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Landscape patterns demonstrate scale-dependent properties that have been
parsimoniously described by empirical scaling functions. These functions, derived
from multiple-scale analysis of real landscapes, are evaluated here for their generality
and robustness via a series of simulated landscapes with known landscape patterns. A
factorial design was used to generate these landscapes, varying the number of classes,
class abundance distribution, and patch dispersion. The results confirm that the three
types of scaling relations were both general and robust. Type I metrics were predictable
with simple scaling functions (e.g. power laws or linear functions); Type II metrics
showed stair-case like response patterns and were essentially not predictable; Type III
metrics exhibited erratic response patterns that were unpredictable in most cases.
However, significant differences were found between real and simulated landscapes
when landscape extent was increased. Systematic changes in grain size show that the
predictability of scaling relations increases with the number of classes, the evenness of
class abundance distribution, and the aggregation of patch dispersion. However,
random patch dispersion seemed to enhance the predictability of scaling relations when
changing spatial extent.
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Understanding the relationship between spatial pattern

and ecological processes is a central issue in ecology

(Levin 1992, Wu and Loucks 1995). In order to

determine how spatial pattern affects and is affected by

ecological processes, one must first quantify the spatial

pattern of interest. One of the challenges in relating

pattern to process has to do with the scale multiplicity of

heterogeneity. That is, each pattern-process relationship

quantitatively changes with scale. Scale usually refers to

the spatial or temporal dimension of a phenomenon,

including grain size (or resolution, support), extent (or

map size, study area), lag (or spacing), or cartographic

ratio (Lam and Quattrochi 1992, Jenerette and Wu 2000,

Dungan et al. 2002). Because spatial heterogeneity is

both ubiquitous and usually scale-dependent, ecological

observations made at different spatial scales often differ

significantly. Relating the different observations across

scales is now recognized as an essential part of the

science of scaling (Wu 1999), and a significant challenge

in ecology (Wiens 1989, Levin 1992, Wu and Loucks

1995, Peterson and Parker 1998, Gardner et al. 2001, Wu

et al. 2004).

While ecologists have recognized the importance of

the effects of observational scale on the descriptions of

spatial pattern, there is still a lack of understanding of

how spatial pattern varies with scale (Wu and Hobbs
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2002). This knowledge gap is an impediment to relating

landscape structure to ecological processes. Landscape

pattern �/ the composition and configuration of land-

scapes �/ has been commonly described using landscape

metrics. The scale-dependence of landscape metrics has

been widely recognized in ecology, geography, and

remote sensing in the past two decades (Gardner et al.

1987, Turner et al. 1989, Moody and Woodcock 1994,

Wickham and Riitters 1995, Jelinski and Wu 1996,

O’Neill et al. 1996, Wu et al. 2000, 2002, Saura and

Martinez-Millan 2001). However, factors influencing

these scale changes in landscape metrics are not well

understood. Because there is much interest in under-

standing the relationships between spatial patterns and

ecological processes (Pickett and Cadanesso 1995, Wu

and Loucks 1995), we need to understand how the scale

of observation influences the description of patterns.

Wu et al. (2002), Wu (2004) recently reported that

landscape metrics exhibited three distinct types of

responses to changing scales. Type I metrics showed

predictable changes with scale, which can be accurately

described by either power-law or linear functions; type II

metrics showed a staircase-like response; type III metrics

showed erratic responses to changing scale. Although

these findings were obtained from several quite different

real landscapes, it is not clear how general and robust

these scaling relations are and how landscape structural

properties influence the scaling relations.

Therefore, the objectives of this study were to test the

generality and robustness of the empirical scaling

relations and understand how landscape attributes affect

these scaling relations. This was done using a series of

simulated landscapes because systematically varying

landscapes with replicates of the same statistical

properties can only be generated using landscape pattern

simulators (e.g. Gardner et al. 1987, Saura and

Martinez-Millan 2000, Fortin et al. 2003). Unlike our

earlier studies of real landscapes, with simulated land-

scapes we can systematically vary the number of patch

types, statistical distribution of patch abundances, and

spatial aggregation of simulated landscapes. Further-

more, these landscapes are stationary and isotropic.

Thus, we can examine the scaling behavior of landscape

metrics using multiple replicated landscapes that are

different realizations of the same statistical descriptions.

By so doing, we can learn how scaling patterns of

selected landscape metrics vary in response to changes in

landscape structural attributes.

Specifically, we addressed the following questions:

1) Are the scaling relations of landscape metrics

consistent and robust across different landscape types?

Although the real landscapes seemed to exhibit robust

scaling relations, with artificially generated landscapes,

we can examine a wide range of landscape patterns with

known statistical properties. 2) How do the character-

istics of landscape pattern affect scaling relations? For

example, scaling relations may be influenced mainly by

the relative abundance of patch types or the dispersion

pattern of patches.

Methods

We used two landscape simulators to create artificial

landscapes in this study: SIMMAP, a versatile landscape

generator developed by Saura and Martinez-Millan

(2000), and RULE, a widely used program developed

by R. H. Gardner (see Gardner 1999 for details).

SIMMAP is based on a modified random cluster

simulation method, and was described in detail by Saura

and Martinez-Millan (2000). In brief, SIMMAP gener-

ates patches according to the initial probability (p),

which controls the degree of aggregation or fragmenta-

tion of the simulated landscape. Then, patches composed

of marked pixels are identified based on a certain

neighborhood rule and assigned to different types based

on the class abundance probabilities. SIMMAP can be

used to generate both random and clumped landscape

maps with more than two patch types. In general,

smaller p values generate more fragmented landscapes

with a large number of small patches, while larger p

values generate more aggregated landscapes with more

large patches. Specifically, a simple random map is

obtained when p�/0. As p increases, mean patch size

increases, and the landscape pattern becomes

increasingly clumped.

RULE generates simple random maps, fractal maps,

and hierarchical maps (Gardner 1999). The fractal

algorithm is most useful allowing a range of aggregated

landscapes to be generated via two parameters: p, the

relative abundance of each habitat type, and H, the

spatial correlation between sites (pixels). For any fixed

value of p, varying H from 0 through 1 will progressively

increase the spatial aggregation of the simulated

patterns. The reason we employed two landscape simu-

lators was to assess the effect of different simulators on

the results of our analysis. The results of our analysis

indicated that the differences would be minimal, and

thus we did not use both of them for all the analyses.

Landscapes were generated by varying three landscape

pattern attributes: patch richness (i.e. the number of

classes), class abundance distribution (relative abun-

dance of different patch types, represented as the

proportion of the whole landscape area occupied by a

particular class or patch type), and patch dispersion

(spatial distribution patterns of patches). Three levels for

each attribute were selected for a factorial design

(Table 1). The number of classes varied from 2, 5 to

10. Class abundance distribution varied from single-

class-dominated (d), systematically decreasing in dom-

inance (s), to equal proportions (e). Three types of patch

dispersion were distinguished: clumped, moderately
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clumped and randomly distributed. For each of the 27

combinations, we generated 5 replicate landscapes

(Table 1). In addition, 30 replicated landscapes of one

particular type were generated to examine the possible

effects of changing the number of replicates (i.e. from 5

to 30) on the results of the analysis. To comparing the

two different landscape simulators, additional land-

scapes were generated using RULE, with only two

factors varied: the number of classes and class abun-

dance distribution. Both of these factors were varied in

the same ways as with the SIMMAP landscapes. There

were 6 additional types of landscapes generated by

RULE (2s, 2e, 5s, 5e, 10s, 10e), each of which had 5

replicates for each type.

Eighteen commonly used landscape metrics (Table 2)

were examined using the landscape pattern analysis

package, FRAGSTATS 3.0 (McGarigal et al. 2002).

The four-neighbor rule was applied for all applicable

metrics. The method for multiple-scale analysis

(scalograms) in this study were exactly the same as those

used in our previous studies (see Wu et al. 2002, Wu 2004

for details). Here we only briefly describe the major steps

in this analysis. To examine the scaling relations with

changing grain size (i.e. spatial resolution), we coarsened

the spatial resolution of the data from 1�/1 pixel to

100�/100 pixels using the majority rule. Note that the

majority rule systematically reduces the representation

of less abundant patch types, and that other aggregation

methods are also possible, as discussed in Wu et al.

(2002). When changing grain size, the extent of the

landscape was kept constant. In total, 3960 landscapes

(33 landscape types�/5 replicates�/24 grain size levels)

were analyzed in the case of changing grain size. To

investigate the effects of changing extent, we system-

atically varied the extent from 100�/100 pixels to

700�/700 pixels while keeping the grain size constant.

Landscapes with different extents were clipped using the

upper-left corner of the original landscape as the starting

point. The increment of extent was 100 pixels for all the

33 landscape types, resulting in 1155 individual land-

scapes (�/33 landscape types�/5 replicates�/7 extent

levels) for the changing extent analysis. The scalograms

of each metric for the simulated landscapes were plotted

using the averages of the 5 replicated landscapes (i.e. 5

different stochastic realizations of SIMMAP with the

same values of the three control factors). This decision

was based on the observation that the scalograms of the

five replicated landscapes for each combination in

Table 1 were similar in terms of the general patterns of

scaling relations (Fig. 1, also see Fig. 4).

Results

Comparing random landscapes generated by RULE

and SIMMAP

Scalograms for 18 pattern metrics were compared to

examine if the choice of landscape simulator would

affect the proposed analysis. The general response

patterns and absolute values of these metrics for

SIMMAP-generated maps looked almost identical to

those for RULE-generated maps in both cases of

changing grain size and extent (graphs not presented).

This indicated that the scaling relations derived from this

study were not influenced by the use of different pattern

simulators. Thus, we will only report the results from

SIMMAP-generated landscapes hereafter.

Scaling relations with changing grain size

Following Wu et al. (2002), Wu (2004), scalograms were

constructed to examine the scaling relations of 18

landscape metrics, and Fig. 2 illustrates some examples.

As in Wu et al. (2002) and Wu (2004), the scaling

relations of the metrics with respect to changing grain

size seem to fall into 3 types. Type I includes: the number

of patches (NP), total edge (TE), patch density (PD),

edge density (ED), landscape shape index (LSI), mean

patch size (MPS), patch size standard deviation (PSSD),

patch size coefficient of variation (PSCV), area-weighted

mean shape index (AWMSI), area-weighted mean patch

fractal dimension (AWMFD), largest patch index (LPI),

Table 1. Landscape pattern attributes and their values used in generating the simulated landscapes.

Number of classes Class abundance distribution Patch dispersion

One-class-
dominated (d)

Systematically-
deceased (s)

Equally-dominant (e)

2 0.8, 0.2 0.6, 0.4 0.5/0.5 Clumped (c)
p�/0.575

5 0.6, 0.08 for the other
four

0.34, 0.264, 0.198,
0.132, 0.066

0.2 for all five
classes

Moderately
clumped (m)
p�/0.4

10 0.6, 0.04 for the other
nine

0.19, 0.165, 0.144,
0.156, 0.108, 0.09,
0.075, 0.054, 0.036,
0.018

0.1 for all ten
classes

Randomly
distributed (r)
p�/0
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mean patch fractal dimension (MPFD) and Shannon’s

diversity index (SHDI). These metrics changed predic-

tably with grain size, exhibiting robust scaling relations

that can be described using simple equations (e.g. power

law, logarithmic or linear functions, Fig. 2 and Table 2).

Five of the Type I metrics (NP, TE, PD, ED, LSI)

exhibited a decreasing power law scaling relation that

was quite robust and consistent across all landscape

types. The scalograms of NP were shown in Fig. 2 as a

representative of these five metrics.

The scaling relations of the other 8 Type I metrics were

more variable among different landscapes, although

their general response patterns still fit simple mathema-

tical functions well. As shown in Fig. 2, LPI increased in

a logarithmic or a linear scaling function, while SHDI

decreased in a logarithmic function or linearly (Fig. 2).

So the Type I metrics could be further divided into two

sub-types (Type Ia and Type Ib) in terms of the

variability or consistency of the scaling functions across

different landscapes. Type Ia metrics included NP, TE,

PD, ED, LSI, which had very robust and consistent

scaling relations that were little influenced by the

specifics of landscape patterns. Type Ib metrics included

MPS, LPI, AWMSI, AWMFD, PSSD, PSCV, MPFD,

and SHDI, whose scaling relations were less consistent

and influenced by specific landscape attributes.

Type II metrics included patch richness (PR) and

patch richness density (PRD), which decreased in a

staircase-like fashion with increasing grain size. The

scalograms of these metrics did not show as clear a

staircase-like pattern as in Wu et al. (2002) because the

mean values of the metrics for 5 replicates were used in

the former (Fig. 2). As a result, the response curves of

these metrics were smoother due to averaging effects.

Fig. 1. Examples of the
scalograms of five replicate
landscapes generated using the
stochastic landscape pattern
simulator, SIMMAP, with the
same values of the three control
factors: the number of classes,
class abundance distribution,
and patch dispersion (see
Table 1). Note that the first
column is for changing grain
size, and the second for
changing extent. These
examples were chosen to
illustrate that the discrepancies
among the five replicate
landscapes were negligible for
certain metrics, and more
appreciable for others. Overall,
the five replicates for each three-
factor combination showed
similar scalograms. In the labels
of the graphs, ten is the number
of classes; d and s denote one-
class dominated and
systematically varied class
abundance distributions,
respectively; and c indicates
clumped patch dispersion (see
Table 1 for
details).
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Because the total number and height of the steps in the

response curves of PR and PRD did not appear

predictable, no simple scaling function could be derived.

Based on careful visual inspection of the scalograms, we

Fig. 2. Scalograms illustrating the effects of patch dispersion and class abundance distribution on scaling relations with respect to
changing grain size. The three types of scaling relations are indicated (see text for details). All the scalograms share the same legend
as shown in the upper-left scalogram. Error bars denote standard errors of five replicate landscapes (n�/5).
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concluded that the scaling patterns of this type of

metrics were also influenced by specific landscape

patterns.

Type III metrics, including contagion (CONT), land-

scape (double-log) fractal dimension (DLFD) and mean

patch shape index (MSI), showed erratically variable

responses to changing grain size. The shape of the

response curves was significantly influenced by all three

landscape pattern attributes: patch dispersion, class

abundance distribution and number of classes (Figs 2

and 5). Note that MPFD belonged to Type III in the real

landscapes, but Ib in the simulated landscapes

Scaling relations with changing extent

With respect to changing extent, the 18 metrics exhibited

essentially only one type of scaling relation (Fig. 3). All

18 metrics could be classified as Type I metrics, showing

relatively predictable scaling relations (Fig. 3 and

Table 2). For example, NP and TE increased and PRD

decreased in a power law fashion, while other metrics

exhibited an increasing linear scaling relation or

remained constant with increasing extent. In general,

these scaling relations did not seem to be sensitive to the

compositional and configurational aspects of the

landscape.

These results of changing extent in this study seemed

significantly different from those in previous studies in

terms of which metrics were placed in the three scaling

types, respectively. However, these discrepancies were not

really at odds with our previous findings of the three

general empirical scaling relations, but reflect some

fundamental differences between real and simulated

landscapes (see more detailed discussion in the next

section).

Possible effects of changing the number of replicates

on the scaling relations

The number of replicates we used in our original analysis

was five. Was it large enough to assure that our results,

as described above, are robust? We were confident about

this based on the observation that variability among

replicates for the same landscape type was generally

small. However, it is necessary to verify this directly with

some additional analysis. Analyzing all the landscape

types with many replicates and more than a dozen of

landscape metrics is quite time-consuming, and it would

simply a brute-force approach to the problem. Instead,

we selected one landscape type that showed the highest

among-replicate variability, i.e. the landscape type with

highly clumped patch distribution pattern (indicated by

the error bars in the scalograms; Figs 2 and 3). The logic

behind this is apparent: If the scaling relations still hold

true for the landscape type that is most variable when the

number of replicates is significantly increased, then they

should hold for the rest of the landscape types. We

generated 30 additional replicates using SIMMAP, each

of which had 5 classes, one of which was dominant, and

highly clumped patch dispersion pattern (see Table 1 for

details).

Table 2. Comparing scaling relations of landscape metrics computed from real landscapes with those from simulated landscapes.

Types of scaling
relations

Scaling relations Landscape metrics*

Changing grain size Changing extent

Real landscapes Simulated landscapes Real landscapes Simulated landscapes

Type I Power law,
Logarithmic
function,
Linear
function

NP, TE, PD,
ED, LSI,
MPS, LPI,
AWMSI,
AWMFD,
PSSD, PSCV

NP, TE, PD,
ED, LSI,
MPS, LPI,
AWMSI,
AWMFD,
PSSD, PSCV,
MPFD, SHDI

NP, TE,
PRD, LSI,
SHDI

NP, TE, PRD,
PR, SHDI, LSI,
PD, ED, MSI,
MPFD, PSCV,
PSSD, AWMSI,
AWMFD,
MPS, DLFD,
CONT, LPI

Type II Staircase-like
decreasing

PR, PRD, SHDI PR, PRD PR, PSSD,
PSCV,
AWMSI, AWMFD

Type III Erratic
responses,
no
consistent
scaling
relations

CONT,
DLFD, MSI,
MPFD

CONT,
DLFD, MSI

PD, ED,
DLFD, MPS,
LPI, CONT,
MSI, MPFD

* NP�/Number of patches, TE�/Total Edge, PD�/Patch Density, ED�/Edge Density, LSI�/Landscape Shape Index,
AWMSI�/Area-Weighted Mean Shape Index, AWMFD�/Area-Weighted Mean Patch Fractal Dimension, PSCV�/ Patch Size
Coefficient of Variation, MPS�/Mean Patch Size, PSSD�/Patch Size Standard Deviation, LPI�/Largest Patch Index, PR�/Patch
Richness, PRD�/Patch Richness Density, SHDI�/Shannon’s Diversity Index, CONT�/Contagion, DLFD�/Landscape Fractal
Dimension, MSI�/Mean Patch Shape Index, MPFD�/Mean Patch Fractal Dimension.
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The results showed that increasing the number of

replicates only changed the mean values of landscape

metrics, but did not change the general scaling patterns

derived from the five replicates in both cases of changing

grain size and extent (Fig. 4). According to the

definitions of the three scaling behavioral types given

by Wu et al. (2002) and Wu (2004), the effect of

increasing the number of replicates was insignificant.

In other words, five replicates were enough for the

objectives of this study.

Discussion

Comparing the scaling relations derived from real

versus simulated landscapes

Wu et al. (2002) found that the response patterns of

commonly used landscape-level metrics to changing

grain size and extent fell into three types based on the

real landscapes (see Table 2). Wu (2004) showed that

class-level metrics basically showed the same scaling

patterns, and further refined the classification of scaling

relations (distinguishing between Type Ia and Type Ib).

In general, the results of this analysis, based on

simulated landscapes of a wide range of spatial patterns

in terms of the number of classes, class abundance

distribution and patch dispersion, corroborated our

previous findings.

There are, however, apparent differences between real

and simulated landscapes in terms of the scaling rela-

tions of landscape metrics. For example, in the case of

changing grain size, MPFD was classified as Type III

metric based on the analysis of real landscapes, but it

exhibited a consistent decreasing power law function

across all landscape types in this study; SHDI were

classified as Type II metric in the real landscapes, but it

Fig. 3. Scalograms showing effects of patch dispersion and class abundance distribution on the scaling relations with respect to
changing extent. Only one type of scaling relation is indicated. All the scalograms share the same legend as shown in the upper-left
scalogram. Error bars denote standard errors of five replicates (n�/5).
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exhibited a power law or linear scaling function in the

simulated landscapes. Therefore these two metrics were

reclassified as Type Ib metrics (Table 2). We also noticed

that the specific forms of the scaling functions for Type

Ib metrics could change with changing grain size. Most

striking differences in scaling relations between real and

simulated landscapes were found in the case of changing

extent. All landscape metrics showed less variation in

scaling relations in the simulated landscapes than in

the real landscapes. No staircase-like and erratic re-

sponse patterns were obvious in the case of simulated

landscapes. Specifically, PR, PSSD, PSCV, AWMSI, and

AWMFD exhibited Type II behavior and PD, ED, MSI,

DLFD, MPS, CONT, LPI, and MPFD exhibited Type

III behavior in the real landscapes; but they all appeared

more like Type I in the simulated landscapes. However, if

one only compares the highly clumped artificial and

real landscapes, LPI, CONT, and SHDI may all be

classified into Type III. Because real landscapes were

clearly clumped (not random), the differences between

simulated and real landscapes noted above may seem

larger than they actually are.

Why were there these differences? Two major factors

might be responsible for these discrepancies. First, the

spatial patterns of simulated landscapes were ‘‘uniformly

distributed’’ over the entire map extent (i.e. statistically

stationary), whereas the patterns of real landscapes had

gradients and regionalized variations. The simulated

landscapes were statistically isotropic (consistent

patterns in all directions), but the real landscapes

were clearly anisotropic (varying patterns in different

directions). Secondly, the scalograms of the real

Fig. 4. Scalograms comparing the scaling
patterns of landscape metrics derived from 5
and 30 replicates for both changing grain size
(a�/d) and extent (e�/h). The metrics were
chosen to represent Type I and Type III scaling
behavioral patterns in the case of changing
grain size, and only Type I behavior in the case
of changing extent.
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landscapes were based on single landscapes, but those of

the simulated landscapes were each constructed using the

averages of five replicate landscapes for the metric under

consideration, thus resulting in a ‘‘smoothing’’ effect.

These two factors seemed to have contributed to the

disappearance of the stair-case scaling pattern for

some formerly Type II metrics and the increased

predictability of scaling relations for several formerly

Type III metrics.

Influence of landscape pattern characteristics on

scaling relations of pattern metrics

Beyond confirming the generality of the three empirical

scaling relations, this study provides new insight into

what landscape structural features may significantly

affect these scaling relations. Specifically, we examined

the effects of the number of classes, class abundance

distribution and patch dispersion. Our results suggest

that all of them may affect the parameters and even the

mathematical forms of scaling relations of most

landscape metrics.

In the case of changing grain size, Type Ia scaling

relations were the most consistent and robust, and

changing the three landscape attributes only affected

the parameter values of the scaling relations moderately,

but not the form. In other words, they were only affected

quantitatively, not qualitatively. In contrast, Type Ib

scaling relations were frequently affected in both their

parameter values and the mathematical forms by chan-

ging the three landscape features with respect to chan-

ging grain size. These three factors were also interactive

in action. For example, when patch dispersion was

highly clumped, class abundance distribution had little

effect on the scaling relations of Type Ib metrics, but this

effect became apparent as patch dispersion was ran-

domly distributed (compare the scalograms across

columns in Fig. 2). LPI increased linearly when class

abundance distribution was even, but increased loga-

rithmically in other cases. The number of classes also

influenced the scaling patterns of some Type Ib metrics,

such as AWMFD (Fig. 5). Thus, the scaling relations of

Type Ib metrics were mainly influenced by both class

abundance distribution and patch dispersion.

Again in the case of changing grain size, the scaling

relations of Type II metrics seemed significantly affected

by class abundance distribution and the number of

classes and moderately by patch dispersion (Fig. 2).

When class abundance distribution was even, these

metrics remained almost constant across the whole range

of grain sizes examined (Fig. 2). For Type III metrics,

however, there were no consistent scaling relations that

could be described in mathematical terms, and changing

the number of classes, class abundance distribution and

patch dispersion usually resulted in evident and erratic

variations in scaling responses. As with Type Ib metrics,

the scaling response curves of Type III metrics for

different class abundance distributions appeared more

similar to each other when the patch dispersion was

highly clumped (Fig. 2). The effect of the number of

classes on the scaling of Type III metrics, such as MSI

and CONT, was also evident (Fig. 5). In some cases,

there seemed to be a dichotomy in scaling behavior

between landscapes with only two classes and those with

more (i.e. 5 or 10 classes; see Fig. 5a�/c).

In the case of changing extent, Type I metrics showed

simple and relatively robust scaling relations in spite of

the alterations in landscape pattern (Fig. 3). In general,

the robustness of the scaling relations of the metrics

seemed most sensitive to alterations in patch dispersion,

and less sensitive to changes in class abundance dis-

tribution. The number of classes also had an appreciable

influence on the scaling of some metrics (Fig. 5e�/g).

In general, the robustness of scaling relations tended

to increase as the evenness of class abundance distribu-

tion and the number of classes increased in both cases of

changing grain size and extent. However, increasing

randomness of patch dispersion seemed to decrease, for

changing grain size, and increase, for changing extent,

the predictability of the metric scaling relations. As

shown in the Results section, this general trend does not

necessarily mean that the scaling relations of all metrics

were predictable if a landscape had a large number of

evenly and randomly distributed classes. The specifics of

a metric’s scaling relation depended on the three control

factors of landscape pattern and the nature of scale

changes (i.e. grain size vs extent).

Conclusions

The empirical scaling relations based on real landscapes

were evaluated by analyzing a large number and variety

of simulated landscapes. The same three general types of

scaling relations for landscape metrics identified in our

previous studies were confirmed with these simulated

landscapes. The specific scaling relations of landscape

metrics between real and simulated landscapes were in

excellent agreement for changing grain size, but differed

significantly for changing extent in that the responses of

almost all the landscape metrics examined became

predictable with respect to changing extent despite of

alterations in the number of classes, class abundance

distribution, and patch dispersion. We argue that these

differences are reflective of some fundamental differ-

ences between the real and simulated landscapes used �/

the former were non-stationary and anisotropic while the

latter were stationary and more isotropic. This suggests

that such simulated landscapes exhibit simpler and more

predictable scaling behavior than real landscapes. In

addition, the number of classes, class abundance, and
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patch dispersion may interactively affect the parameter

values and the mathematical forms of the scaling

relations of landscape metrics, and the scaling of the

three types of metrics is affected by these three factors

differentially.

Developing scaling relations of landscape metrics is

important for several reasons. First, scaling relations can

help us understand the multiple-scale nature of spatial

heterogeneity. It is now common sense that heterogeneity

is ubiquitous and scale-dependent. Quantifying hetero-

geneity across multiple scales is an important first step to

better understand its ecological consequences. For

example, the relationship between the organism body

size and scale of spatial heterogeneity (Holling 1992)

suggests the importance of characterizing landscape

scaling patterns. Second, scaling relations help us better

appreciate how changing observation or analysis scales

affects the results of statistical analysis, and develop

methods to estimate scaling errors. Third, scaling rela-

tions can be used to determine when information or

measurements can be translated across classes and how.

The scaling relations of landscape metrics discussed in

this paper have practical implications for studying

vegetation and landscape patterns (especially compara-

tive studies). Furthermore, relating physical and ecolo-

gical processes to observations of patterns requires that

we adopt a multiple-scale perspective. Ecological pro-

cesses interact with the landscape at differing spatial

grains and extents. Thus, to link processes with patterns,

we must consider how these patterns vary with changes

in scale.
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