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a b s t r a c t

Urbanization is a human-dominated process and has greatly impacted biodiversity, ecosystem pro-
cesses, and regional climate. To understand the socioeconomic drivers of urbanization and project future
urban landscape changes, multi-agent systems provide a powerful tool. We develop an agent-based
model of urban growth for the Phoenix metropolitan region of the United States, which simulates
the behavior of regional authorities, real estate developers, residents, and environmentalists. The BDI
(Beliefs–Desires–Intentions) structure is employed to simulate the agents behavior and decision models.
The heterogeneity of agents is reflected by adjusting parameters according to the agents’ beliefs, desires
and preferences. Three scenarios, baseline, economic development priority and environmental protec-
tion, are developed and analyzed. The combination of multi-agent system and spatial regression model is
employed to predict the future urban development of the Phoenix metropolitan region. Landscape met-
rics are used to compare the spatial patterns of the urban landscape resulting from different scenarios in
different times. In general, with the rapid urban expansion, the shape of urban patches will become more
regular as many of them become coalesced. The spatial analysis of urban development through mod-
eling individual and group decisions and human–environment interactions with a multi-agent systems
approach can enhance our understanding of the socioeconomic driving forces and mechanisms of urban
development.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Land use and land cover change has been widely recognized as
the primary driver for global ecosystem changes as well as a key fac-
tor in global climate change (Lambin and Geist, 2006; Ojima et al.,
1994). Urbanization is the most severe form of land use and cover
change, profoundly influencing biodiversity, ecological processes,
and ecosystem services (Grimm et al., 2000; Grimm et al., 2008;
Tian et al., 2007a; Wu, 2008). For example, the surface change to
asphalt and cement has resulted in urban heat islands, which is the
phenomenon of higher temperatures at the urban core compared
with the surrounding rural area (Brazel et al., 2007; Buyantuyev and
Wu, 2010). It is of great importance to understand how the urban
land use and land cover change occurs and to project its future
changes for the purpose of urban sustainability (Wu and David,
2002; Wu, 2008).

∗ Corresponding author. Tel.: +86 10 5880 7808.
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To acquire a better understanding of urban dynam-
ics, researchers have developed different kinds of modeling
approaches. Among them, cellular automata (CA) models have
been widely used to simulate urban growth (Batty and Xie, 1994;
Berling-Wolff and Wu, 2004; Clarke et al., 1997; Wu and Webster,
1998). CA models are usually implemented through transition
rules which are heuristically defined according to the intuitive
understanding of the process (e.g., Jenerette and Wu, 2001). One
of such models is PHX-UGM (Berling-Wolff and Wu, 2004), devel-
oped to simulate urban growth of Phoenix, in which four different
types of urban growth—spontaneous, diffusive, organic and road-
influenced are distinguished. Although CA models, to a certain
extent, have been successful to simulate urban land use change,
there are problems that restrict their further application. In partic-
ular, the urban dynamic process is so complex and ill-defined that
it is impossible to propose universal transition rules to control the
processes in different places (Wu and David, 2002). Also, CA models
have rather limited capacities for incorporating decision processes
of individuals and organizations (Torrens and Benenson, 2005).

Human behavior and interactions are key to understanding
urbanization process (Bousquet and Le Page, 2004). Although there
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is an extensive literature on urban dynamic simulation, few papers
addressed human planning and decision processes because, to a
large part, of their high degree of complexity. As a promising
method to fill this gap, the multi-agent system (MAS) modeling
approach provides a more capable tool to simulate multi-level deci-
sion making processes that produce urban dynamics over time
(Parker et al., 2003; Sengupta and Bennett, 2003). With adaptive
agents that interact with one another and with their environment,
a MAS model has great potential in its application to spatial-policy
making as it allows for dynamic learning through scenario analy-
sis (Ligmann-Zielinska and Jankowski, 2007; Matthews et al., 2007;
Couclelis, 1989; Ligmann-Zielinska and Jankowski, 2007).

Agents that are used to represent organizations and interest
groups rather than mere individuals provide a more realistic way
of modeling the urbanization process. On the one hand, taking indi-
vidual people as building blocks of a model may result in formidable
complexity, and on the other hand, organizations and interest
groups are often the decision-makers at the level of multi-actor
regional planning. The MAS approach is particularly suitable for
dealing with heterogeneous actors across scales. It models desires,
beliefs, intentions and preferences of agents in the planning pro-
cess and translates them into visions of agents (Ligtenberg et al.,
2004), and can strengthen the understanding of social processes
by modeling decision making processes and human–environment
interactions. Agents that represent various individual or group enti-
ties have differing influences on the emergent results of the system.
In most, if not all, situations, government, real estate developers,
residents, and environmentalists all play a role in shaping the urban
landscape. MAS-based models provide quantitative and empiri-
cally verifiable accounts of how individual decisions lead to group
formation pattern, contagion, and cooperation, so that collective
behavior can be predicted, manipulated, and improved (Goldstone
and Janssen, 2005).

In this study, we developed a MAS model to simulate the urban
dynamics of the Phoenix metropolitan area, as an alternative to
previous models developed by our research group (Jenerette and
Wu, 2001; Wu and David, 2002; Berling-Wolff and Wu, 2004).
The main goal of this study is to project the urban dynamics of
the Phoenix region through simulating the decisions and behav-
ior of individuals, groups and organizations, so as to achieve a
better understanding of the driving forces and mechanisms of
urbanization in this area. The behavior of agents in our model is
a function of urban planning process, land use policy, water use
policy and environmental measures, the major factors influencing
land use dynamics in the Phoenix region. We also conducted sce-
nario analysis to illuminate multiple alternative possible futures
and to examine their impacts on economic, social and environ-
ment.

2. Study area and data

The Phoenix metropolitan area is the fifth most populous and the
fastest-growing city in the United States. It is located in the north-
ern Sonoran Desert, with a warm and arid climate (Jenerette and
Wu, 2001; Luck and Wu, 2002). Phoenix exemplifies automobile-
oriented urbanization (Gober and Burns, 2002), with a network of
mass transit systems connecting people from the downtown and
industrial areas to the surrounding open space (Greater Phoenix,
2003). The metropolitan area is characterized by a decentralized
pattern of dispersed new towns connected by a regional network
of highways. Phoenix has been changing places with Los Vegas as
the fastest growing city in the USA in recent years (Wu et al., 2010),
with a population growth rate of 6.38% between 1995 and 2000
(Maricopa Association of Governments, 2005). About two-thirds of
the population growth was due to immigration from other regions.

Most data used in the study were obtained from the Cen-
tral Arizona-Phoenix Long Term Ecological Research (CAP-LTER)
project (Jenerette and Wu, 2001; Luck and Wu, 2002; Berling-
Wolff and Wu, 2004). Land use maps for the years of 1990, 1995
and 2000 were selected, with four categories—agricultural, desert,
urban and recreational (Knowles-Yánez et al., 1999). Information
on major roads, rivers and reservoirs, land ownership, and open
spaces was also extracted from the CAP-LTER database. In addition,
topographic data were derived from the United States Geological
Survey (USGS) digital elevation model.

3. A multi-agent systems model of the urban growth of
Phoenix

3.1. Conceptual framework and rules for the behavior of multiple
agents

The conceptual framework for our MAS model is based on
the BDI (Beliefs–Desires–Intentions) structure (Rao and Georgeff,
1995). Agents have several important characteristics: goal-
directed, autonomous, social, reactive and pro-active, which can
interact with one another and with the environment to complete
tasks autonomously. Beliefs refer to information obtained by agents
about their environment and other agents, and are constructed by
perceiving relevant relations between the desired states and the
real environment. The agents obtain the information of their envi-
ronments. For example, the topography, the distance to the road,
etc. Desires represent agents’ various objectives to be completed.
For example, the economic development, environmental protec-
tion, etc. Intentions are related to a set of selected goals together
with their state of processing, enacted by the currently chosen
course of action (Fig. 1). The agents make their beliefs through
obtaining the environmental information including the physical
factors, states and neighborhoods. They make intentions according
to economic development and environmental protection desires.
They adjust the weights of the variables by the different desires and
beliefs. Then they impact on the land use conversion probability
through adjusting the weights of the variables (Fig. 1).

Every city-dweller may influence urban dynamics in some way,
but it is impossible and unnecessary to explicitly consider every
individual given the purpose of our model. Individuals participate
in organizations, and the actions of these organizations affect and
are affected by individual behavior (Goldstone and Janssen, 2005).
Individuals can be grouped in terms of some common property,
and the groups can be represented as agents. Heterogeneity, one
of the main characteristics of complex adaptive systems (Levin,
1999), is embodied by the diverse agents (Benenson and Torrens,
2004). According to their roles in urban dynamics, the agents in
our model are classified into four groups: regional authorities, real
estate developers, residents, and environmentalists.

Constrained by different rules, agents are allowed to compete
in a variety of environments and act solely to maximize their
own expected utility. These group-level agents act and interact in
a dynamic environment (Bousquet and Le Page, 2004). Environ-
mental, economic and social factors affecting urban dynamics are
difficult to characterize at the regional scale (Manson, 2005). So, our
model represents these factors in terms of the parameters and rules
that reflect the agents’ desires, social norms, policies, and strate-
gies. We analyze the preferences of the four kinds of agents, their
behaviors and decision models at first.

3.1.1. The regional authority behavior
Decision making is carried out at two levels: the individual

and joint decisions among all agents. The hierarchical structure of
social organization indicates that the lower-level processes are con-
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Fig. 1. The workflow of multi-agent system model.

strained by higher-level dynamics (Wu, 1999; Wu and David, 2002;
Verburg, 2006). For example, national and regional authorities usu-
ally have more power than local authorities in decision making,
and national and regional policies tend to have a broader impact
on urbanization (Tian et al., 2002, 2005, 2007b; Berling-Wolff and
Wu, 2004). Regional authority agents consider spatial and tempo-
ral efficiencies in using land resources, and decide whether land
development can be approved according to a number of criteria.
For example, urban development in water bodies and land owned
by Native American Indians is quite unlikely.

Government policy on water rights provides the most significant
explanation for the agricultural to residential land transformation
(Keys et al., 2007). The person who puts water to its first ben-
eficial use acquires the rights to the water, which is defined in
the Public Water Code enacted in 1919 (Maricopa Association of
Governments, 2005). This law mandates that a person must apply
in order to appropriate surface water. Therefore, agriculture is
more likely to be transformed to urban land. We derived rules and
policies from comprehensive planning of Maricopa Associations of
Governments (MAG), policy and statistics. The local government
and social organizations will cooperatively establish the compre-
hensive planning for the Maricopa County for 5 or 10 years. They
establish the basic principles that assist in translating the assump-
tions and goals into progressive community action, so as to prevent
land degradation and protect forests, parks, and Native American
communities.

The government intervenes with urban development by con-
trolling land consumption in the spatio-temporal dimension. The
government pays more attention to economic development and

employment opportunity increment. We assume that compact
development is encouraged to concentrate as much as possible
around existing urban conglomerates, and that agricultural land
is preferred (e.g., Wu, 2002). The comprehensive plan for Maricopa
County encourages infill within existing development.

3.1.2. The real estate developer behavior
The main objective of property developers is to achieve a cer-

tain amount of profit which is the difference between housing
price and the total amount of land price and development cost.
The development probability lies in developer agents and their
investment profit. The provision of public facilities is an impor-
tant factor to affect the decisions of real estate developers. And
convenient freeway and highway access also has a positive impact
on the construction of houses and commercial offices (Berling-
Wolff and Wu, 2004). Real estate developers encourage the urban
growth of residential, commercial and industrial development, and
guide compatible land use patterns. They acquire new develop-
ment to fully utilize the existing infrastructure and city services,
and develop the land near major roads first.

3.1.3. The behavior of residents
The general plan incorporates the knowledge about various

combinations of beliefs. The preference of an agent influences and
is influenced by those of other agents. All agents input their indi-
vidually generated desired state of the environment into a voting
procedure. Consultation is a common step in the planning process,
in which the planners will consult with the citizens. The behavior of
resident agents is determined by their location and status factors.
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Households are the basic decision units in the studies of residen-
tial location and mobility, consisting of persons living together in
dwelling units (Gober, 1986). Households with different income
have different preferences of houses in terms of location, density
and environment. In our model the location factors include the
distance to hospital, park, and public facilities.

3.1.4. The behavior of environmentalists
The conservation of national forest, park, wild space and lake

is important to maintain biodiversity and ecosystem functions in
urban regions. The Native American Indian tribes have a culture
closely tied to their land; to date they have not sold their land
for non-Indian community use, and only in the last few decades
have they begun to lease their lands for commercial and industrial
development (Maricopa Association of Governments, 2005). So, the
Indian reservations have rather small likelihood for urban develop-
ment, and the national forest, park, wildland and water bodies also
have limited possibilities to be developed. So, we set the following
preferences: (1) establish adequate buffers and transitions of open
space to protect the natural beauty of the land and water; (2) coor-
dinate land management and planning activities with neighboring
Native American Indian communities and federal, state and private
interests, and forbid urban development near the Indian Reserva-
tions; and (3) buffer recreational area from urban development and
support lower density development.

The agents of regional authorities, real estate developers, resi-
dents and environmental protectionists make their beliefs through
observing the environment, such as ‘close to urban land’, ‘close to
open space’, and ‘close to highway’ (Fig. 1). They make their inten-
tions based on their beliefs and different desires. For the economic
development objective, they pay more attention to the infrastruc-
ture utilization. But for the environmental protection objective,
they will pay more attention to the open space protection, etc. The
behaviors of the agents were decided by the preferences and poli-
cies. Then they decide the weights of the factors, and the different
combinations of the factors and their weights shape the different
intentions that emerge from the agent behavior (Fig. 1).

3.2. Model implementation

Our model is a specific real-world application of the MAS mod-
eling approach, and it shares some fundamental aspects similar to
other spatially explicit systems. In general, the spatial resolution of
a model determines how much spatial detail to be included in the
model as well as what kinds of landscape changes to be considered.
In this model, we use a regular grid with cells of 100 m × 100 m,
based on the appropriateness of most processes of interest and the
availability of data. At each time step, decisions of various agents
affect land conversion on a cell-by-cell basis. The location of each
cell is represented by the coordinates of its center (i,j). Agents have
spatial characteristics and make decisions that may change the
states of the affected cells.

The model uses population growth as a global driver of urban
growth, as in Berling-Wolff and Wu (2004). Population growth
was predicted before the appropriate land use conversion could be
obtained for each time step of the model implementation (Fig. 1).
As Berling-Wolff and Wu (2004) described, the urban growth of
Phoenix area has been taking place at an exponential rate. Thus,
a regression model was established for estimating the population
growth, based on the population data in 1960–2000:

P(t) = 1.7343 × 10−30 e0.0383t (1)

where P(t) is the population in year t. The square correlation coef-
ficient of population and year t is 0.9986. Hence, there is a strong
correlation between them. The standard error of the projection is
70.666.

Table 1
The land use in 1995 and 2000 and the projected in 2010 and 2020 of Phoenix
metropolitan area (ha).

Land use type 1995 2000 2010 2020

Urban land 54,290 73,012 101,452 105,591
Agricultural land 30,827 18,536 6252 3814
Desert 187,691 180,451 163,638 161,258
Recreational land 12,865 13,674 14,331 15,010

The area of urban land is regressed with the population in
1960–2000 as shown below.

UL(t) = 2563 e0.0008P(t) (2)

where UL(t) is the area of urbanized land in year t.
We projected the urban land in 2010 and 2020 by Eqs. (1) and

(2) (Table 1). According to the projection, the urban land will reach
101,452 ha in 2010 and 105,591 ha in 2020 (Table 1). There are
four land use types considered in our model (1995–2000): urban,
agricultural, desert, and recreational. We projected the agricultural
land, desert and recreational land according to their growth rate
between 1995 and 2000 and keep the balance of the total land
(Table 1). Several factors including topography, and the distance
to railway, major roads, rivers, open spaces and public facilities are
considered in this model as the determinants of the probability of
land use types. For example, the proximity to major roads has a
positive impact on the urban growth.

In this MAS model, we defined the probability of land use con-
version of a cell as:

Pt
ij

1 − Pt
ij

= f (St
ij, Ct

ij, ˝t
ij) (3)

where Pt
ij

is the probability of the cell (i,j) for the occurrence of a

land use type at time t; St
ij

includes the biophysical state of the cell

(i,j) at time t; Ct
ij

is a constraint factor; and ˝t
ij

is the neighborhood
of the cell (i,j) at time t.

The bio-physical factors that impact the land use conversion
include elevation, slope, aspect, and soil texture, denoted by St

ij,1,

St
ij,2, St

ij,3 and St
ij,4, respectively (Berling-Wolff and Wu, 2004). The

constraint factor is land ownership represented by Cij,1. For exam-
ple, Indian reservations will not be developed. The definition of the
Moor neighborhood (i.e., the 8-neighbor rule) is adopted in this
model, meaning that the eight surrounding cells all influence the
state of the focal cell. The number of cells for each of the land use
types (urban, agricultural, desert and recreational) is denoted by
˝ij,1, ˝ij,2, ˝ij,3 and ˝ij,4, respectively. These variables are stan-
dardized in order to avoid the impact due to different scales. For
example, the variables of the biophysical factors can be standard-
ized by the following Eq. (4):

S′
ij =

{
if max(Sij) = min(Sij), 1

else,
Sij − min(Sij)

max(Sij) − min(Sij)
(4)

Logistic regression is often used to study the relations between
land use dynamics and a combination of its driving factors (Verburg
and Chen, 2000; Geoghegan et al., 2001; Serneels and Lambine,
2001; Verburg et al., 2002; Li and Liu, 2006, 2008). It is regarded
as an effective method of the land use conversion with only a lim-
ited number of explanatory variables and complex distributed land
use conversions (Wu, 2002; Li and Liu, 2006, 2008). It can explain
the land use dynamic pattern based on our knowledge. We used
stepwise logistic regression to help determine the probability of
a certain cell to be converted to each of the four land use types
(Verburg et al., 2002). Specifically, the regression equation is as
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Table 2
The regression beta values of the variables for land use pattern in Phoenix metropolitan area for the baseline scenario.

Factors Variables Urban land Agricultural land Desert Recreational land

Constant −1.461 −2.059 2.831 −5.297
DEM X1 0.002 0.147 −0.009 0.075
Slope X2 0.011 0.027 −0.04 −0.032
Aspect X3 −0.002 0.003 0.02 −0.001
Soil X4 −0.002 0.005 −0.001 −0.005
Neighborhood of urban land X5 0.772 −0.635 −0.963 0.023
Neighborhood of agricultural land X6 −0.391 0.771 −0.999 −0.047
Neighborhood of desert X7 −0.405 −0.608 0.417 −0.14
Neighborhood of recreational land X8 −0.564 −0.622 −1.112 1.285
Distance to urban land X9 −12.068 0.018 −1.112 −0.002
Distance to agricultural land X10 −0.012 −9.225 0.229 −0.02
Distance to desert X11 −0.037 −0.015 0.014 0.019
Distance to recreational land X12 0.034 −0.009 −11.223 −10.136
Distance to water body X13 −0.004 −0.030 −0.026 0.002
Distance to major road X14 0 0 0.014 0
Distance to railway X15 0.002 0.018 0 −0.003
Distance to open space X16 0 0 0 0
Distance to residential area X17 0 0 0 0
Distance to commercial area X18 0 0 0 0
Distance to industrial area X19 0 0 0 0
Distance to school X20 0 0 0 0
Distance to public facilities X21 0 0 0 0

follows:

log

(
Pt

ij

1 − Pt
ij

)
= ˇ0 + ˇ1X1 + ˇ2X2 + · · · + ˇnXn (5)

where Pt
ij

is the probability of the cell (i,j) for the occurrence of a
land use type at time t; X1, X2, . . ., Xn are the driving factors, and
ˇ0, ˇ1, ˇ2, . . ., ˇn are corresponding coefficients. These beta values
were obtained through stepwise logistic regression by using the
land use data of 1995 and 2000 (Table 2). The regression standard
errors of the variables for land use spatial distribution were listed
in Table 3.

The behavior of agents significantly affects land use conver-
sion probabilities, which is represented in our model by changing
the coefficients of these driving factors. The coefficients of vari-
ables for baseline scenario are considered unaffected by behavior
of agents. After we parameterized Eq. (5) for the baseline scenario,
the coefficients of these driving factors were adjusted accord-
ing to the preferences of the agents for the other two scenarios
considered—environmental protection priority scenario and eco-

nomic development priority scenario. For any driving factor, each
agent group has distinct preferences. The preferences of different
agent groups were obtained using Saaty’s pairwise comparison pro-
cedure (Eastman, 1999; Li and Liu, 2008).

The combined preference of agents PRk for factor k is described
as:

PRk = PRk
ra · PRk

re · PRk
rs

PRk
ep

(6)

where PRk
ra is the preference of regional authorities for factor k,

PRk
re is the preference of real estate developers for factor k, PRk

rs is
the preference of residents for factor k, and PRk

ep is the preference
of environmental protectionists for factor k. The combined prefer-
ences were calculated as the weights of the factors (Tables 4 and 5).

Combining all these together, the probability of the cell (i,j) to
be converted into a land use type was adjusted as:

Pt+1
ij

=
∑
k,l,m

(Wt
ij,kˇt

ij,kSt
ij,k + Wt

ij,lˇ
t
ij,lC

t
ij,l + Wt

ij,mˇt
ij,m˝t

ij,m) (7)

Table 3
The regression standard error of the variables for land use pattern in Phoenix metropolitan area for the baseline scenario.

Factors Variables Urban land Agricultural land Desert Recreational land

Constant 0.315 0.409 0.289 1.429
DEM X1 0.01 0.026 0.01 0.020
Slope X2 0.009 0.027 0.009 0.011
Aspect X3 0.001 0.003 0.001 0.002
Soil X4 0.002 0.006 0.002 0.004
Neighborhood of urban land X5 0.034 0.038 0.032 0.158
Neighborhood of agricultural land X6 0.034 0.037 0.034 0.164
Neighborhood of desert X7 0.034 0.038 0.03 0.158
Neighborhood of recreational land X8 0.035 0.077 0.036 0.159
Distance to urban land X9 25.213 0.028 0.015 0.030
Distance to agricultural land X10 0.005 13.312 0.006 0.011
Distance to desert X11 0.009 0.025 51.311 0.013
Distance to recreational land X12 0.005 0.01 0.005 13.106
Distance to water body X13 0.01 0.013 0.008 0.022
Distance to major road X14 0 0 0 0
Distance to railway X15 0.002 0.005 0.002 0.005
Distance to open space X16 0 0 0 0
Distance to residential area X17 0 0 0 0
Distance to commercial area X18 0 0 0 0
Distance to industrial area X19 0 0 0 0
Distance to school X20 0 0 0 0
Distance to public facilities X21 0 0 0 0
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Table 4
The preferences of regional authorities, real estate developers, residents and environmental protectionists on the variables of the urban land spatial distribution in Phoenix
metropolitan area for environmental protection scenario.

Variables Regional authorities Real estate developers Residents Environmental protectionists Total

X1 1.78 0.99 3.56 0.37 17.00
X2 1.92 1.08 0.84 0.96 1.82
X3 0.50 0.50 0.50 0.25 0.50
X4 0.51 0.73 0.65 0.24 1.00
X5 0.98 0.69 1.34 0.97 0.93
X6 0.75 1.54 1.07 0.99 1.24
X7 0.73 0.83 1.62 0.75 1.30
X8 0.91 1.33 1.24 1.17 1.28
X9 0.83 0.96 1.05 0.89 0.94
X10 1.13 1.48 1.77 0.91 3.25
X11 0.95 1.07 1.23 0.86 1.46
X12 1.05 0.97 0.89 0.93 0.97
X13 0.92 0.91 0.85 0.95 0.75
X14 0.00 2.00 2.00 1.00 0.00
X15 2.06 1.49 1.06 0.93 3.50
X16 0.23 0.52 0.91 2.87 0.04
X17 0.00 0.00 0.00 0.00 0.00
X18 0.00 0.00 0.00 0.00 0.00
X19 0.00 0.00 0.00 0.00 0.00
X20 0.00 0.00 0.00 0.00 0.00
X21 1.00 1.00 1.00 1.00 1.00

where Wt
ij,k

, Wt
ij,l

, Wt
ij,m

are the weights of factors St
ij,k

, Ct
ij,l

and ˝t
ij,m

at location (i,j), respectively.

4. Model simulation and evaluation

4.1. Scenarios

We designed three scenarios for simulation analysis, which rep-
resent different development patterns (Fig. 1):

• Scenario 1 (baseline scenario): In this scenario urban land will
increase according to the current trend. The government, real
estate developers, residents and environmentalists do little to
change the status quo. Accordingly, there are no changes in the
parameters of economic development and environmental protec-
tion. Thus the model in this scenario includes cell state, constraint
and neighborhood factors. The parameters of the model were
derived from land use data of 2000 for the baseline scenario
(Table 2). The preferences of agents are considered not to impact
the land use dynamics for this scenario.

• Scenario 2 (environmental protection priority scenario): In
this scenario the regional authorities attach more importance
to environmental protection. Representatives from business,
government and other groups have developed an alternative
approach to land use planning and growth management called
the “Growing Smarter Initiative” (Heffernon and Melnick, 1998).
This initiative calls for slowing down the economic development
to protect open space, water body and recreational land. Preser-
vation of open space is a growth mitigation measure. Thus, in
the environmental protection scenario, the weights of driving
factors are adjusted to reflect this alternative development pos-
sibility. Particularly, the weights of the factors such as distances
to residential, industrial and commercial land are decreased,
whereas the weights of distance to open space, water body and
recreational land are increased. At the same time, the Indian
reservations are prohibited from urban development.

For any factor, each group of agents has distinct behavior and
preferences for environmental protection priority scenario and
economic development priority scenario. For example, as to ‘dis-
tance to open space’, the residents attach more importance to

Table 5
The preferences of regional authorities, real estate developers, residents and environmental protectionists on the variables of urban land spatial distribution in Phoenix
metropolitan area for economic development scenario.

Variables Regional authorities Real estate developers Residents Environmental protectionists Total

X1 1.95 0.97 2.48 0.26 18.00
X2 2.06 0.87 0.99 0.93 1.91
X3 0.50 0.50 1.00 0.50 0.50
X4 1.50 1.00 1.00 1.00 1.50
X5 0.75 0.78 1.53 0.97 0.93
X6 1.35 0.69 0.95 0.71 1.25
X7 2.03 0.98 0.65 0.99 1.31
X8 0.79 1.36 1.19 1.00 1.28
X9 1.21 0.75 0.98 0.94 0.94
X10 1.62 1.68 1.53 1.25 3.33
X11 1.67 0.66 1.75 1.32 1.46
X12 1.00 0.74 1.23 0.97 0.94
X13 1.00 1.00 1.00 1.00 1.00
X14 2.00 0.00 2.00 1.00 0.00
X15 2.61 1.87 1.04 1.27 4.00
X16 0.00 0.00 0.00 0.00 0.00
X17 0.24 0.64 0.31 2.64 0.02
X18 0.29 0.52 0.46 1.87 0.04
X19 0.27 0.23 0.16 1.43 0.01
X20 0.12 0.37 0.86 2.74 0.01
X21 0.14 0.33 0.67 2.85 0.01
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Fig. 2. Land use simulation of Phoenix metropolitan area for baseline scenario in 2010 and 2020.

open space than real estate developers and regional authorities,
but the environmental protectionists think the open space should
be protected. The preferences of regional authorities, real estate
developers, residents and environmental protectionists for envi-
ronmental protection priority scenario, which are 0.23, 0.52, 0.91
and 2.87 respectively (Table 4), do reflect the difference. Their
combined preference can be calculated by Eq. (6). All the com-
bined preferences will be normalized into the range of [0,1] as
the weights of the factors. The probability of the cell (i,j) to be
converted into urban use is calculated by Eq. (7).

• Scenario 3 (economic development priority scenario): The third
scenario emphasizes the priority of economic development.
Based on this priority, the weights of driving factors including
distances to residential, commercial, industrial land, schools and
public facilities are increased in the model. The combined pref-
erences of the four agent groups will decide the weights of the
driving factors by Eq. (6) (Table 5). The probability of the cell (i,j)
to be converted into a land use type is calculated by Eq. (7) using
the parameters used in the baseline scenario and the weights of
the factors.

4.2. Model evaluation

Before simulating the three scenarios, we evaluated the model
by comparing the projected results with the empirical land use
map for 2000, with a commonly used method in remote sensing
and landscape ecology, the Kappa coefficient (Congalton and Green,
1999; Pontius et al., 2001). Kappa is calculated based on the pre-
dicted and observed values over the entire area (Congalton and
Green, 1999):

Kappa = P0 − Pc

1 − Pc
(8)

where P0 is the percent correct for the model output, and Pc is the
expected percent correct due merely to chance.

The value of Kappa ranges from ≤0 (no agreement between the
predicted and observed maps) to 1 (perfect agreement between the
predicted and observed maps). Although there is no universally
accepted standard, a value of Kappa greater than 0.80 has been
considered as indicating a strong agreement between the predicted
and observed maps (Landis and Koch, 1977; Congalton and Green,
1999; Pocewicz et al., 2008).

We computed the Kappa statistic based on the settings of Sce-
nario 1 (baseline scenario), Scenario 2 (environmental protection
priority scenario) and Scenario 3 (economic development priority
scenario), and the values of Kappa were 0.8375, 0.8373 and 0.8369,
respectively.

4.3. Results from the three scenarios

We simulated the model to project the land use maps for
2010 and 2020 following the three scenarios. In 2000, urban land
accounted for 25.56% of the total area. Scenario 1 projected that
the urban land would reach 35.44% in 2010 and 36.71% in 2020
(Fig. 2). In Scenario 2, urban land percentage would reach 30.74 in
2010 and 31.85 in 2020 (Fig. 3). In Scenario 3, urban land percentage
would reach 39.13 in 2010 and 41 in 2020 (Fig. 4). The urban growth
in Scenario 2 is evidently slower compared with the other two
because the emphasis of environmental protection would impose
more restrictions on the land use conversion to urban use. Urban-
ization is encouraged in Scenario 3 such that the urban area would
increase the fastest.

In order to further compare the simulated results of the dif-
ferent scenarios, we used landscape metrics (Jenerette and Wu,
2001; Luck and Wu, 2002; Berling-Wolff and Wu, 2004; Seto et al.,
2007) to describe the size and complexity of urban form in 2000,
2010 and 2020 for the three scenarios. Four landscape metrics were
calculated by using FRAGSTATS (McGarigal and Marks, 1995): the
number of urban patches (NP), urban edge density (ED), mean
urban patch size (MPS), and area weighted mean patch fractal
dimension (AWMPFD) (see Table 6). These and other landscape
metrics have been used extensively to quantify the spatial and
temporal patterns of urbanization in the Phoenix region (Luck and
Wu, 2002; Wu et al., 2002, 2010; Wu, 2004; Buyantuyev et al.,
2010). These previous studies have shown that NP is expected to
increase when urban growth is dispersed and to decrease when
urban patches expand and merge. During the urbanization pro-
cess, the merger of smaller urban centers decreases MPS while
emergence of new small urban areas increases it. Aggregated urban
patches lead to lower ED values as compared to dispersed ones, and
more irregular or complex shapes of patches tend to lead to higher
AWMPFD.

From the simulation results, the values of NP for all the three sce-
narios decline dramatically from 2000 to 2010, and continue to do
so to a lesser degree between 2010 and 2020 (Fig. 5a). Conversely,
the values of MPS tend to increase for the three scenarios (Fig. 5b).
Thus the changes in NP and MPS suggest that urban areas expand
and coalesce during urbanization. As expected, the urban growth
reflected by NP and MPS is accelerated in Scenario 3 because of the
priority of economic development, and slows down in Scenario 2
due to the emphasis on environmental production.

The value of ED goes up first from 2000 to 2010 and then down
from 2010 to 2020 for both Scenarios 1 and 2 (Fig. 5c and d). The
reason for the larger increase in ED between 2000 and 2010 is prob-
ably that the expansion of urban patches is more irregular in shape
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Fig. 3. Land use simulation of Phoenix metropolitan area for economic development priority scenario in 2010 and 2020.

Fig. 4. Land use simulation of Phoenix metropolitan area for environmental protection priority scenario in 2010 and 2020.

than between 2010 and 2020. ED continues to decrease in Scenario
3 because of the coalescence of urban patches (corresponding to
increasing MPS and decreasing NP). The results of AWMPFD are
consistent with ED (Fig. 5d).

5. Discussion

MAS models are increasingly recognized as a powerful tool
to simulate social systems because they can capture important
human decision and behavior that are difficult to formulate by
using other tools (Lempert, 2002). In our MAS model, the agents are
equipped with land use related preferences and beliefs extracted
from comprehensive planning and strategic policies. Economic
development and environmental protection behavior are incor-
porated in the model by properly defining agents’ behavior. The
behavior of regional authorities, real estate developers, residents,
and environmental protectionists is adaptive. These agents may
change their behavior in response to their environmental change

based on their beliefs. The heterogeneity of agents is reflected by
using different sets of weights according to GIS data. It simulates
the urbanization process by adjusting parameters according to the
agents’ preferences.

Through simulating the decision process and behavior of
regional authorities, real estate developer, residents and environ-
mental protectionists, this model is different from Markov-cellular
automata model (Jenerette and Wu, 2001) and PHX-UGM in
(Berling-Wolff and Wu, 2004). In the Markov-cellular automata
model, the current states of each individual cell are dependent on
states of the focal and neighborhood cells. They are updated based
on the pre-defined rules. PHX-UGM is also a CA-based model, in
which the urbanization is controlled by diffusion coefficient, breed
coefficient, spread coefficient, slope resistance and road gravity.
The cells in CA-based models are endowed with goal-directed deci-
sion rules, while MAS models offer a more flexible way to simulate
urban dynamics, in which agents are proactive and their decisions
and behavior influence the states of related cells.

Table 6
List of landscape metrics used for comparing the simulated and empirical land use maps.

Landscape metrics Abbreviation Description

Number of patches NP The total number of urban patches in the landscape
Edge density ED The total length of all edge segments per hectare urban patches (unit: m/ha)
Mean patch size MPS Mean urban patch size (unit: ha)
Area weighted mean patch fractal dimension AWMPFD Averages the fractal dimensions of all patches by weighting larger land cover patches:

AWMPFD =
∑n

i=1
(2 ln 0.25Pi/ln ai)(ai/A), where Pi is the perimeter of patch i, ai is the

area of patch i, n is the number of land patches, and A is the total landscape area.
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Fig. 5. Results of landscape metrics used to compare the land use patterns among the three different development scenarios for 2000, 2010, and 2020: (a) the number of
urban patches (NP), (b) mean urban patch size (MPS), (c) urban edge density (ED), and (d) area weighted mean patch fractal dimension (AWMPFD).

In our MAS model, economic and environmental objectives
necessary to understand the biophysical and socioeconomic inter-
actions in urban dynamics are included. Three scenarios based on
the current trend, economic development priority and environ-
mental protection priority are considered. Decision and behavior
of regional authorities, real estate developers, residents and envi-
ronmental protectionists are crucial for those scenarios. Our model
combines MAS and the spatial regression model to simulate the
human–environment system in Phoenix metropolitan area. The
simulation results indicate that urban patches would increasingly
expand and merge during the urbanization process in all three sce-
narios. Urban land use will increase faster from 2000 to 2010 and
slow down a little between 2010 and 2020. The urban growth in
Scenario 3 is faster than that in Scenario 1 because of its economic
development priority. And the urban growth in Scenario 2 is slower
than Scenario 1 due to more restrictions from the emphasis on
environmental protection.

This case study is a primary attempt to use MAS models to sim-
ulate urban dynamics. Greater effort is required to unleash the full
potential of MAS to understand the urbanization mechanisms and
to offer more support for policy-making based on scenario analy-
sis.
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