and 
Bao, 1986; Yang, 1988).  The acutely increasing awareness and study of problems of scale and 
pattern in recent ecology (see Levin, 1992; Moloney et al., 1992; O’Neill et al., 1991 and Turner and 
Gardner, 1991 for recent reviews), spurred in particular by the development of landscape ecology, 
have renewed and greatly expanded the earlier interest conspicuously exemplified in plant 
community ecology.  While the Greig-Smith/Kershaw blocking methodology predominated the 
early studies of patchy structure of plant communities, a number of relatively new techniques have 
been proposed and increasingly used for detection and analysis of spatial patterning across scales of 
landscapes.  These tools include trend surface analysis, spline interpolation, autocorrelation, spectral 
analysis, fractals, semi-variograms, variance staircase, and moving window analysis (see Mucina et al., 
1988; Levin, 1991; Turner and Gardner, 1991 and references therein).  Each of the techniques, with 
its own advantages and disadvantages, is thus only suitable for certain particular aspects of spatial 
problems.  
 Spatial interpolation is essential to most ecological field studies; while taking average values 
for particular variable such as population densities, community biomass, or process rates over a 
spatial extent of landscape or an experimental plot, one in fact implicitly interpolates values for all 
unsampled points in space (Robertson, 1987).  Interpolation usually becomes crucial and imperative 
especially in the field ecological investigation of spatial patterns, where missing data between 
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observed sample points, due to particular field conditions, logistics, and other experimental 
constraints, are often encountered.  With the renewed emphasis on spatial pattern and its 
heterogeneity and variability, a geostatistical method, kriging, has recently been used for spatial 
interpolation in ecological studies (e.g., Robertson, 1987; Robertson et al., 1988).  Based on rather 
different mathematical theory, the net-function interpolation method may also be used in studies of 
spatial patterns and yet, the method is virtually unknown to the ecologist.  In this paper, I will 
introduce the basics of the method, illustrate its application through ecological examples, and also 
make a brief comparison between the net-function interpolation and kriging.   
 

II. The Two-Dimensional Net-Function Interpolation Method      
 
 The net-function interpolation method was developed by Peizhang Qiu and his associates at 
Inner Mongolia University (Qiu, 1978), adopting a mesh-generating numerical approach (Cook, 
1974).  The method allows one to estimate the functional values between lattice points according to 
those on the lattice points, and the procedure can be conveniently carried out numerically.  
Although the method can be used to interpolate functional values in an n-dimensional space (see 
Appendix), I will limit the discussion to the discrete, two-dimensional net-function interpolation 
case.  The definition of net-function and derivation of the interpolation function are given in the 
Appendix. 
 The direct goal of the two-dimensional net-function interpolation is to obtain estimates of 
the internal unknown values based on the known on the boundary of a two-dimensional region.  
Figure 1 illustrates the spatial relationship among the net points at which the value is known or to be 
predicted.  Given the z values at the net points along the four borders of the rectangular region R(2), 
the z value for any internal net point (x, y) can be calculated from the net-function interpolation 
equation (Qiu, 1978):  
 

 F(x, y)  =  
y - y1
y0 - y1

   f(x, y0) + 
y - y0
y1 - y0

   f(x, y1) +  
x - x1
x0 - x1

   f(x0, y) 

 

  + 
x - x0
x1 - x0

   f(x1, y) - 
x - x1
x0 - x1

   [ 
y - y1
y0 - y1

   f(x0, y0) + 
y - y0
y1 - y0

   f(x0, y1)]  

 

  - 
x - x0
x1 - x0

   [ 
y - y1
y0 - y1

   f(x1, y0) + 
y - y0
y1 - y0

   f(x1, y1)]               (1) 

 
Alternatively, according to data availability and the researcher's preference, an area-based 
interpolation formula may be employed in place of the net point-based formula (eq. 1): 
 

 F(x, y)  =  
1
A  { (A3 + A4) f(x, y0) + (A1 + A2) f(x, y1) + (A2 + A3) f(x0, y) 

  + (A1 + A4) f(x1, y) - [ A3 f(x0, y0) + A2 f(x0, y1)  
  + A4 f(x1, y0) + A1 f(x1, y1) ] }                               (2) 
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where A1, A2, A3 and A4 are the partial areas of the rectangular region R(2) with a total area of A, 
divided into the four parts by two lines perpendicular to each other and both passing point (x, y) 
(see Fig. 2).  
 Thus, eight known functional values on the boundary of R(2) are required to interpolate one 
unknown net point using the interpolation formula (Figs. 1 and 2).  Four of the eight functional 
values correspond to the four corner positions of the rectangle R(2) on the XOY plane [ i.e., f(x0, 
y0), f(x0, y1), f(x1, y0), and f(x1, y1) ], whereas the other four have the same coordinates, either on x 
or y axis, as does the inside point to be estimated [ i.e., f(x, y0), f(x, y1), f(x0, y), and f(x1, y) ].  For 

example, let's consider a function f(x, y) of certain form defined over R(2) which is a unit square (say 
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1).  When f(x, y) = x3 + xy2, at the point (3, 3) in R(2) the estimated value 
from the net-function interpolation formula [i.e., F(3, 3)] is exactly equal to the actual value [i.e., f(3, 
3)] which is 54.  When f(x, y) = xy3 + 4x2 + 4xy + 6y2, the estimate F(0.1, 0.5) is 1.7525 while the 
actual value f(0.1, 0.5) is 1.753.  The relative error [(f - F) / f] is 0.029%.  When f(x, y) = ex + xy + 
x2y2, F(0.1, 0.5) is 1.1352 and f(0.1, 0.5) is 1.1577, resulting in a relative error of 1.94%. 
 

III. Use of the Net-Function Interpolation Method in a Multiple-Cell Grid 
 
 Because the variation of a variable tends to increase with spatial extent, to obtain reliable 
estimates using the two-dimensional net-function method may require interpolating over a nested 
network or grid with proper resolution (or grain size; see Fig. 3).  This is especially true when small-
scale patchiness or patterning is to be detected.  In this case, the net-function interpolation formula 
may be repeated systematically over a regular-sized grid of, maybe, a large number of grid cells (Fig. 
3).  The number of grid points to be measured and to be estimated using the two-dimensional 
interpolation method can be computed according to the following formulas:   
  
   NT = (m k + 1) (n k + 1)             (3) 
 
   NE = m  n (k - 1)2                 

(4) 
 
   NM = NT - NE                          

          = (m k + 1) (n k + 1) - m  n (k - 1)2              
(5) 
 
where NT is the total number of grid points, NE is the number of points to be calculated, NM is the 
number of points to be actually measured, respective m and n are the number of grid cells along two 
neighboring sides of the rectangular transect (m = n for a square transect), and k is the number of 
subcells across a side of a grid cell. 
 In order to interpolate the NE grid points simultaneously the basic formula of net-function 
interpolation (eq. 1) may be used to give rise to the following algorithm: 
 

 aki+1-s, kj+1-r   =   
r
k   aki+1-s, kj+1-k +  

(k-r)
k    aki+1-s, kj+1 +  

s
k   aki+1-k, kj+1-r  
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  +  
(k-s)

k    aki+1, kj+1-r  -  
s
k   [ 

r
k   aki+1-k, kj+1-k + 

(k-r)
k    aki+1-k, ki+1 ] 

 

  -  
(k-s)

k    [ 
r
k   aki+1, ki+1-k + 

(k-r)
k    aki+1, kj+1 ]           (6) 

 
    ( r, s = 1, 2, ..., k - 1;  i = 1, 2, .., N/D;  j = 1, 2, ..., M/D ) 
 
where M and N are the side length of the transect, and D is the side length of a grid cell.  The 
known values make up the following matrices: 
 
   [ aki+1, 1,  aki+1, 2,  ..., aki+1, m ] 
        ( i = 1, 2, ..., N/D ) 
 
and         
 

     

 

 a1, k j+1 

 a2, k j+1 

   !

   !

   !

 an, k j+1 

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

       

        ( j = 1, 2, ..., M/D ). 
 
When the number of grid points is large for real problems, the use of computer becomes imperative 
for such computation (a computer program in C to implement the net-function interpolation for a 
given grid transect is available from the author upon request). 

 
IV. Application of the Interpolation Method: Ecological Examples 

 
 The two-dimensional net-function interpolation method may be applied to the study of 
spatial distribution patterns of physical or biological entities or properties over a geographical region.  
The method was successfully applied in geophysical prospecting and drilling in China (Qiu, 1978) 
and in the study of spatial patterning of several plant species in an Aneurolepidium chinensis steppe 
community of the Inner Mongolia Grassland (C. Yang et al., 1984; Z. Yang et al., 1984; Yang and 
Bao, 1986; Yang, 1988).  Here I will illustrate the use of the method in ecology based on the study of 
spatial patterning of plant communities by a group of scientists in Inner Mongolia University, 
Huhhot, China (see C Yang et al., 1984; Z. Yang et al., 1984).   
 The sampling work was conducted at the Inner Mongolia Grassland Ecosystem Research 
Station, Chinese Academy of Sciences, which is located in the Xilin River Basin (see Wu and Loucks, 
1991 for a description of the physical environment and vegetation of this region).  Five 50m X 25m 
transects were placed in a steppe community dominated by Caragana microphylla, Aneurolepidium 
chinense, Stipa grandis, and some other bunch grasses.  Each transect was divided into 1,250 1m X 
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1m grid cells and each of them was further subdivided into 25 0.2m X 0.2m subcells (Fig. 3).  Along 
the boundaries of 1m X 1m grid cell, the number of individuals of different species within 1cm from 
the line were counted at an interval of 0.2 m.  The procedure proceeded from left to right for rows 
and from top to bottom for columns, and the values were assigned to the first-encountered grid 
points (Fig. 3).  Bunch grasses were counted based on the number of clusters, whereas rhizome 
grasses counted as the number of above-ground stems (C. Yang et al., 1984).   
 In the study by Yang et al. (1986), the number of total grid points for each transect was 
31,626, among which 11,626 were measured in the field and 20,000 were interpolated.  The total 
number of individuals of each species could be estimated by using the interpolation method.  For 
the purpose of studying the patch area and its distribution and also simplifying the computation 
process, the original abundance data were translated into presence/absence data (1's and 0's, see C. 
Yang et al., 1984).  Each grid point represented an area of 0.04 m2.  After all the values of internal 
grid points were computed, a threshold level was used to convert the estimated values into one/zero 
series.  The threshold was chosen so that the ratio of presence to absence from the estimated data 
set was equal or close enough to that from the measured data set.   
 Cover percentage of each population in the transect was estimated from the ratio of the grid 
points with positive and zero values following Monte Carlo methodology.  From the interpolated 
maps using the net-function method, C. Yang et al. (1984) found that most plant populations under 
study were of aggregated distribution, with patches of more than one single spatial scale.  This was 
largely in agreement with early studies using the Greig-Smith - Kershaw blocking method (see Yang, 
1983; Yang and Bao, 1986).  The average and maximum sizes of patches for 13 species were 
computed, and two-dimensional population distribution maps for each species were made to 
visualize the characteristics of spatial patterning within and between species.  Moreover, single 
species distribution maps were overlaid so that the mosaic structure of the plant community was 
clearly manifested graphically.   
 Using the net-function interpolation method, Z. Yang et al. (1984) studied a random map of 
different-sized geometric shapes and a make-up distribution map of plant populations which 
mimicked a typical pattern as would be found in the steppe.  Their results showed that the relative 
error (estimated versus actually measured patch coverage) was usually below 10% when the average 
area of smallest patches of interest was larger than the area of the grid cell.  As expected, the 
estimation error would increase erratically once the average patch size was much smaller than the 
grid cell size. 

 
V. Comparison between Kriging and the Net-Function Interpolation  

 
 "Kriging" conveys the same meaning as "optimal prediction" or "optimally predicting", 
referring to making inferences on unobserved values of a random process from observed at known 
spatial locations (Cressie, 1991).  As a technique, it has been most extensively used in the mining 
industry for predicting ore values.  Kriging, or geostatistics in general, recognizes that the set of 
random variables in question is characterized by a variance structure in which observations are not 
independent, but spatially correlated.  An important basis for kriging is the regionalized variable 
theory that observations taken at short distance from each other are more alike (i.e., lower variances) 
than those taken further apart.  Kriging allows for optimized estimation of such "regionalized 
variables" at unsampled locations based on values for nearby sample points weighted by distance 
and the degree of spatial autocorrelation.  In essence, kriging procedure involves two steps: 
determining the spatial variance structure of the data set (i.e., the degree of spatial autocorrelation 
among the measured data points) and interpolating unmeasured values between sampled points (i.e., 
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kriging) from known variance (see Journel and Huijbregts, 1978; Whitten, 1981; Robertson, 1987; 
Cressie, 1991).      
 Autocorrelation is evaluated by calculating the semi-variogram that defines the variance 
between observations at a distance h from another following the equation: 
 

g(h) =  
1

2N(h)   ∑

i=1
N(h)    [ z(xi+h) - z(xi) ]2                (7) 

 
where z(xi)  is the measured value at point xi, z(xi+h) is the sample value at point xi+h, and N(h) is 
the total number of pairs of sample points for a given interval (i.e., sample spacing), h.  Semi-
variogram parameters then can be used for kriging the sample values at unsampled locations through 
different or non-linear estimation algorithms (see Journel and Huijbregts, 1978; Journel, 1989; 
Cressie, 1991).  These include ordinary kriging (punctual kriging at a point and block kriging for 
areas) and universal kriging (with trended data, i.e., the mean of the dependent variable changes 
across the study area). 
 Both kriging and the net-function interpolation methods assume that spatial variability at 
local scales is small and take into consideration the spatial relationship between sampled points and 
the spatial relationship between sampled points and the estimation point.  The assumption seems 
empirically justified.  Regionalization of physical and biotic properties may be expected from the 
nature of the geomorphological, pedogenic, and biological processes that influence them.  As 
ecologists have long recognized, such processes and thus properties typically exhibit gradual rather 
than abrupt changes within short distance and across landscapes.  However, the two methods are 
fundamentally different in that kriging is a probabilistic approach, whereas the net-function 
interpolation is deterministic without explicit consideration of spatial autocorrelation.   
 The net-function interpolation may not be able to provide constantly unbiased estimates for 
the points interpolated if the grid cell is too large.  This is also likely to be true for kriging when h is 
becomes too large.  In contrast with the net-function method, kriging permits statements of 
confidence levels to be associated with predictions.  In addition, kriging can be used for data sets 
with irregularly-spaced sample points, although the construction of semi-variogram in such cases 
becomes complicated and sometimes introduces unacceptable bias (Whitten and Koelling, 1973; 
Whitten, 1981).  The net-function method, on the other hand, appears to be undesirable for 
irregularly-gridded data.  When anisotropy is taken into account with the universal kriging algorithm, 
kriging may become rather complex and computationally demanding (Whitten, 1981).  It seems that 
the net-function method is numerically much simpler and the computational requirement increases 
only modestly with increasing grid size (e.g., C. Yang, 1984; Z. Yang, 1984). 
 

VI. Discussion 
 
 The net-function interpolation method is potentially useful for detection and analysis of 
scales and patterns in ecology.  However, the method has not, in effect, been used by ecologists.  
The method may prove useful especially in collecting field data on spatial patterning of physical and 
biological entities, which would allow the ecologist to afford to obtain spatial maps based on field 
observations with greatly reduced effort and over relatively large extent.  The traditional and 
somewhat standard pattern analysis method in plant community ecology, the Greig-Smith - Kershaw 
technique would only be suitable and practical in rather small extent (e.g., Yang, 1983; C. Yang et al., 
1984).  Development of systematic and versatile computer programs with output formats suitable 
for pattern analysis will facilitate the application of the method.  Also, the combination of this 
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method with other pattern analysis techniques seems promising in future ecological studies.  
Although the method is discussed primarily in the ecological context in this paper, it should have 
potential in such fields as mining, forestry, meteorology, structural geology, or any others where 
spatial interpolation is of great importance. 
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Appendix 
 

Derivation of the (m) net-function interpolation function 
 
 An (m) net-function is defined as follows.  Let R(n) be a rectangular body in an n-
dimensional space (n > 1),  
 
  R(n) = { (x1, x2, ..., xn): xi(0) ≤ xi ≤ xi(m), 1 ≤ i ≤ n }         (8) 
 
which is divided by n(m+1)n-1 straight lines into a meshwork.  They all together form a manifold 
(m) mesh in R(n), and a function defined on this (m) mesh 

   f(x1, x2, ..., xn)  (  R(n)  ) 

is called the (m) net-function with regard to R(n) (Qiu, 1978).  When n = 1, R(1) becomes a linear 
segment (i.e., x1(0) ≤ x1 ≤ x1(m)), and the (m) mesh is reduced to m+1 points [i.e., x1(di), where di 
= 0, 1, ..., m] over which the (m) net-function f(x1) is defined. 

 One can construct a function F(x1, x2, ..., xn) from the (m) net-function (Qiu, 1978): 

 F(x1, x2, ..., xn)   º ∑
1≤i1<i2<...<in-1≤n

 
       L(xi1)L(xi2)...L(xin-1) f(x1,x2,...,xn) -  

 
     (n - 1) L(x1)L(x2)...L(xn) f(x1, x2, ..., xn)            (9) 
 
where L(xj) is the (m) interpolation Lagrangian operator.  Qiu (1978) further derived the (m) 
interpolation function:  

F(x1, x2, ..., xn) = ∑
j=1

n
 ∑
0≤lt≤m

 (x1)l1(x2)l2...(xj-1)lj-1(xj+1)lj+1 ...(xn)ln j(xj)       (10) 

 
where F(x1, x2, ..., xn) is defined on the closed region xj(0) ≤ xj ≤ xj(m).   
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 The (m) interpolation function may be discrete.  For example, let's consider the simple yet 
rather interesting case where n = 2 and m = 1.  Suppose that a two-variable function [z = f(x,y)] is 
defined over a rectangular region R(2): x0 ≤ x ≤ x1, y0 ≤ y ≤ y1.  That is, a (curved) surface is 
defined over a rectangle, bounded by four sides (linear boundaries): p0, p1, q0, and q1 (Fig. 4).  If 

R(2) is horizontally placed, the functions for the four spatial curves are: z = f(x0, y), z = f(x1, y), z = 
f(x, y0), and z = f(x, y1), respectively.   
 Now let's create a new surface S': z = F(x, y) to approximate the original surface S: z = f(x, 
y).  The new surface S' will have the same boundaries as S does, i.e., 
 
   F(xi, y) = f(xi, y) 
 and  F(x, yj) = f(x, yj) (i, j = 0, 1) 
 
The procedures to create such a surface S' are as follows.  First, construct a surface, S1', by drawing 
straight line segments between q0 and q1 connecting all the points with the same x coordinates.  The 
equation for the resulting surface is  
 

S1':   F1(x, y) =  
y - y1
y0 - y1

   f(x, y0) + 
y - y0
y1 - y0

   f(x, y1)               (11) 

 
Alternatively, one may get 
 

   F1(x, y) =  
x - x1
x0 - x1

   f(x0, y) + 
x - x0
x1 - x0

   f(x1, y)            (12) 

 
Surface S1' has two sides (i.e., q0 and q1) identical to S, with the other two (p0* and p1*) being 
different: z = F1(x0, y) and z = F1(x1, y), respectively.   
 Second, similarly construct a surface, S2', by drawing straight lines between p0 and p1, which 
is described by the following equation: 
 

S2':   F2(x, y) =  
x - x1
x0 - x1

   f(x0, y) + 
x - x0
x1 - x0

   f(x1, y)     (13) 

 
Alternatively, 
 

  F2(x, y) =  
y - y1
y0 - y1

   f(x, y0) + 
y - y0
y1 - y0

   f(x, y1)     (14) 

 
S2' shares two of the four sides with S (i.e., p0 and p1) and the other two, q0* and q1*, are z = F2(x, 
y0) and z = F2(x, y1), respectively.   

 Third, construct an another surface, S3', by connecting all pairs of points on p0* and p1* 
with the same x coordinates, resulting in 



Jianguo Wu:  2-D Net Function Interpolation Method                            Pg. 9 

 

S3':   F3(x, y) =  
x - x1
x0 - x1

   F1(x0, y) + 
x - x0
x1 - x0

   F1(x1, y)    (15) 

 
Alternatively, 
 

 F3(x, y) =  
y - y1
y0 - y1

   F1(x, y0) + 
y - y

y1 - y0
   F1(x, y1)    (16) 

 
The four sides of surface S3' are p0*, p1*, q0*, and q1*, respectively.  All the surfaces we have 

created, S1', S2' and S3', are defined over the same region, R(2). 
 Lastly, obtain S' by combining S1', S2', and S3', i.e., 
 

F(x, y)  º  F1(x, y) + F2(x, y) - F3(x, y)               (17) 
 
Function F(x, y) is the (m=1) net-function interpolation formula for the spatial surface, z = f(x, y).  
 According to equations (11) - (17), therefore, we have the two-dimensional net-function 
interpolation formula (eq. 1): 
 

 F(x, y)  =  
y - y1
y0 - y1

   f(x, y0) + 
y - y0
y1 - y0

   f(x, y1) +  
x - x1
x0 - x1

   f(x0, y) 

 

  + 
x - x0
x1 - x0

   f(x1, y) - 
x - x1
x0 - x1

   [ 
y - y1
y0 - y1

   f(x0, y0) + 
y - y0
y1 - y0

   f(x0, y1)]  

 

  - 
x - x0
x1 - x0

   [ 
y - y1
y0 - y1

   f(x1, y0) + 
y - y0
y1 - y0

   f(x1, y1)]             

 
 
The absolute error, when F(x, y) is used to approximate f(x, y), is given by 
  

g(x, y)  =  
1
4 
∂4f(x,h)
∂x2∂y2  (x -x0)(x -x1)(y -y0)(y -y1)     (18) 

 
where x and h are dependent on the grid points to be calculated (x, y) and also satisfy the 
relationships: x0 ≤ x ≤ x1 and y0 ≤ h ≤ y1 (cf. Qiu, 1978). 
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Figure 1.  Schematic presentation of the two-dimensional net function interpolation.  
The z value of any internal net point (x,y) is estimated from the eight z values along 
the boundary of the region, R. 
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Figure 2.  Illustration of the relationship between the point-based and area-based  
interpolation formulation schemes: (a) point-based and (b) area-based. 
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Figure 3.  A grid of m X n cells (A), each of which is further divided into k X k 
subcells (a).  In the grassland example, the grid is a 50m X 25m transect with 1,250 
1m X 1m grid cells, and each grid cell is further divided into 25 20cm X 20cm 
subcells. 
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Figure 4.  Illustration of a surface S defined over a rectangular region R(2). 
 
 


