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Urbanization is taking place at an unprecedented rate around the world, particularly in China in the past few
decades. One of the key impacts of rapid urbanization on the environment is the effect of urban heat island (UHI).
Understanding the effects of landscape pattern on UHI is crucial for improving the ecology and sustainability of
cities. This study investigated how landscape composition and configuration would affect UHI in the Shanghai
metropolitan region of China, based on the analysis of land surface temperature (LST) in relation to normalized
difference vegetation index (NDVI), vegetation fraction (Fv), and percent impervious surface area (ISA). Two
Landsat ETM+ images acquired on March 13 and July 2, 2001 were used to estimate LST, Fv, and percent ISA.
Landscape metrics were calculated from a high spatial resolution (2.5×2.5 m) land-cover/land-use map. Our
results have showed that, although there are significant variations in LST at a given fraction of vegetation or
impervious surface on a per-pixel basis, NDVI, Fv, and percent ISA are all good predictors of LST on the regional
scale. There is a strong negative linear relationship between LST and positive NDVI over the region. Similar but
stronger negative linear relationship exists between LST and Fv. Urban vegetation couldmitigate the surface UHI
better in summer than in early spring. A strong positive relationship exists between mean LST and percent ISA.
The residential land is the biggest contributor toUHI, followedby industrial land. Although industrial landhas the
highest LST, it has limited contribution to the overall surface UHI due to its small spatial extend in Shanghai.
Among the residential land-uses, areas with low- to-middle-rise buildings and low vegetation cover have much
high temperatures than areas with high-rise buildings or areas with high vegetation cover. A strong correlation
between the mean LST and landscape metrics indicates that urban landscape configuration also influences the
surface UHI. These findings are helpful for understanding urban ecology aswell as land use planning tominimize
the potential environmental impacts of urbanization.
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1. Introduction

More than 50% of the world's population now live in urban areas,
and this number will continue to increase, particularly in developing
countries (United Nations, 2008). Urbanization profoundly influences
biodiversity and ecosystem functions, as well as local and regional
climate and the quality of life (Luck and Wu, 2002). One of the
ecological consequences of urbanization is the urban heat island
(UHI) effect, which leads to higher temperature in urban area than
surrounding suburban/rural areas. UHI can be evaluated in two ways.
Traditionally, it is derived from air temperature measurements within
the urban canopy layer. Recently, more studies of UHI are based on
surface radiative temperature from remote sensors (Voogt, 2002).
Accordingly, the remotely sensed UHI has been termed the surface
urban heat islands (SUHI) (Streutker, 2002). One important advan-
tage of using remotely sensed surface temperature is its wall-to-wall
coverage of the urban area, explicitly revealing its spatial patterns,
although it only provide an instantaneous measurement of temper-
ature during the day. In the earlier stage, NOAA-AVHRR data were
used to derive land surface temperatures (LST) for UHI studies
(Balling and Brazel, 1988; Gallo et al., 1993; Roth et al., 1989;
Streutker, 2002, 2003). Recently MODIS data was used to study the
SUHI (Cheval and Dumitrescu, 2009; Tran et al., 2006). However these
data with 1 km spatial resolution were suitable only for coarse-scale
urban temperature mapping, not for establishing accurate and
meaningful relationships between image-derived values and those
measured on the ground (Weng and Quattrochi, 2006; Weng et al.,
2004). The availability of LST from Landsat with a spatial resolution of
120~60 m has significantly facilitated the study of the relationship
between SUHI and surface biophysical parameters (Nichol, 1994,
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1996, 1998; Weng, 2001; Weng et al., 2006, 2004; Yuan and Bauer,
2007).

Vegetation and impervious surface are twokeyurban components as
reflected in the VIS (Vegetation-Impervious surface-Soil) conceptual
model of urban structure (Ridd, 1995). Vegetation transpiration
mitigates the effect of UHI, and thus numerous studies have focused
onunderstanding the relationship between LST andNDVI (Carlsonet al.,
1994; Gillies et al., 1997; Goward et al., 2002; Lo et al., 1997; Weng,
2001). However, NDVI suffers from the nonlinearity with vegetation
abundance, platform tendency, and other interference of background
conditions (Sandholt et al., 2002; Small, 2001).Wenget al. (2004) found
that urban LST was more strongly related to vegetation fraction than
NDVI. Yuan and Bauer (2007) found that theNDVI–LST relationshipwas
more suitable for the analysis of UHI in summer and early autumn.
While these findings were based on regional trends, there are
tremendous spatial–temporal variations within the general trend.
These variations are not yet well understood.

Urban landscapes are characterized by complex spatial heterogene-
ity, with different Land-cover/land-use (LCLU) types having their own
surface characteristics and forming patchmosaics (Wu, 2008;Wu et al.,
2011). Cities' spatial pattern can affect physical, ecological, and
socioeconomic processes within their boundaries and beyond (Luck
and Wu, 2002). Therefore it is necessary to relate the spatial pattern of
urbanization to ecological processes tohelpbetter understand theurban
ecosystems (Luck and Wu, 2002; Turner, 2005). To enhance the
understanding of the relationship between urban thermal behavior
and urban landscape structure, Voogt and Oke (2003) suggested to
better quantify appropriate surface radiative (e.g. emissivity) and
structural parameters from remote sensing. More recently, Weng et al.
(2007) and Liu and Weng (2008) assessed the relationship between
LCLU and landscape metrics by LST zones. Buyantuyev and Wu (2010)
studied UHI and landscape heterogeneity by linking spatiotemporal
variations in surface temperatures to land-cover and socio-economic
patterns and found that vegetation and pavements were key factors for
the spatial variations of surface temperature. However, how urban
landscape structure influence urban LST has not been fully understood.

The main objective of our study was to investigate how different
urban landscape features and their spatial configuration affect UHI,
and how these relationships compare and contrast between the leaf-
on and leaf-off seasons. Our study was carried out in Shanghai, China,
a major international metropolis that has experienced rapid devel-
opment since China adopted the reform and opening-up policies in
recent decades. Understanding the spatiotemporal pattern of UHI and
its drivers in Shanghai has important implications for many other
coastal cities around the world.

2. Methods

2.1. Study area

The Shanghai metropolitan region, situated on the broad flat
alluvial plain of the Yangtze River Delta of China, covers a total area of
approximately 6340.5 km2, with a few remnant hills in the southwest
(Fig. 1). Shanghai locates in the northern subtropical monsoon climate
with a mean annual temperature of 16.0 °C (fromminimum 12.7 °C to
maximum 20.2 °C), and a mean annual precipitation of 1158.1 mm
(data calculated from the observation of 1951 to 2008), and with an
average elevation of about 4 m above the sea level, the area has
thousands of streams and rivers. Among them, Huangpu River is the
biggest one, which runs through the urban center. Native vegetation is
characterized by the subtropical evergreen broadleaved forest and the
evergreen broadleaved-deciduous broadleaved mixed forest. As the
largest city in China, Shanghai has experienced enormous urbaniza-
tion in both scope and intensity, driven by rapid economic
development, particularly, since the 1990s. Shanghai has a population
of more than 19.21 million, and its GDP reached 1504.6 billion Yuan
(~US$215 billion) in 2009 (Shanghai Municipal Statistics Bureau,
2010). Thus, Shanghaimetropolitan area has become the engine of the
economic growth for the Yangtze River Delta region. Our study
focused on the area enclosed by the outmost ring-road, which
encloses about 665.5 km2 with diverse LCLU types as can be seen in
Fig. 1 and Table 1.

2.2. Images and image pre-processing

Two cloud-free Landsat-7 Enhanced ThematicMapper Plus (ETM+)
images (Row/Path: 038/118), which were collected on 13 March 2001
and 03 July 2001, respectively, were acquired from USGS EDC. The
images were further rectified to the Universal Transverse Mercator
project system (datum WGS84, UTM Zone N51), and resampled using
the cubic convolution algorithm with a pixel size of 30 by 30 m for all
bands. The root mean squared errors were smaller than 0.25 pixels
(7.5 m) for each of the two images. The overall image processing and
data analysis steps are shown in Fig. 2.

Calculation of at-sensor spectral radiance is a fundamental step in
converting image data from multiple sensors and platforms into a
physically meaningful common radiometric scale. We converted the
Digital Numbers (DNs) for both reflective and thermal bands to at-sensor
radiance using the following equation (Chander and Groeneveld, 2009):

Lλ =
LMAXλ−LMINλð Þ
Qcalmax−Qcalminð Þ × Qcal−Qcalminð Þ + LMINλ ð1Þ

where Lλ is the spectral radiance at the sensor's aperture in
W/(m2 sr μm), Qcal the quantized calibrated pixel value [DN], Qcalmin

the minimum quantized calibrated pixel value corresponding to
LMINλ [DN], Qcalmax the maximum quantized calibrated pixel value
corresponding to LMAXλ [DN], LMINλ the spectral at-sensor radiance
scaled to Qcalmin in W/(m2 sr μm), and LMAXλ the spectral at-sensor
radiance scaled to Qcalmax in W/(m2 sr μm).

For image-based atmospheric correction, uniform atmospheric
condition is usually assumed (Song et al., 2001), thus the correction
will not have an effect on the analysis in this paper. Therefore for all
the reflective bands, we used top-of-atmosphere (TOA) reflectance,
which corrects for the cosine effect of solar zenith angles, and changes
in the exoatmospheric solar irradiance due to variation in the earth–
sun distance. These variations can be significant geographically and
temporally (Chander and Groeneveld, 2009). We computed the TOA
reflectance according to the following equation:

ρλ =
π ⋅ Lλ ⋅ d2

ESUNλ⋅ cosθs
ð2Þ

where ρλ is the planetary TOA reflectance [unitless], Lλ the spectral
radiance at the sensor's aperture in W/(m2 sr μm), d the earth–sun
distance [in astronomical unit], ESUNλ the mean exoatmospheric solar
irradiance in W/(m2 μm), and θs the solar zenith angle.

The LCLU data used for sampling and impervious surface estimation
were derived from 1:50,000 color-infrared aerial photos acquired from
March toMay, 2000. The aerial photos were scanned, registered to local
coordinate systems, and then mosaicked for digitalization with GIS at
the spatial resolution of 2.5 m. LCLU types derived from the airphotos
were reclassified to eight broad categories as shown in Table 1 below. To
facilitate further analysis, residential land use type has been further
classified into 14 subtypes according to their height (building stories)
and vegetation coverage. They are LRO: Low-rising old and humble
house with vegetation cover less than 10%; LRR: Low-rising rural house
(less than 3 stories); LR-1: Low-rising house (less than 7 stories) with
vegetation cover less than 10%, LR-2: Low-rising house with vegetation
cover between 10 and 30%, LR-3: Low-rising house with vegeta-
tion cover between 30 and 50%, LR-4: Low-rising house with
vegetation cover over 50%; HR-1: High-rising house (7–18 stories)



a b

c d

Fig. 1. Our study area: (a) Location of Shanghai in China; (b) Administrative boundary of Shanghai; (c) Our study area including Shanghai city proper as seen in the 03 July, 2001
Landsat-ETM+ image (RGB=543); (d) land use map of a 10×10 km sample plot with spatial resolution of 2.5×2.5 m derived from aerial photos.
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with vegetation cover less than 10%, HR-2: High-rising house with
vegetation cover between 10 and 30%, HR-3: High-rising house with
vegetation cover between 30 and 50%, HR-4: High-rising house with
green cover over 50%; SR-1: Superhigh-rising house (over 18 stories)
with vegetation cover less than 10%, SR-2: Superhigh-rising house with
vegetation cover between 10 and 30%, SR-3: Superhigh-rising house
with vegetation cover between 30 and 50%, SR-4: Superhigh-rising
house with vegetation cover over 50%, respectively.
2.3. Estimating land surface temperature

Landsat ETM+ thermal infrared band (10.4–12.5 μm) data were
utilized to map LST. This was accomplished in three steps: (1)
converting calibrated DNs to absolute units of at-sensor spectral
radiance; (2) converting at-sensor spectral radiance to at-sensor
brightness temperature; and (3) converting at-sensor brightness
temperature to kinetic temperature, namely, land surface tempera-
ture (Barsi et al., 2003; Chander and Markham, 2003; Chander et al.,
2009).
We carried out the first step using Eq. (1). Conversion of the at-
sensor spectral radiance to at-sensor brightness temperature assumes
that the earth's surface is a black body (i.e., spectral emissivity is 1).
The conversion formula is (Chander et al., 2009):

TB =
K2

ln K1
Lλ

+ 1
� � ð3Þ

where TB is the effective at-sensor brightness temperature in Kelvin,
Lλ is the spectral radiance at the sensor's aperture in W/(m2 sr μm),
and K1 and K2 are the pre-launch calibration constants. For Landsat
ETM+, K1 is 666.09 W/(m2 sr μm) and K2 is 1282.71 K.

The brightness temperature values obtained above are referenced
to a black body. Corrections for spectral emissivity (ε) of a greybody
were made, and the emissivity-corrected land surface temperatures
(Ts) were computed as follows (Artis and Carnahan, 1982):

Ts =
TB

1 + λ × TB = αð Þ lnε ð4Þ



Table 1
Urban land cover and land use classification system.

Level 1 Level 2

1 Residential 11 Urban and town residential
12 Rural residential

2 Public facility 21 Municipal administration
22 Commercial and financial services
23 Cultural and sports services
24 Hospital and sanitary
25 Education and research institutes
26 Civic utilities

3 Industrial 31 Light pollution industry such as electronic manufacture,
tailoring industry, artware manufacture, etc.

32 Middling pollution industry such as food industry,
pharmaceutical industry, textile industry, etc.

33 Heavy pollution industry such as metallurgical industry,
chemical industry, machine manufacturing industry, paper
industry, leather industry, etc.

34 Warehouse
4 Traffic 41 Railroad

42 Road and plaza
43 Harbor and port
44 Airport
45 Other traffic land

5 Green land 51 Urban park
52 Forest
53 Shrub
54 Grass land
55 Botanic garden and zoo
56 Natural reserves
57 Greens in rural and country
58 Other green land

6 Water 61 Streams and canals
62 Lakes and reservoirs
63 Ponds and aquafarms
64 Beaches and wetland

7 Agricultural 71 Crop lands
72 Vegetable fields
73 Orchards
74 Nurseries
75 Other agricultural land

8 Others 81 Under-construction sites
82 Specific land
83 Cemetery
84 Human historic relics
85 Natural historic relics
86 The others
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Fig. 2. Flowchart of data processing.
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where λ is the wavelength of emitted radiance (which is 11.5 μm
according to Markham and Barker (1985)), α=hc/b (1.438×10−2 m K),
b the Boltzmann constant (1.38×10−23 J/K), h the Planck's constant
(6.626×10−34 Js), c the velocity of light (2.998×108 m/s), and ε the
surface emissivity.

There are several methods to obtain the land surface emissivity,
including the temperature/emissivity separation (TES) method
(Gillespie et al., 1998) and the emissivity classification scheme
(Snyder et al., 1998) if one has the detailed LCLU map. Here we
employed an alternative and easy-to-apply approach to obtain land
surface emissivity (ε) reported by Sobrino et al. (2004):

ε = εvFv + εu 1−Fvð Þ + dε ð5Þ

where εv is the emissivity of vegetation, εu is the emissivity of urban
surface, and Fv is the vegetation proportion which was derived from
an empirical model based on NDVI in Sobrino et al. (2004). We used
the fractional vegetation cover for Fv derived from spectral mixture
analysis as described in Section 2.4, and estimated dε by the equation
from Sobrino et al. (2004):

dε = 1−εuð Þ 1−Fvð ÞFεv ð6Þ

where F is a shape factor (Sobrino et al., 1990) whose mean value is
0.55, considering different geometrical distributions.
The emissivity of vegetation is typically 0.99, and the emissivity of
urban surface (non-vegetation surface) is 0.92 according to previous
studies (Artis and Carnahan, 1982; Nichol, 1998, 2009). The final
expression for the emissivity is given by:

ε = 0:02644Fv + 0:96356 ð7Þ

Based on the steps above, we derived the LSTmap of the study area
shown as Fig. 3-a, b.

2.4. NDVI, impervious surface fraction and vegetation fraction calculation

NDVI for Landsat ETM+ imagery was calculated as:

NDVI =
ρnir − ρred

ρnir + ρred
ð8Þ

where ρnir and ρred are the reflectance values in the near-infrared and
red bands.

TheNDVImaps for the study areaare shownasFig. 3-c, d. Impervious
surface area (ISA) refers to the area that canneither evaporatewater nor
permit rainwater to penetrate (Carlson and Traci Arthur, 2000). Several
methods have been developed in the literature to estimate ISA based on
remotely sensed imagery (Yang and Liu, 2005). One is pixel-level
estimation of ISA with traditional classification methods, such as the
clustering algorithm (Deguchi and Sugio, 1994) and Maximum
likelihood classification (Hodgson et al., 2003). The other is subpixel-
level estimation using spectral mixing models (Ji and Jensen, 1999;
Phinn et al., 2002; Wu, 2004; Wu and Murray, 2003), artificial neural
networks (Civco et al., 2002; Hu and Weng, 2009), and classification
trees (Goetz et al., 2003; Yang et al., 2003). Spectral mixture analysis is
an advanced image processing method that determines the fraction of
fundamental components, called endmembers, contained in each pixel



aLST bLST

cNDVI dNDVI

Fig. 3. Land surface temperature (LST) and normalized difference vegetation index (NDVI) derived from Landsat ETM+ images for the study area on two dates: a and c: Mar. 13,
2001; b and d: Jul. 3, 2001.
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of an image (Yuan and Bauer, 2007). Here we utilized a normalized
spectral mixture analysis (NSMA) method proposed by Wu (2004) to
derive the impervious surface fraction. In this method, the normaliza-
tion process was used to reduce the spectral variation due to brightness
differences in the original spectra of urban components, using the
following equation:

Rb =
Rb

μ
× 100 ð9Þ

μ =
1
N

∑
N

b=1
Rb ð10Þ

where Rb is the normalized reflectance for band b in a pixel, Rb is the
original reflectance for band b, μ is the average reflectance for that
pixel, and N is the total number of bands (6 for ETM+ image).
Then a constrained linear spectral mixture analysis (LSMA)
method was applied to quantify the urban surface composition in
each pixel of the image using pure land covers (i.e., endmembers) as
follows:

Rb = ∑
m

i=1
f iRi;b + eb ð11Þ

where f i is the fraction of endmember i,∑m
i = 1f i = 1 and f i≥0; Ri;b is

the normalized reflectance of endmember i in band b for that pixel;m
is the number of endmembers; and eb is the residual. The fraction of
each land cover type in a pixel was calculated using a least squares
method in which the residual eb was minimized.

In the LSMA model, the urban land cover endmembers generally
are made up of vegetation, impervious surface, soil, and water (often
masked out), or vegetation, high albedo (e.g. concrete, clouds, and
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sand), low albedo (e.g. water and asphalt), and soil. Endmember
spectral signatures are extracted from representative homogeneous
pixels in the TM/ETM+ imagery when field or laboratory-based
measurements of endmembers' spectra are not available (Wu, 2004;
Wu and Murray, 2003). In this study, the Principal Component (PC)
transformation was utilized to process the normalized reflectance of
ETM+ imageries, and then visual interpretation of the ETM+ image
was performed to select endmembers. Three endmembers of
vegetation, high albedo and low albedo were identified from the
feature space of PC1, PC2 and PC3 components. The soil endmember
could not be found in our study area because of the lack of bare soil.

The high albedo and low albedo endmembers cannot be directly
interpreted as impervious surfaces. But impervious surfaces also can
be a linear combination of high albedo and low albedo expressed as
follows (Wu and Murray, 2003):

RIS;b = fLRL;b + fHRH;b + eb ð12Þ

where RIS,b is the reflectance spectra of impervious surfaces for band b,
and fL and fH are the fractions of low albedo and high albedo,
respectively. RL,b and RH,b are the reflectance spectra of low albedo and
high albedo for band b, and eb is the residual. In Eq. (12), the
constrained requirement is fL+ fH=1 and fL, fH≥0. The details of the
LSMA and justification of endmember selection can be found in Wu
(2004) and Wu and Murray (2003). The accuracy of the estimated
fraction impervious surface (converted to percent impervious surface
area, or %ISA) and fraction vegetation cover (Fv) was tested with
randomly selected 220 samples of 3×3 pixel size (90×90 m) from a
high resolution (2.5 m) land use database. For %ISA, the root mean
square error (RMSE) and system error (SE) were 15.8% and 1.6% for
July 3, 2001 and 11.3% and 3.7% for March 13, 2001. For Fv, the RMSE
and SE were 10.7% and 2.1% for July 3, 2001 and 16.1%, 2.2% for March
13, 2001. The derived percent ISA and Fv map were shown as Fig. 4.

2.5. Landscape metric selection and calculation

It was demonstrated that land surface temperature or surface
urban heat island could be related to LCLU types (Chen et al., 2006;
Weng, 2001; Xian and Crane, 2006), and there are relationship
between spatial structure of urban thermal patterns and urban surface
characteristics (Liu and Weng, 2008; Weng et al., 2007). In the past
few decades, a large number of landscape metrics have been
developed and widely used to characterize landscape patterns
(Gustafson 1998; Li and Reynolds, 1993; Li and Wu, 2004; McGarigal
and Marks, 1995; O'Neill et al., 1988; Turner and Gardner, 1991; Wu,
2000; Wu et al., 2002) and to relate landscape patterns to ecological
processes (Turner, 2005). These metrics fall into two general
categories to measure the composition and spatial configuration
(Gustafson 1998; McGarigal and Marks, 1995). Landscape composi-
tion metrics measure the presence and amount of different patch
types within the landscape, without explicitly describing its spatial
features (i.e., percentage land of a certain cover). Landscape
configuration metrics measure the spatial distribution of patches
within the landscape (i.e., degree of aggregation and contagion)
(Alberti, 2005). We selected eight commonly used landscape metrics
to relate land surface temperature with landscape patterns. They are
given in Table 2 (for detailed calculation equation and comments, see
McGarigal et al., 2002). They are selected to provide complementary
information about landscape structure for both composition and
configuration.

The landscape structure analysis is based on the highest spatial
resolution data we have, 2.5×2.5 m air photos. Landscape metrics
were computed both at the class and the landscape levels (Alberti,
2005; Herold et al., 2003, 2002). Due to the large amount of data
involved, it is impractical to perform landscape metrics analysis using
the air photos for the whole city. Therefore, we took a subset of a
10×10 km sample plot (Fig. 1-d), which was carefully chosen so that
it is representative of the city landscape structure. We divided the
10×10 km plot into 25 subplots of 2×2 km in size so that a statistical
relationship could be developed using each subplot as a data point.
The landscape metrics were computed with FRAGSTATS (McGarigal
et al., 2002). When computing the landscape metrics for a class, all
other classes within a subplot were masked out as background. For
the landscapemetric at the landscape level, all classeswere considered
within each subplot. Pearson's correlation coefficients between
landscape metrics and the subplot mean LST were calculated. The
significance of each correlation coefficient was determined using a
two-tailed Student's t-test.

2.6. Statistical analysis

Regression analysis was used to further quantify the relationship
among LST, NDVI, Fv, and percent ISA. The zonal analysis method
(Yuan and Bauer, 2007) was used to evaluate the mean LST at each
0.01 increment of the NDVI from −1 to 1, at each 0.01 increment of
the Fv from 0 to 1, and at each 1% increment of percent ISA from 0 to
100%. At each increment of NDVI, Fv, and percent ISA, a mean LST
value was obtained from all corresponding pixels. These relationships
are scale dependent. According to Woodcock and Strahler (1987), the
optimal spatial resolution to capture spatial pattern using remotely
sensed imagery is approximately half to three-quarters of the size of
the object dimension in the scene. Weng et al. (2004) performed an
analysis on the scale effect on monitoring UHI using remote sensing
and found that 60×60 m spatial resolution is approximately the
optimal spatial resolution. Therefore, we performed the analyses at
the finest spatial scale as the data allowed, which was appropriate to
capture the spatial features of UHI and relevant land use and land
cover types.

3. Results

3.1. Relationship of LST to NDVI and vegetation fraction

The relationship between LST and NDVI of early spring (March 13,
2001) and the summer (July 3, 2001) images are shown in Fig. 5-a, b. As
the study area is located in the northern subtropical region, there is a fair
amount of active vegetation in the early spring. Thus, mean NDVI is
relatively high in the early spring (0.10±0.1) compared to that for the
summer (0.20±0.16). The mean NDVI is low overall for the city as a
result of the abundance of impervious surface. The shape of the
scattergram changes significantly from the early spring to summer
because of the significant increase in temperature and NDVI in the
summer. The upper edge and lower edge of the triangle scattergram
(Fig. 5-a, b) have been termed as “warm edge” and “cool edge”,
respectively, in previous studies (Carlson and Traci Arthur, 2000;
Carlson et al., 1995; Gillies and Carlson, 1995; Gillies et al., 1997). The
pixelswith sameNDVI value arewarmer and drier nearwarmedge than
those near cool edge. The two edges converge well at high NDVI end for
the early spring image. The warm edges in both images have negative
slopes, indicative of the cooling effect of vegetation. This is primarily due
to the effect of high energy demand for vegetation transpiration; while
the cool edgehas a positive slope for the early spring image and remains
negative for the summer image. Therefore, the role of vegetation in
regulating the land surface temperature varies with season.

On the regional basis, NDVI has a highly nonlinear relationship
with mean LST over the whole range of NDVI values. But a strong
negative linear relationship exists between mean LST and positive
NDVI, i.e. with the presence of vegetation (Fig. 6-a, b). The regression
lines in Fig. 6-a, b between NDVI and mean LST are based on positive
NDVI only. It is interesting to note that there is an enhanced variation
in the relationship between NDVI and LST at high NDVI, particularly in
the summer time. Similar trendwas found in the studies by Chen et al.



aPercent ISA bPercent ISA

cFv dFv

Fig. 4. Percent impervious surface area (ISA) and fractional vegetation cover (Fv) derived fromLandsat ETM+image for the study area on twodates: a andc:Mar. 13, 2001; b andd: Jul. 3, 2001.
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(2006) and Yuan and Bauer (2007). These pixels are nearly
completely covered by vegetation. This phenomenon may be caused
by any of the following three processes: (1) NDVI is saturated with
leaf area index (LAI). Further increase in LAI will not lead to increase in
NDVI, but higher LAI leads to cooler surface temperature due to the
effect of higher evapotranspiration, and vice versa. (2) Vegetation
type may also cause the NDVI-LST to scatter at high NDVI at the
regional scale. According to our field observations in the summer 2010
(unpublished data), the LST difference between tree/grass mixed
types and lawns varies from 0.1 °C to 9.3 °C with an average difference
as high as 4.0 °C, and similar difference was observed for tree/shrub
mixed types with lawns. (3) Development density influences the
surface temperature of vegetation. For example, street trees with
higher NDVI value in dense urban development areas, especially in
dense urban street canyons, have higher surface temperature. We
found that surface temperatures of golf lawn and street trees are
approximately 3.0 °C and 4.0 °C higher than those of park forest with
the same NDVI value, respectively, based on the 03 July 2001 image.
Another land surface biophysical parameter often used to represent
vegetation abundance is Fv, which is closely related to NDVI. Because
NDVI can saturate at high Fvwhen the background is dark (Song, 2004),
Fv is amore accurate representation of vegetation abundance. The pixel-
based and regional-based relationships between LST and Fv in the early
spring and the summer are shown in Figs. 5-c, d and 6-c, d, respectively.
Fv has a slightly stronger relationship with LST than NDVI, especially in
summer (R2=0.9957). But variations with seasons exist.

3.2. LST relationship with percent impervious surface

Given that both NDVI and vegetation fraction vary with seasons,
we investigated the relationship between LST and ISA (Fig. 5-e, f). LST
generally increased with percent ISA, opposite to the pattern between
vegetation abundance and LST because ISA and vegetation fraction are
mutually exclusive endmembers in our LSMA. High vegetation
fraction means low percent ISA. The variation of LST increased with
percent ISA, and significantly higher variations in LST occurred for



Table 2
Landscape pattern metrics used in this study, after McGarigal et al. (2002).

Landscape metrics Calculation and description

Compositional

Percentage of Landscape area (PLAND) PLANTi = Pi = 100 × ∑
n

j=1
aij=A

Pi is proportion of the landscape occupied by patch type (class) i; and n is the number patches
in the landscape for class i; aij is the area of patch ij. A is the total landscape area. It is a measure
of landscape composition.

Shannon's Evenness Index (SHEI) SHEI = − ∑
m

i=1
Pi × lnPið Þ=ln mð Þ

Pi is proportion of the landscape occupied by patch type (class) i; m is number of patch types
(classes) present in the landscape, excluding the landscape border if present. SHEI measures
the relative abundance of different patch types.

Shannon's Diversity Index (SHDI) SHDI = − ∑
m

i=1
Pi × lnPið Þ

Pi and m is the same as in SHEI. SHDI is a measure of land use/cover diversity in landscape.

Configurational
Edge density (ED)

EDi = ∑
n

j=1
eij=A

eij is the total length of edges in the landscape for patch type (class) i and patch j, including
landscape boundary and background segments involving patch type i. It measures the shape
complexity for a patch type or the landscape.

Patch density (PD) PDi = ni = A

ni is the number of patches in the landscape for patch type (class) i. It is an index measuring
spatial heterogeneity of the landscape.

Landscape shape index (LSI) LSIi = 0:25 ∑
n

j=1
eij=

ffiffiffi
A

p

eij is the total length of edge for class i and patch j; LSI≥1, and increases as the shape of a
patch becomes more irregular.

Clumpiness index (CI)

CI =
Gi−Pið Þ = Pi Pi > Gi&Pi < 0:5

Gi−Pið Þ= 1−Pið Þ else

8<
:

where

Gi = gii= ∑
m

i=k
gik

� �
−min ei

� �

and gii is the number of like adjacencies (joins) between pixels of patch type (class) i based on
the double-count method; gik is the number of adjacencies (joins) between pixels of patch
types (classes) i and k based on the double-count method; minei is the minimum perimeter
(in number of cell surfaces) of patch type (class) i for a maximally clumped class.

Contagion (CONTAG)

Contag =

1 +

∑
m

i=1
∑
m

k=1
Pið Þ gik

∑
m

k=1
gik

0
BBB@

1
CCCA

2
6664

3
7775 × ln Pið Þ gik

∑
m

k=1
gik

0
BBB@

1
CCCA

2
6664

3
7775

2ln mð Þ

2
6666664

3
7777775
× 100

where Pi is proportion of the landscape occupied by patch type (class) i; gik is the number of
adjacencies (joins) between pixels of patch types (classes) i and k based on the double-count
method; m is the number of patch types (classes) present in the landscape, including the
landscape border if present. CONTAG describes the heterogeneity of a landscape.
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areas with high percent ISA. There was a strong linear relationship
between LST and percent ISA based on regional mean values both in
early spring and summer (Fig. 6-e, f). The linear relationship was
much stronger in summer (r2=0.9843) than early spring
(r2=0.8545). The data points were more scattered when percent
ISA was low, and for the early spring.
To find out what caused these variations, we explored the thermal
characteristics for different LCLU types by taking advantage of a high
resolution LCLU map (2.5×2.5 m spatial resolution), which was
generated based on air photos taken for the study area in 2000 in a
separate study (Li et al., 2004). Due to the large volume of data, we
performed the evaluation using the same 10×10 km sample areawith
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Fig. 5. Scattergrams of land surface temperature (LST) vs. normalized difference vegetation index (NDVI), fractional vegetation cover (Fv), and percent impervious surface area (ISA)
at the pixel-by-pixel scale for the study area on two dates: a, c, and e: Mar. 13, 2001; b, d, and f: Jul. 3, 2001.
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which we evaluated the landscape metrics, instead of the whole city.
The sample area has presence of both high and low proportions of
impervious surface. The shape of the scattergram between LST and
percent ISA (not presented here) for the sample areawas quite similar
to that of the whole study area. The high spatial resolution LCLU map
(Fig. 1-d) was superimposed upon the images of LST (Fig. 3 a, b) to
extract LST for the corresponding LCLU types on a pixel by pixel basis
(at 2.5 m spatial resolution). The industrial land had the highest mean
LST both in the summer (37.5 °C) and the early spring (20.7 °C)
images. Direct heat release from industry may play a role here. It is
interesting to note that the lowest mean LST was found in urban
green (34.7 °C in summer and 19.1 °C in early spring) (Fig. 7), and
water bodies had the second lowest mean LST in the highly dense
urban area. Two factors may contribute to this temperature pattern:
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(1) Water has the largest specific heat among all materials, thus
slowest material to cool over night. At the midmorning satellite
overpass, vegetated surface has not been heat up yet; (2) In the
midmorning, a significant amount of urban green can be shaded by
buildings, keeping its temperature low.

The larger standard deviations (SD) of LST were found to be
associated with traffic (1.90 °C in summer and 1.96 °C in early spring)
and industrial lands (1.71 °C in summer and 1.80 °C in early spring).
The residential and public facility had a relatively small SD owing to
their spatial homogeneity at the Landsat thermal image scale as they
usually are vegetated with trees and grass.Water bodies showed large
SD, which might be caused by edge effects because the linear streams
can be easily mixed with ambient urban environments in a pixel
viewed by the thermal infrared sensor of the Thematic Mapper. Urban
green-space showed low SD in early spring, but much higher SD in
summer. Due to the height of the building in Shanghai, many street
trees are shaded, resulting in low surface temperature, while non-
shaded trees in the open urban areas have much higher surface
temperature. The combined effect is high SD for surface temperature
of urban green.
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We further explored the composition of LCLU types for areas with
percent ISA exceeding 80%. We divide these pixels into three groups
based on their surface temperature: those with LST greater than 1 SD
from the mean (top group), those with LST within 1 SD around the
mean (middle group), and those with LST 1 SD below the mean
(bottom group). The pixel numbers of each LCLU type in the three
groups were shown in Fig. 8. In the top group (Fig. 8-a, d), the
residential land dominated the contribution to high LST, followed by
industrial and traffic lands. In the middle (Fig. 8-b, e) and bottom
(Fig. 8-c, f) groups, the residential land remains the dominant
component in both summer and early spring, and dwarfed the
presence of other land-cover and land-use types.

The residential land-use in the high resolution LCLU map was
classified in detail based on its biophysical properties, i.e., their height
and amount of vegetation. The composition of different types of
residence for the three groups is shown in Fig. 9-a. Residence
buildings with low vegetation presence primarily fall into the top
group regardless the height of the building. The high and super-high
rises primarily fall into the middle and bottom group, particularly
those associated with relatively abundant vegetation (Fig. 9-b, c).

A closer look on the high resolution LCLU map revealed that
residential and industrial lands with high LST mostly were those of
blocks or communities and industrial-residential complex areas of
high building density, such as textile mills, manufacturing factories,
warehouses, and chemical plants which had dark tiles and asphalt
rooftops but little vegetation. The residential and public facility lands
with lower LST are mostly newly developed residential houses and
universities or institutions with relatively lower building density and
high vegetation cover.
3.3. The relationship between LST and urban landscape metrics

LST had a large range of variations at a given level of NDVI, percent
vegetation, or ISA on a per-pixel basis (Fig. 5). One possible reason for
this is the spatial configuration of land surface conditions. Correlation
coefficients between LST and landscape metrics at both the class and
landscape levels are given in Table 3. LST was highly correlated with
landscape metrics for residential and urban green. For residential
land, the mean LST was positively correlated to percent of land use
(PLAND), edge density (ED), patch density (PD), and landscape shape
index (LSI), but negatively correlated with clumpiness. For urban
greenspace, the mean LST was negatively correlated with ED, PD,
PLAND and LSI, and the negative correlation was much more
significant in the summer than in early spring. However, the
correlation between LST with landscape metrics for residential land
was stronger in early spring than that in summer. Among the
landscape metrics analyzed, only PD was positively correlated with
mean LST in the summer, while PLAND, ED and LSI were all
significantly correlated with mean LST in the early spring images.
Thus, the seasonal changes in vegetation pattern altered the spatial
configuration of SUHI.

At the landscape level, the mean LST was negatively correlated
with Shannon evenness index (SHEI) and positively correlated with
landscape contagion (CONTAG) for both the summer and the early
spring images (Table 4). All the other landscape pattern metrics were
significantly correlated with mean LST for the early spring images, but
not for the summer images although the signs of the correlation
coefficients are consistent between summer and early spring images.
4. Discussion

4.1. Comparison of the correlation between different indicators and LST

The nonlinearity and seasonal variation in the LST-NDVI relation-
shipmake it challenging to predict LST fromNDVI (Gillies and Carlson,
1995; Owen et al., 1998; Weng et al., 2004; Yuan and Bauer, 2007).
Weng et al. (2004) proposed to use vegetation fraction in place of
NDVI to evaluate the relationship between LST and vegetation. Our
data also showed someminor improvement in the LST-Fv relationship
(Fig. 5-c, d) over that of LST-NDVI on the pixel basis. The improvement
was much clearer on the regional basis as is shown in Fig. 6-a-d that a
much stronger statistical relationship exists between LST and Fv.
Although Fv has a slightly stronger relationship with LST, it is highly
related to NDVI (Carlson and Ripley, 1997; Carlson et al., 1995;
Gutman and Ignatov, 1998), therefore, Fv suffers from the same
limitations of variability and nonlinearity as NDVI to LST (Yuan and
Bauer, 2007). However, when LST is related to positive NDVI only, the
relationship between LST and NDVI is almost as strong as LST with Fv.
When NDVI is negative, it is usually a mixture of several other no
vegetation components, such as water, cloud, and sand. NDVI lost its
physical meaning. It no longer reflects vegetation information. Thus
analysis of NDVI with LST should only be limited to positive NDVI
values. Given the complexity and uncertainty associated with SMA for
Fv (Song, 2005; Wu and Murray, 2003). We believe NDVI should be
preferred over vegetation fraction because NDVI is easy to obtain, and
it does not suffer additional errors as Fv from SMA, such as selection of
endmembers and endmember signature specification (Song, 2005)
after the preprocessing is appropriately done.

Yuan and Bauer (2007) reported a strong linear relationship
between LST and percent ISA based on regional mean values, and thus
they recommended percent ISA as a complementary index to NDVI in
surface urban heat island study. Our analysis found a similar strong
linear relationship between LST and percent ISA at the regional scale.
However, the relationship between LST and percent ISA is complex
when examined on a pixel-by-pixel basis. Although impervious
surfaces were frequently used as pseudo-invariant features in
literature (Hall et al., 1991; Song et al., 2001; Schott et al., 1988)
due to the insensitivity of spectral signatures to seasonal changes,
there are significant percent ISA variation from the early spring to the
summer images (Figs. 4-a, b and 5-e, f). The actual percent ISA may
not change significantly from early spring to summer, but the
viewable percent ISA decreases significantly due to increased
vegetation cover from phenological change. Percent ISA is, therefore,
not an invariant featurewith season, and the expansion of tree crowns
can obscure significant amount of ISA from view in remotely sensed
images during the summer. As a result, there is a stronger relationship
between LST and percent ISA at the regional scale for the summer
image than that for the early spring image (Fig. 6-e, f).
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Fig. 8. Histogram of land use types in pixels with the percent ISA over 80% in the sample plot. These pixels were separated into three categories: top: pixels with temperatures one
standard deviation above the mean (a: July 3, d: Mar 13, 2001), middle: pixels with temperatures within one standard deviation around the mean (b: July 3, e: Mar 13, 2001), and
bottom: pixels with temperatures one standard deviation below the mean (c: July 3, f: Mar 13, 2001).
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4.2. The influences of urban landscape structure on LST

On a pixel-by-pixel scale, LST not only depends on percent ISA, but
also is strongly influenced by its spatial distribution (Table 3), its
morphology, particularly height (Fig. 9) and land use (Fig. 8). Among
the various types of impervious surfaces, industrial land use has the
highest mean LST (Fig. 7). But it has a limited contribution to UHI due
to the small spatial extent of industrial land use. Residential areas
dominate the high percent ISA (N80%) areas (Fig. 8). The contribution
of residential areas to LST strongly depends on its morphology. For
high percent ISA areas, high rise residential areas have much lower
LST than that for low rise residential areas due to several reasons. First,
there is a greater portion of horizontal active surface in low rise
residential areas than that in the high rise. Horizontal active surface is
what the satellite view on the ground with nadir viewing sensors like
Landsat (Nichol, 1994; Roth et al., 1989). Second, smaller buildings
with lower building mass have lower thermal inertia, and cast shorter
shadows, and vice versa for high rises (Nichol, 1996, 1998). Third, the
aerodynamics for low rise and high buildings are significantly
different in the lower boundary layer as wind speed increases with
height. Thus, there is a higher aerodynamic conductance to carry the
heat away from the surface on high rise buildings than that for the low
rise. Lastly, in the lower boundary layer, air temperature decreases
with height. The air temperature is lower at the top of the high rise
than that of the low rise. Vegetation further complicates the situation.
Low rise low vegetation impervious surface dominates the high
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Fig. 9. Mean LST corresponding to subtypes of residential land use in sample plot. LRO:
Low-rising old and humble house with green cover less than 10%; LRR: Low-rising rural
house (less than 3 stories); LR-1: Low-rising house (less than 7 stories) with green
cover less than 10%, LR-2: Low-rising house with green cover between 10 and 30%,
LR-3: Low-rising house with green cover between 30 and 50%, LR-4: Low-rising house
with green cover over 50%; HR-1: High-rising house (7–18 stories) with green cover less
than 10%, HR-2: High-rising house with green cover between 10 and 30%, HR-3: High-
rising house with green cover between 30 and 50%, HR-4: High-rising house with green
cover over 50%; SR-1: Superhigh-rising house (over 18 stories) with green cover
less than 10%, SR-2: Superhigh-rising house with green cover between 10 and 30%,
SR-3:Superhigh-risinghousewithgreencoverbetween30and50%, SR-4: Superhigh-rising
housewith green cover over 50%. The error bar is one standard deviation, Solid cycle for Jul.
3, 2001; empty cycle for Mar. 13, 2001(a for all residential subtypes, b for three subgroups
with %ISA≥80% Mar. 13, 2001, and c for three subgroups with %ISA≥80% Jul. 3, 2001).

Table 3
Pearson correlation coefficients between land surface temperature and class-level
landscape pattern metrics.

Land use class Image date PLAND PD ED LSI CLUMPY

Residential Mar. 13 .425⁎ .557⁎⁎ .569⁎⁎ .501⁎ −.585⁎⁎

Jul. 03 .306 .460⁎ .416⁎ .361 −.439⁎

Public facility Mar. 13 − .264 .168 − .013 .160 − .286
Jul. 03 −.496⁎ − .020 − .240 − .045 − .134

Industrial Mar. 13 − .078 .016 − .067 .008 − .322
Jul. 03 .185 .185 .181 .161 − .145

Traffic Mar. 13 .414⁎ .247 .501⁎ .424⁎ − .301
Jul. 03 .311 .529⁎⁎ .388 .339 − .277

Urban green Mar. 13 − .356 − .335 −.402⁎ − .318 − .019
Jul. 03 − .380 −.602⁎⁎ −.570⁎⁎ −.545⁎⁎ .188

Water Mar. 13 − .177 .029 .045 .027 .102
Jul. 03 .104 − .136 .147 .070 .192

The other Mar. 13 −.441⁎ − .150 − .358 − .096 −.403⁎

Jul. 03 −.628⁎⁎ − .316 −.554⁎⁎ − .294 − .303

⁎ Correlation is significant at the 0.05 level (2-tailed).
⁎⁎ Correlation is significant at the 0.01 level (2-tailed).
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impervious surface LST, but high vegetation presence can significantly
mitigate the LST for high density low rise residential areas (Fig. 9).

Previous studies on UHI focused primarily on the relationship
between LST and land cover composition (Chen et al., 2006; Nichol,
1996, 1998; Roth et al., 1989; Weng, 2001; Weng et al., 2006, 2004).
Our study found that urban LST is not only influenced by land cover
composition but also its spatial configuration. LST is correlated with
various landscape pattern metrics (Tables 3 and 4). LST is generally
negatively correlated with clumpiness at the pixel-by-pixel scale
(Table 3), and Shannon's diversity index at the landscape scale
(Table 4), indicating a mixture of impervious surface with other land
cover types reduces SUHI effect. Only the LST of industrial land use
was not correlated with any of the landscape pattern metrics, which
probably was because of its small spatial extent.
4.3. Implications for urban planning and land use management

The relationships between LST and urban landscape metrics have
important implications for urban planning and land use management
to mitigate the urban heat islands. Urbanization has resulted in
complex urban landscapes (Luck and Wu, 2002; Weng, 2007; Yu and
Ng, 2007) with impervious surface as the primary feature. Although
previous studies (Chen et al., 2006; Lu and Weng, 2006; Weng, 2001;
Weng et al., 2004) and ours found that impervious surface contributes
greatly to surface urban heat islands, our research revealed that we
can mitigate such effect by altering the composition and spatial
configuration of land use at class and landscape level, respectively. At
the class level, all landscape metric measurements for residential land
use are significantly related to LST, and mostly positively related
except clumpiness index (CLUMPY), and nearly all landscape metric
measurements are negatively correlated with LST. Special attention
should be paid to these two land use for urban planning. Even if we
may not be able to reduce the proportion of ISA in cities where the
land resource is valuable and scarce such as in Shanghai, we still can
mitigate LST by increasing building height and limiting building
density and extent.
Table 4
Pearson correlation coefficients between land surface temperature and landscape-level
pattern metrics.

Image date PD ED LSI CONTAG SHDI SHEI

03 Jul., 2001 .257 .298 .299 .559⁎⁎ −.335 −.547⁎⁎

13 Mar., 2001 .413⁎ .455⁎ .455⁎ .614⁎⁎ −.538⁎⁎ −.645⁎⁎

⁎ Correlation is significant at the 0.05 level (2-tailed).
⁎⁎ Correlation is significant at the 0.01 level (2-tailed).
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Urban greenspace is always beneficial to mitigating urban heat
islands. It is well known that the size of urban greenspace is an
important factor influencing its cooling effect (Chang et al., 2007;
Jauregui, 1990; Lee et al., 2009). Their spatial arrangement may affect
the cooling effect of greenspace as well (Chang et al., 2007). Our
results show that, at the landscape scale, LST is positively related to
the area (PLAND), shape (ED, LSI), and density (PD), these indices
primarily reflect the configuration for ISA in Shanghai. However, LST is
negatively related to SHDI and SHEI, indicating a blending of different
land use helps mitigate SUHI. These results indicate that interspersing
greenspace into urban patches has a strongermitigation effect than its
concentrated form.

5. Conclusions

Both the composition and configuration of urban landscape
significantly influence SUHI in the city of Shanghai, China. Vegetation
mitigates SUHI, while ISA strengthens it. Residential land use is the
primary contributor to SUHI, followed by industrial land use. Among
the residential land uses, areas with low to mid-rise buildings with
low vegetation cover result in strong UHI effects. At the landscape
scale, the spatial configuration of residential, urban greenspace, and
public facility is strongly correlated with LST. All the spatial pattern
metrics are significantly correlated to LST at the regional scale for the
early spring image, but only CONTAG and SHEI are significantly
correlated with LST for the summer images, indicating strong effects
of vegetation on the spatial configuration of other components. Our
findings have important implications for urban planning to mitigate
UHI effects. Given the same percentage of urban green area, it is more
effective to reduce the effects of SUHI when it is distributed across the
urban landscape thanwhen it is concentrated. Given the same percent
ISA, there would be less SUHI effect when it is more spatially
distributed. High density low-rise residential areas with low vegeta-
tion cover should be avoided in urban planning.
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