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Abstract

Background: Numerous studies have shown that nitrogen (N) deposition decreases biodiversity in terrestrial ecosystems. To
explain the N-induced species loss, three functionally based hypotheses have been proposed: the aboveground
competition hypothesis, the belowground competition hypothesis, and the total competition hypothesis. However, none of
them is supported sufficiently by field experiments. A main challenge to testing these hypotheses is to ascertain the role of
shoot and root competition in controlling plant responses to N enrichment. Simultaneously examining both aboveground
and belowground responses in natural ecosystems is logistically complex, and has rarely been done.

Methodology/Principal Findings: In a two-year N addition experiment conducted in a natural grassland ecosystem, we
investigated both above- and belowground responses of plants at the individual, species, and community levels. Plants
differed significantly in their responses to N addition across the different organizational levels. The community-level species
loss was mainly due to the loss of perennial grasses and forbs, while the relative abundance of plant species was dependent
mainly on individual-level responses. Plasticity in biomass allocation was much smaller within a species than between
species, providing a biological basis for explaining the functionally based species loss. All species increased biomass
allocation to aboveground parts, but species with high belowground allocations were replaced by those with high
aboveground allocations, indicating that the increased aboveground competition was the key process responsible for the
observed diversity loss after N addition in this grassland ecosystem.

Conclusions/Significance: Our findings shed new light on the validity of the three competing hypotheses concerning
species loss in response to N enrichment. They also have important implications for predicting the future impacts of N
deposition on the structure and functioning of terrestrial ecosystems. In addition, we have developed a new technique for
ascertaining the roles of aboveground and belowground competition in determining plant responses to N fertilization.
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Introduction

The global level of nitrogen (N) deposition has risen significantly

since the industrial revolution, and is predicted to increase by

50,100% from 2000 to 2030 [1,2]. N enrichment is widely

considered a major threat to plant species diversity in terrestrial

ecosystems [3–7]. Understanding the mechanisms of biodiversity

loss due to N deposition is important for unraveling the

relationship between biodiversity and ecosystem functioning, and

urgently needed for ecosystem management and environmental

policy making.

Several hypotheses on the mechanisms of plant diversity

declining with N enrichment have been proposed, which focus

either on random processes or competitive processes of species.

The random loss hypothesis stresses the role of random deaths of

small individuals of all species after N enrichment, leading to

community-level thinning and the extinction of rare species [8–

10]. In contrast, the functionally-based hypotheses emphasize the

differences between species in terms of plant functional traits that

determine their competitive abilities. Three functionally-based

hypotheses have attracted most attention (Fig. 1). The above-

ground competition hypothesis (ACH) suggests that a shift from

belowground competition to aboveground competition after N

enrichment results in the loss of poor aboveground competitors

[11,12]. In contrast, the belowground competition hypothesis

(BCH) suggests that N fertilization creates resource patches which

can be pre-empted by species with developed root systems,

consequently leading to the loss of poor belowground competitors

[13]. The total competition hypothesis (TCH) argues that the

diversity loss due to N enrichment results from the enhanced
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intensity of both aboveground and belowground competition,

with the superior competitors excluding the inferior ones [14].

Each of these hypotheses has been supported by some

experiments but refuted by others, suggesting that the mecha-

nisms underling N-induced biodiversity loss are complicated and

system dependent.

Resource allocation plays a central role in regulating plant

activities, such as growth, development, reproduction, and defense

[15–17]. Because terrestrial plants face an unavoidable dilemma of

resource allocation to aboveground versus belowground parts due

to the physical separation of essential resources (e.g. light versus

soil nutrients), from an evolutionary point of view, the allocation

pattern between shoots and roots must be shaped by natural

selection, and thus represent the ecological strategies of plant

species to adapt to the constraints of their environment [18]. The

interspecific differences in allocation pattern, to a great extent,

determine the relative dominance of species in a plant community

[19]. It is well documented that species dominant in nutrient-poor

habitats usually have higher belowground allocation whereas

species dominant in nutrient-rich habitats generally have higher

aboveground allocation [20]. However, plants may alter their

allocation patterns under changing environmental conditions [21–

23]. Olff (1992) found that plant species exhibited high plasticity in

biomass allocation under different combinations of light and

nutrient supply when they each were grown alone in pots [24].

Both interspecific differences and intraspecific plasticity in

allocation pattern may influence the outcome of species compe-

tition following N enrichment. If the intraspecific plasticity is larger

than the interspecific difference, plant diversity loss cannot be

attributed to the evolutionary divergence in allocation pattern

between species. If the opposite is true, then evolutionary

allocation patterns play an important role in influencing species

diversity. However, the relative effects of evolutionary allocation

patterns and allocation plasticity on species diversity loss have

never been examined directly through a field experiment in a

natural community.

Therefore, this study was designed to fill this gap by

simultaneously comparing the roles of between-species differences

and within-species plasticity in biomass allocation, measured by

coefficients of variation (CVs), through a N addition experiment in

the Inner Mongolia grassland in northern China. Elsewhere we

already reported that N addition led to a significant decrease in

plant species richness in this natural grassland ecosystem [25].

This study focused on the examination of the underlying

mechanisms. Because species richness significantly increased for

rare species (annuals) but decreased for dominant species

(perennials) [25], which contradicts the prediction of the random

loss hypothesis, we only examined the three functionally-based

hypotheses. Specifically, we tested the following predictions based

on three functionally-based hypotheses (Fig. 1). First, if total

competition is the primary mechanism, the strength of both

aboveground and belowground competition will increase after N

addition. Co-occurring species should increase their individual

growth without changing their allocation patterns (Fig. 1a). Species

with smaller individuals will be excluded by those with larger

individuals, and changes in species relative abundance (VRAB)

should be correlated with individual biomass rather than

allocation patterns. Second, if aboveground competition is the

primary mechanism, N addition should facilitate the growth of

species with higher aboveground allocation, leading to an increase

in aboveground allocation responses (Fig. 1b). Consequently,

VRAB will be positively correlated with species allocation patterns

or allocation responses of aboveground parts. Third, if below-

ground competition is the primary mechanism, N addition should

facilitate the growth of species with higher belowground allocation,

leading to an increase in belowground allocation responses

(Fig. 1c). In this case, VRAB should be positively correlated with

belowground allocation patterns or allocation responses.

Methods

Experimental site
This experiment was conducted in an mature steppe ecosystem

in Inner Mongolia Autonomous Region, China (E 116u429, N

43u389, elevation 1250 m a.s.l.) with the permit of Inner Mongolia

Grassland Ecosystem Research Station (IMGERS),Chinese Acad-

emy of Sciences. This site (500 m6500 m) has been fenced to

exclude large grazing animals since 1979 for long-term vegetation

monitoring and experimental studies. The average annual

temperature is 0.3uC, ranging from 221.6uC in January to

Figure 1. Three functionally-based hypotheses on diversity loss after nitrogen addition (left panel): total competition hypothesis
(TCH), aboveground competition hypothesis (ACH), and belowground competition hypothesis (BCH), and their predictions of
biomass allocation responses (right panel): (a) predictions from TCH, (b) predictions from ACH, and (c) predictions from BCH.
doi:10.1371/journal.pone.0020078.g001
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19.0uC in July, and the average annual precipitation is 346.1 mm,

falling mainly during the growing season between May and

August. The soil is dark chestnut [26], which is slightly alkaline

(pH = 7.8). No fertilizer had been used prior to this experiment.

The plant community is composed of 51 species from 28 families,

and dominated by a perennial rhizome grass (Leymus chinensis) and

a perennial bunch grass (Stipa grandis) [25]. The plant cover is

about 30–40%, with about 11–18 species in a 1-m2 quadrat.

Experimental design
The experiment was established in 1999, which included 7

treatments in total, each with 9 replicates (5 m65 m plots). The 63

plots were arranged following a randomized block design, and

separated from each other by 1 m buffers. Six levels of N addition (0,

1.75, 5.25, 10.5, 17.5, and 28.0 g N.m22.yr21) were created by adding

NH4NO3 to plots early July (July 1–5) from 2000. To ensure that N

was the only limiting element, following nutrients and trace elements

were added: P (10 g P2O5?m
22?yr21), S (0.2 mg?m22?yr21), Zn

(190 mg?m22?yr21), Mn (160 mg?m22?yr21), and B (31 mg?m22?yr21).

We also had a set of control plots without any nutrient addition.

Target species and sampling
We selected 10 species for measuring biomass, abundance, and

allocation patterns (Table S1). These species were present in each

plot and together constituted 85–90% of the aboveground biomass

and 89–90% of vegetation cover of the plant community. They

also represent a broad spectrum of families, functional groups, and

species ranks of the study ecosystem. Plant individuals (both above-

and belowground parts) of target species were harvested using two

steel frames (0.460.460.4 m) that were inserted into soil 0.4 m in

depth. Sampling was conducted during August 28–31 2001,

corresponding to peak biomass of most species.

For 5 grasses and 1 sedge species, we sampled 3–5 individuals of

each species in each plot, to assure that 30 individuals were obtained

for each treatment. For 2 annuals and 2 semi-shrubs that were

scarce in abundance, we sampled 1–3 individuals for each species in

each plot to obtain 15 individuals for each treatment. Soil cores

were taken within the steel frame and washed gently with tap water

to get roots. The roots were then placed into containers filled with

deionized water. The shoots and roots of target species were

identified and separated based on their aboveground parts. Plant

materials were oven dried at 65uC for 48 h and then weighted

accurate to 1024 g. For the bunch grasses (S. grandis, Cleistogenes

squarrosa, Agropyron cristatum, and Achnatherum sibiricum) and the sedge

species (Carex korshinskyi), a bunch was counted as an individual. For

the rhizomatous grass (L. chinensis), a tiller was treated as an

individual. For other species, individual biomass was measured by

shoot. In addition to biomass, the density of each plant species was

measured with a 161 m quadrat in each plot.

Data analysis
At the level of individual plants, we measured the individual

biomass (IB), the belowground biomass (BB), and the aboveground

biomass (AB). We calculated biomass allocation as follows:

Belowground allocation (BA) = BB/IB; Aboveground allocation

(AA) = AB/IB. We also computed the coefficients of variations

(CVs) in IB, BA and AA as indices of plasticity for these variables. We

estimated the biomass response of individuals as: RIB = ln (IBt/IBc),

where IBt and IBc are the mean biomass of individuals in the

treatment and control plots, respectively. A positive RIB value

indicates an increase in individual biomass for a given species after N

addition. In the same way, we estimated the belowground allocation

response (RBA) and aboveground allocation response (RAA).

At the species level, we calculated the relative abundance of

plant species as: RAB = plant density of a species/plant density of

the community. Change in species relative abundance was

estimated as: VRAB = ln (RABt/RABc), where RABt and RABc

are the mean relative abundance of a given species in treatment

and control plots, respectively. Similarly, we calculated the species

richness change at the community level.

Considering that the measurements of variables for co-

occurring species in the same plot may not be completely

independent, we used linear mixed models to test the overall

effects of species, N addition rate, and their interaction. For each

species, we also carried out separate ANOVAs to examine the

effects of N addition rates. Duncan’s multiple range tests at a

significance level of 0.05 were used for multiple comparisons.

Results

Species relative abundance
Linear mixed model analysis indicated that species relative

abundance was significantly affected by species, N addition rates,

and their interaction (Table 1). The relative abundance of co-

occurring species exhibited different response patterns to increas-

ing N addition rates (Fig. 2). With increasing N addition rates, the

relative abundance of bunchgrass species (Stipa grandis, Cleistogenes

squarrosa and Agropyron cristatum) and the sedge species (Carex

korshinskyi) decreased, while that of two annuals (Axyris amaranthoides

and Chenopodium glaucum) and Achnatherum sibiricum increased. No

significant change in relative abundance was observed for Leymus

chinensis. Changes for the two semi-shrubs (Artemisia frigida and

Kochia prostrata) did not show any consistent trend.

Individual biomass
The biomass of individual plants was significantly correlated

with species, N addition rates, and their interaction (Table 1). The

ten target species differed significantly in individual biomass

response thresholds and the overall response patterns (Fig. 3). Four

Table 1. F and P values of analysis of variance for the effects of nitrogen, species and their interaction (nitrogen6species) on
aboveground biomass (AB), density, individual biomass (IB), and the ratio of aboveground allocation (AA) to belowground
allocation (BA).

Fixed factors d. f. AB Density IB AA/BA

F P F P F P F P

Nitrogen 6 71.18 ,.0001 70.19 ,.0001 192.21 ,.0001 104.12 ,.0001

Species 9 878.75 ,.0001 2554.31 ,.0001 906.56 ,.0001 1346.29 ,.0001

Nitrogen6Species 54 58.13 ,.0001 45.9 ,.0001 55.75 ,.0001 5.05 ,.0001

doi:10.1371/journal.pone.0020078.t001
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species (C. korshinskyi, C. squarrosa, A. frigida, C. glaucum) displayed a

threshold at 1.75 g m22 y21, three species (A. sibiricum, A. cristatum,

K. prostrate) at 5.25 g m22 y21, Axyris amaranthoides at

10.5 g m22 y21, and S. grandis at 17.5 g m22 y21. L. chinensis did

not show any significant change. With increasing N addition rates,

the individual biomass of four bunchgrasses and the Sedge species

exhibited a hump-shaped response pattern, whereas two semi-

shrubs and C. glaucum showed a linear response pattern.

To determine the differences between species and the plasticity

within a species, the means and CVs of individual biomass for the

Figure 2. Relative abundance of each species in response to nitrogen addition. Bars are means 6 s.d. Different letters between treatments
indicate statistically significant differences determined by Duncan’s multiple comparison.
doi:10.1371/journal.pone.0020078.g002
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ten species were analyzed (Table 2). K. prostrata had the highest mean

individual biomass while C. squarrosa the lowest. Annuals exhibited

the highest CVs, followed by semi-shrubs, whereas grasses and forbs

exhibited the lowest CVs. Differences in individual biomass between

species were larger than plasticity within species.

Biomass allocation
Overall, biomass allocation was also significantly correlated with

species, N addition rates, and their interaction (Table 1). Following

N addition, all species increased aboveground allocation and

decreased belowground allocation, although their response

Figure 3. Individual biomass of each species in response to nitrogen addition. Bars are means 6 s.d. Different letters between treatments
indicate statistically significant differences determined by Duncan’s multiple comparison.
doi:10.1371/journal.pone.0020078.g003
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patterns differed significantly (Fig. 4). The grasses and one forb

species had higher mean belowground allocation with lower

belowground plasticity, while the semi-shrubs and annuals showed

higher mean aboveground allocation with lower aboveground

plasticity (Table 2). Between-species differences in allocation

pattern were larger than within-species plasticity.

Plant responses to nitrogen addition rates at different
organizational levels

At the community level, species richness was negatively

correlated with N addition rates (Fig. 5a). At the species level,

no significant relationship was found between the variability in

species relative abundance (VRAB) and N addition rates (Fig. 5b).

At the individual level, no relationship was found between

individual biomass responses and N addition rates (Fig. 5c). The

response of aboveground allocation (RAA) was positively correlated

with N addition rates (Fig. 5d), and the response of belowground

allocation (RBA) was negatively correlated with N addition rates

(Fig. 5e).

While the species-level changes in relative abundance (VRAB)

were not significantly correlated with individual biomass (Fig. 6a),

they were significantly positively correlated with individual

biomass responses (RIB, Fig. 6b) and aboveground allocation

(Fig. 6c). In addition, changes in species relative abundance were

negatively correlated with belowground allocation (Fig. 6d) and

belowground allocation responses (Fig. 6f).

Discussion

Hierarchical linkages between plant responses to N
addition

N addition directly changes the biotic and abiotic environmental

factors, which in turn acts on co-occurring plants [19,28,29]. For a

given species, its overall response is the product of the responses of

all individuals. In turn, all species-level responses together determine

the community-level changes. Surprisingly, little is known about

plant responses at different organizational levels and their

hierarchical linkages. In the current study, we examined plant

responses to two-year N addition and the linkages between these

responses across three organizational levels. Our results indicated

that co-occurring plants differed significantly in their responses to N

addition across organizational levels. At the community level, as

most N addition experiments have shown, species richness declined

with increasing N addition rates [30,31]. At the species level,

however, no consistent relationship was observed between species

relative abundance and N addition rates. This is mainly due to the

differential responses of co-occurring species in terms of both the

direction and magnitude of changes. Some species decreased their

relative abundance, some increased their relative abundance, and

others did not respond. At the individual level, a strong relationship

was found between the responses of biomass allocation and N

addition rates. These findings together provide a more compre-

hensive understanding of plant responses to N addition at the levels

of individuals, species, and the entire community.

Our results also suggest that there are hierarchical linkages

between the responses at different organizational levels, and the

changes at higher organizational levels can be explained by the

responses at lower organizational levels. First, the divergent

responses at the species level provide a biological basis for explaining

plant diversity loss at the community level. Specifically, our study

indicates that the decline of perennial bunchgrasses and forbs,

which dominate the Eurasian grasslands, was the dominant reason

for the observed community-level species loss after N addition.

Second, changes in species relative abundance were closely related

to responses of individual biomass and belowground allocation.

Moreover, we found that species-level changes were positively

correlated with aboveground allocation pattern but negatively with

belowground allocation pattern. These results suggest that both

ecological functions and evolutionary strategies of species have

important effects on species-level responses to N addition.

Effects of allocation pattern and plasticity on plant
responses

Biomass allocation pattern represents the evolutionary strategy of

plant species for growth, reproduction, resource capture, and

defense [18,19,32]. Tilman (1988) suggested that differences in

allocation pattern may determine the order of species replacement

after nutrient enrichment [19]. However, Olff (1992) argued that

such between-species differences are not important because within-

species plasticity in allocation pattern is much larger [24]. It is worth

Table 2. Means and CVs of plant traits at the individual level (individual biomass, aboveground allocation, and belowground
allocation).

Species Individual biomass Aboveground allocation Belowground allocation

Mean (g) CV (%) Mean (%) CV (%) Mean (%) CV (%)

Leymus chinensis 1.59d 13.58 21.59h 17.96 78.41a 4.95

Stipa grandis 3.79b 24.14 25.94g 16.05 74.06b 5.62

Carex korshinskyi 1.06ef 23.18 25.68g 18.42 74.32b 6.36

Achnatherum sibiricum 2.56c 28.34 30.33e 22.01 69.67d 9.58

Cleistogenes squarrosa 0.69f 25.59 27.02fg 21.84 72.98bc 8.08

Agropyron cristatum 1.40de 32.72 28.96ef 21.03 71.04cd 8.57

Artemisia frigida 1.73d 41.18 51.57d 12.59 48.43e 13.40

Kochia prostrata 6.72a 35.91 56.15c 14.42 43.85f 18.46

Axyris amaranthoides 1.90d 72.68 65.38b 12.70 34.62g 23.99

Chenopodium glaucum 3.92b 75.85 69.34a 6.73 30.66h 15.23

Among species 85.42 45.17 30.36

Numbers with the same letter are not statistically different at the significance level of 0.05.
doi:10.1371/journal.pone.0020078.t002
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Figure 4. Biomass allocation of each species in response to nitrogen addition. Unfilled bars represent aboveground allocations and solid
bars represent belowground allocations. Bars are means 6 s.d. Different letters between treatments indicate statistically significant differences
determined by Duncan’s multiple comparison.
doi:10.1371/journal.pone.0020078.g004
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noting that Olff’s (1992) conclusion was based on pot experiments

with single species growing alone, which may not be relevant to the

plasticity of plant species living together in a natural community.

Our study clearly demonstrated that between-species differences,

not within-species plasticity, in allocation pattern played a major

role in determining plant responses to N addition. Considering that

allocation plasticity may come from indirect effects of size-

dependent allometric strategies [32,33], the ‘‘true’’ plasticity from

direct effects of N addition in our study system should be even

smaller than our estimates. Thus, our findings support Tilman’s

prediction that differences in allocation pattern between species are

key to the outcome of interspecific competition.

Mechanisms of plant diversity loss due to N addition
Niu et al. (2008) reported that TCH was a major mechanism for

species loss after N addition in an alpine meadow ecosystem [34].

However, our results were not consistent with the predictions of

TCH because changes in above- and belowground allocations were

not symmetric. The increased relative abundance of annuals and

decreased relative abundance of perennial grasses together resulted

in an overall increase in aboveground allocation at the community

level because of the much higher aboveground allocation of annuals

and the increased aboveground allocation responses for all species.

There are at least two possible explanations for these contrasting

results. First, Niu et al. (2008) only examined allocation patterns

Figure 5. Relationships of species richness changes (a), species relative abundance changes (b), individual biomass responses (c),
aboveground allocation responses (d), and belowground allocation responses (e) to increasing nitrogen addition rates.
doi:10.1371/journal.pone.0020078.g005
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between different aboveground organs of plants, not directly

between above- and belowground parts. Allocation strategies

among plant aboveground parts may be different from those

between above- and belowground parts. The second possibility is

that the mechanisms of species loss after N addition may be system

dependent. For example, most experiments in support of TCH were

conducted in low-stature communities in which each species had at

least some leaves exposed directly to sunlight [27]. The stature of

plants in current ecosystem is much taller.

Our results did not support the predictions of BCH, either,

because N addition favored species with low belowground

allocation and because all species exhibited decreased below-

ground allocation responses. Also, changes in species relative

abundance were negatively correlated with both belowground

allocation patterns and belowground allocation responses, sug-

gesting that belowground competition became less important after

N addition. Our results were consistent with the predictions of

ACH that competition for light is a major mechanism of plant

species loss after N addition. First, N fertilization facilitated the

growth of species with higher aboveground allocation (annuals) but

suppressed the growth of those with higher belowground

allocation (perennial grasses). After four years of N addition

annuals became the dominant species in our study community

[25]. Second, all species exhibited positive responses in above-

Figure 6. Relationships of species relative abundance changes to individual biomass (a), individual biomass responses (b),
aboveground allocation pattern (c), aboveground allocation responses (d), belowground allocation pattern (e), and belowground
allocation responses (f).
doi:10.1371/journal.pone.0020078.g006
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ground allocation, and these responses were positively correlated

with N addition rates, suggesting that aboveground competition

was intensified after N addition. Third, changes in species relative

abundance (VRAB) were positively correlated with aboveground

allocation patterns, but negatively with belowground allocation

patterns and responses. These results together strongly corroborate

the predictions of aboveground competition hypothesis. Our

finding is further supported by a light addition experiment that

showed that species loss following N enrichment could be

prevented by the addition of light to the grassland understory [35].

Although our results generally support ACH, some exceptions

exist. For example, A. sibiricum, a perennial bunchgrass, displayed a

strikingly different response pattern from other grasses with a

similar allocation pattern. Also, two semi-shrubs had high

aboveground allocation, but their relative abundance did not

increase as did the two annuals. These exceptions suggest that

factors other than allocation patterns, such as soil acidification [36]

and litter accumulation [29,37], may also play a role in influencing

plant responses to N addition.

Although our results are based on a short-term experiment, the

main conclusion that the increased aboveground competition is

the primary mechanism for species loss following N addition in the

Inner Mongolia grassland seems robust regardless of time scales as

long as N enrichment continues. Our findings from this study have

several implications for predicting the dynamics of plant diversity

in grasslands with increasing N deposition and for the manage-

ment practices of these ecosystems. In the Inner Mongolia

grassland, perennial grasses are dominant species with well

developed root systems that allow them to cope with environ-

mental stresses, such as long-term drought and low N availability.

N addition, however, ameliorates or even removes such limitation,

thus disrupting the balance between above- and belowground

allocations of resources. This disruption may lead to a decline of

perennial grasses and forbs, and subsequently a shift in species

dominance from perennial grasses to annuals. Such changes in

community structure will inevitably result in alterations in

ecosystem function and services, and reduce the resilience of

these systems to climate change. Thus, controlling N enrichment

from anthropogenic sources seems a necessary strategy for

maintaining the biodiversity and ecosystem functioning of the

Eurasian natural grasslands.
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