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Abstract

The past few decades have seen a resurgence of interest in biological allometry. Specifically, a number of
recent studies has suggested a –4/3 invariant scaling relationship between mass and density that is universally
valid for tree-dominated communities, regardless of their phyletic affiliation or habitat. In the present study, we
test this scaling relationship using a comprehensive forest biomass database, including 1 266 plots of six
biomes and 17 forest types across China. The present study shows that the scaling exponent of the mass-
density relationship varies across different tree-dominated communities and habitats. This great variability in
the scaling exponent makes any generalization unwarranted. Although inappropriate regression methods can
lead to flawed estimation of the scaling exponent, inconsistency of theoretical framework and empirical pat-
terns may have undermined the validity of previous work.
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Allometric scaling has been one of the central topics in the
development of modern ecology. A number of theoretical and em-
pirical justifications for invariant scaling across terrestrial plant
populations and communities has been given in the literature and
the scaling exponent has been frequently claimed to be statisti-
cally indistinguishable from 1/4 or its multiples (Enquist et al. 1998;
Enquist and Niklas 2001, 2002; Niklas and Enquist 2001; Enquist
2003; Niklas et al. 2003). The recent burst of interest in the 3/4
scaling “law” of metabolism with organism size has resulted in a
series of generalizations (West et al. 1997; Enquist et al. 1998,
1999; West et al. 1999a, 1999b; Belgrano et al. 2002; Enquist
2002, 2003; Enquist and Niklas 2002; Ernest et al. 2003; Brown et

al. 2004; Savage et al. 2004b). One such generalization is that
plant mass, M (i.e. aboveground biomass (Mabove) or total mass
(MT) per individual) scales as the –4/3 power of the number of
individuals, N, per unit area across tree-dominated communities,
regardless of their phyletic affiliation, species attributes, and lati-
tude (Enquist and Niklas 2001, 2002; Niklas et al. 2003).

However, lack of necessary explanations for contradictory
conclusions and data preference de-emphasizes the importance
of the above findings. The –4/3 scaling relationship for mass and
density proposed by Enquist and Niklas (2001) related the aver-
age mass of trees, Mi, occurring in an i th size class to the number
of trees, Ni, in that class. The authors presented the empirical
evidence for the –2 scaling power of Ni with the stem diameter of
an ith size class (Di) only and reached their conclusion of
Ni∝ Mi

–3/4 (i.e Mi ∝ Ni –4/3) combining Ni ∝ Di
–2 with the Di ∝ Mi

3/8

prediction claimed from the “fractal volume-filling” theory of West
et al. (1997, 1999; the WBE model). However, this –4/3 scaling
relationship for Mi versus Ni for a size class is mathematically
incompatible with the –4/3 scaling for M, the average individual
mass, and N, the total number of individuals for a whole plot,
because of the simple relationships that N is the sum of Ni and M
is the sum of total biomass of different classes divided by N.
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Niklas et al. (2003) did show a direct validation for the –4/3 power
of MT to N for plots using the Cannell (1982) compendium data
from tree-dominated stands. However, the criterion for the entry
of data into the regression remains equivocal. For example, for
the regression MT versus N, the number of observations across
angiosperm-dominated communities and across conifer-dominated
tree communities is 668 and 325, respectively, but the regression
of MT  to N for all communities was only based on 668 data points.
Unfortunately, no justification for the selection of data was given.
Compiling the Cannell (1982) data for tree plots with some small herba-
ceous plants, Enquist and Niklas (2002) show also a scaling exponent
of –1.33 between MT and N, but only 298 observations (less than
668) were put into the regression. In addition, because herbs tend
to have smaller MT and larger N than do trees, it can be expected
that a value more positive than –4/3 is a reality for tree plots.

The statistical methodology also deserves scrutiny in the con-
text of estimating the above scaling relationships. Two common
regression methods, ordinary least square (OLS) and reduced
major axis (RMA) were used in data analyses for deriving scaling
exponents (Enquist and Niklas 2001, 2002; Niklas et al. 2003). The
OLS method assumes there is no measurement error on indepen-
dent variables and, thus, can be used if the purpose is only to
predict one variable based on the other. However, RMA regression,
treating the two variables in the same way, is more appropriate
than OLS when the independent variable is measured with error
(Sokal and Rohlf 1981; McArdle 2003). Both OLS and RMA as-
sume a normal distribution of variables and estimate by minimizing
the sum of squared residuals. Hence, estimators of the two meth-
ods are both sensitive to departures from the distributional as-
sumption and outlying data points. Such limitations and lack of
assumption test for the appropriateness of linear least squares
methods undermine the reliability of the conclusions in the three
above-mentioned papers.

In contrast, a semi-parameteric approach without the assump-
tion of normality, namely quantile regression (QR), also known as
median regression given the quantile of 50%, could be far supe-
rior to least-squares methods under non-normal variable condi-
tions (Neter 1996). The QR method estimates are based on mini-
mizing sums of absolute residuals (Koenker and Bassett 1978)
and, therefore, are free of normality assumption and also robust
to the presence of outliers. Furthermore, several quantiles ob-
tained with QR convey a more complete picture of the conditional
distribution of the dependent variable than the single mean de-
rived from a traditional least-squares approach using OLS or RMA.
The 3/4 scaling of M versus N was theoretically derived from the
WBE model. The WBE model described vascular plants as a branch-
ing fractal object that fills space, so there should be an increasing
efficiency of fractal networks in progressively larger trees. The
model implies that different individuals that occupy the space of a
stand as much as possible can be represented by their mass.
Although there has been some skepticism about the accountabil-
ity of fractal networks hypotheses in relationships of efficiency

versus size in large trees (Midgley 2001, 2003), nobody can deny
the simple fact that the functional portion for space filling, indexed
by its leaf area or the leaf mass, increased MT with the develop-
ment of a community (Osawa 1989, 1993; Weller 1989; Franco
and Kelly 1998), which was quantified as leaf mass ∝ M3/4 (Enquist
and Niklas 2002; Enquist 2003). Thus, MT could be used as an
approximate criterion for the degree of space filling in stands.
Several scaling exponents of MT versus N at the upper quantiles
of MT above the median could provide a comprehensive descrip-
tion of the scaling pattern for MT versus N compared with a single
value from either OLS or RMA. The above considerations stimu-
lated us to introduce QR to the concerned calculation of scaling
“laws”.

Any relationship proposed as an ecological law or important
inference should be thoroughly and carefully validated. Toward
that end, herein we used the Chinese Forest Biomass Dataset
(Luo, 1996), including 1 266 plots, six forest biomes and 17 main
forest types across the entire country, to present an examination
of the –4/3 of scaling exponent between M and N as claimed
invariant across tree-dominated communities. We expediently fol-
low the –4/3 scaling of M versus N as invariant in tree-dominated
communities, as derived from Enquist and Niklas (2002) and Niklas
et al. (2003), as our a priori expectation to evaluate whether
these expectations can accord with our independent data. For a
better comparison with the above papers, in addition to OLS and
RMA, we used QR to compare results for consistency and to
derive our conclusions. We calculate the scaling exponents of MT

versus N for each sub-dataset of six forest biomes types and the
entire dataset by pooling all data. The aim of the present study
was to determine whether there are invariant scaling relation-
ships for mass and density at the stand level across tree-domi-
nated communities with reference to diverse phylogenetic
affiliation, latitude, and elevation.

Results and Discussion

As shown in Tables 1 and 2, there is no agreement on the expec-
tation of –4/3 between the estimates for scaling exponent and
confidence intervals (CI) by OLS and those by RMA. Because N
compared with MT within a given area can be counted more accu-
rately in our dataset, the OLS results seemed to be preferred in
this case (Niklas et al. 2003).

The OLS slopes vary from –0.938 to –1.34 across six biome
types (Table 1). Among these, only for the result from boreal
forest (–1.34) could the CI embrace –4/3, which contrasted with
the six shallower slope estimates for the remaining datasets. In
particular, the OLS slope estimate and the CI for the complete
dataset could not meet our expectation of –4/3.

Compared with the OLS results, the observed exponents by
RMA seem to be more favourable to –4/3 (Table 2). The expected
exponent is supported by the estimates from three biomes, namely
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subtropical evergreen broadleaved forest, temperate coniferous
forest, and subtropical coniferous forest, as well as all data, but
not by the estimates from the other three biomes. In particular, for
boreal forest, the estimate of the scaling exponent by RMA
(–1.441) and its CI (between –1.508 and –1.375) accord with
–3/2, which was traditionally known as the exponent of the “–3/2
thinning law” (Yoda et al. 1963; Harper 1967; Gorham 1979; White
1985; Weller 1987a, 1989; Zeide 1987; Norberg 1988; Osawa
1989; Lonsdale 1990; Zeide 1991).

For tropical rainforest and monsoon forest, which have a lim-
ited distribution in China and, hence, the smallest sample size
herein (Tables 1, 2), the CI estimated by either OLS or RMA contain
both –4/3 and –3/2. Launching a correlation analysis shows that
there is no significant relationship between sample size and slope
estimate (r2 = 0.001 and P > 0.95 for OLS; r2 = 0.020 2 and P >
0.79 for RMA).

The values of scaling exponent estimated by RMA ranged from
–1.103 to –1.441 (Table 2) over all the six tree-dominated commu-
nity groups, with each value bigger than that determined by OLS.
This is because the slope estimate of RMA is actually calculated
by that of OLS divided by its corresponding correlation coefficient.
We further performed a paired t-test to explore the effect of re-
gression methods on the slope estimates of six independent
datasets for biomes. As expected, the choice of different estima-
tion methods (RMA or OLS) does make a significant difference in
slope estimates (paired t-test t = 10.428, P = 0.000 14, n = 6,

normality satisfied). Thus, caution must be exercised when mak-
ing inferences about the slope estimate from data using either
RMA or OLS, particularly for those efforts over the validity of the
invariant scaling exponents based on quite small differences in
slope.

Both OLS and RMA have a limited suitability in our analysis
because most of the bivariate data violated the normal distribu-
tional assumption. Among the seven listed datasets, only that of
temperate deciduous broadleaved forest passed the normality
test. However, the observed scaling exponents by OLS and RMA
from this sole legitimate dataset (–0.938 and –1.103, respectively),
as well as the related CI, both significantly contradict our expec-
tation of –4/3.

The slope estimates by median regression fall between –1.324
and –0.936 across six biomes. Only the results from boreal forest
can fit –4/3 well, whereas other datasets do not. Especially for
across all 1 266 plots, the observed scaling exponent and its CI
are significantly different from –4/3. A paired t-test for six pairs of
slope values by different regression methods shows that the
slopes estimated by median regression are significantly different
from those estimated by OLS (t = –7.33, P = 0.000 74, n = 6, normal-
ity test passed), but not significantly different from the estimates
obtained using RMA (t = 0.454, P = 0.669, n = 6, normality test
passed). Without normality restrictions, median regression should
have priority of consideration over OLS and RMA in the determina-
tion of the true value of slope. Therefore, so far there is no such

Table 1. Observed scaling exponents for log10-transformed data from the ordinary least squares regression statistics

Biome type Scaling exponent (SE) 95% CI Sampling size r2  
             Normality test

MT N
Boreal forest –1.340 (0.034) –1.407, –1.273 248 0.864 Failed Failed
Temperate deciduous broadleaved forest –0.938 (0.034) –1.005, –0.872 301 0.723 Passed Passed
Subtropical evergreen broadleaved forest –1.211 (0.038) –1.286, –1.136 269 0.791 Failed Failed
Tropical rainforest and monsoon forest –1.137 (0.205) –1.588, –0.687 13 0.737 Passed Failed
Temperate coniferous forest –1.025 (0.056) –1.135, –0.915 154 0.691 Passed Failed
Subtropical coniferous forest –1.169 (0.036) –1.239, –1.099 281 0.794 Failed Failed
All data –1.128 (0.022) –1.171, –1.086 1 266 0.685 Failed Failed
CI, confidence interval. SE, standand error; MT, total biomass per individual; N, number of individuals per unit area.

Table 2. Observed scaling exponents for log10-transformed data from the reduced major axis regression statistics

Biome type Scaling exponent (SE) 95% CI Sampling size r2  
             Normality test

MT N
Boreal forest –1.441 (0.034) –1.508, –1.375 248 0.864 Failed Failed
Temperate deciduous broadleaved forest –1.103 (0.034) –1.170, –1.037 301 0.723 Passed Passed
Subtropical evergreen broadleaved forest –1.362 (0.038) –1.437, –1.287 269 0.791 Failed Failed
Tropical rainforest and monsoon forest –1.324 (0.205) –1.774 9, –0.873 8 13 0.737 Passed Passed
Temperate coniferous forest –1.234 (0.056) –1.344, –1.124 154 0.691 Passed Passed
Subtropical coniferous forest –1.312 (0.036) –1.383, –1.242 281 0.794 Failed Failed
All data –1.364 (0.022) –1.406, –1.321 1 266 0.685 Failed Failed
CI, confidence interval. SE, standand error; MT, total biomass per individual; N, number of individuals per unit area.
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an invariant scaling relationship of –4/3 across six biomes that
can be concluded by the above results and analysis.

Based on our datasets, are there other ways to reach the
expected scaling of –4/3 for MT versus N ? Our a priori expecta-
tion laid much predominant consideration on the “fractal volume-
filling” theory of the WBE model (Enquist et al. 1998; Enquist and
Niklas 2001, 2002; Niklas and Enquist 2001; Enquist 2003; Niklas et
al. 2003). As its logical outcome, there should be an increasing
efficiency of fractal networks in progressively larger trees (i.e.
the bigger, the better). This has been quantified as the whole-
plant resource use Q ∝ M3/4 (Enquist et al. 1998; Enquist and Niklas
2001, 2002; Niklas and Enquist 2001; Enquist 2003; Niklas et al.
2003). Therefore, herein we further take MT to represent the de-
gree of space filling in stands and use QR with quantiles of 0.75,
0.90, and 0.95 to explore the scaling relationships of MT versus N
at the higher MT levels associated with the upper quantiles above
the median (i.e. at above-average levels of community mass
development; Table 4). Here, we are not trying to find the self-
thinning or upper boundary line of MT versus N (Osawa 1989;
Weller 1990) or estimate effects of N as a limiting factor on differ-
ent quantiles of MT (Cade et al. 1999), but are simply trying to
explore their scaling relationships for MT versus N at the different

levels of MT.
For six biomes and all data, estimates of slope for each quantile

of MT are statistically significant (P<0.001). Among them, the slope
estimates and 95% CI for 0.75 and 0.90 quantiles for boreal forest
verified a –4/3 scaling exponent of MT versus N. Combined with
the result from median regression for the 0.5 quantile, the near
parallelism of slope estimates seemingly suggests that the –4/3
scaling of MT versus N exists at median and above-median levels
of MT and is kept consistent over the change of MT that was
caused by the community dynamics. However, it is also clear that
for boreal forest the slope estimate and the CI with the 0.95 quantile
of MT accommodate both –4/3 and –3/2. Because the 0.95 quantile
of MT is close to the maximum (0.99), it seems to be supportive
evidence for Midgley’s skeptic view on the WBE model’s predic-
tion that large trees with a fully developed fractal system embody
so much fractal essence such as –4/3 scaling (Midgley 2001,
2003). For subtropical coniferous forest, the slope estimate and
CI of the 0.95 quantile contains only –4/3, but those at the 0.75 and
0.90 quantiles are significantly different from –4/3. For subtropi-
cal evergreen broadleaved forest, the estimates of the 0.90 and
0.95 quantiles could fit –4/3, but the 0.75 quantile estimate could
not. For tropical rainforest and monsoon forest, the CI at the 0.75

Table 3. Observed scaling exponents for log10-transformed data from the median regression statistics

Biome type
Scaling exponent

95% CI
Sampling r2

P
            Normality test

(SE) size (pseudo) MT N
Boreal forest –1.324 (0.039) –1.400, –1.248 248 0.603 <0.001 Failed Failed
Temperate deciduous broadleaved forest –0.936 (0.050) –1.034, –0.838 301 0.460 <0.001 Passed Passed
Subtropical evergreen broadleaved forest –1.227 (0.034) –1.294, –1.161 269 0.555 <0.001 Failed Failed
Tropical rainforest and monsoon forest –1.234 (0.353) –2.012, –0.456 13 0.437 <0.001 Passed Failed
Temperate coniferous forest –0.998 (0.065) –1.126, –0.870 154 0.443 <0.001 Passed Failed
Subtropical coniferous forest    –1.152 (0.041 4) –1.234, –1.071 281 0.545 <0.001 Failed Failed
All data –1.156 (0.026) –1.206, –1.106 1 266 0.428 <0.001 Failed Failed
CI, confidence interval. SE, standand error; MT, total biomass per individual; N, number of individuals per unit area; r2 (pseudo) indicates that
it is not comparable with its least-square analogue because  its calculation is based on median regression.

Table 4. Observed scaling exponents for log10-transformed data from quantile regression statistics

Biome type
                             0.75 Quantile                           0.90 Quantile                           0.95 Quantile

Slope estimate 95% CI Slope estimate 95% CI Slope estimate 95% CI
Boreal forest –1.273 (0.037) –1.347, –1.200 –1.314 (0.067) –1.446, –1.182 –1.256 (0.156) –1.563, –0.949
Temperate deciduous –1.008 (0.062) –1.131, 0.886 –1.019 (0.053) –1.123, –0.916 –1.047 (0.110) –1.263, –0.832
broadleaved forest
Subtropical evergreen –1.145 (0.065) –1.274, –1.016 –1.240 (0.1007) –1.438, –1.0412 –1.167 (0.161) –1.485, –0.850
broadleaved forest
Tropical rainforest and –1.189 (0.106) –1.423, –0.956 –1.206 (0.043) –1.301, –1.111 –1.206 (0.028) –1.267, –1.145
monsoon forest
Temperate coniferous –0.993 (0.086) –1.164, –0.823 –0.885 (0.147 ) –1.175, –0.595 –1.061 (0.310) –1.673, –0.450
forest
Subtropical coniferous –1.152 (0.071) –1.292, –1.012 –1.170 (0.059) –1.287, –1.053 –1.148 (0.135) –1.413, –0.883
forest
All data –1.222 (0.027) –1.274, –1.17 –1.164 (0.035) –1.233, –1.095 –1.191 (0.062) –1.313, –1.070
CI, confidence interval.SE, standand error; MT, total biomass per individual; N, number of individuals per unit area.
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quantile includes –4/3, whereas the CI at the 0.90 and 0.95 quantiles
does not. For temperate coniferous forest, the 0.95 quantile esti-
mate contains –4/3, but also –3/2, and the slope estimates at the
0.75 and 0.90 quantiles are significantly shallower than –4/3 (Table
4). Last, but not least, the slope estimates of all the regression
quantiles for all data could not meet our a priori expectation of
–4/3 scaling for MT versus N.

The majority of QR results cannot validate the –4/3 scaling be-
tween MT versus N. Because no assumption is violated and no
information contained in the data is lost, the QR estimates can be
more objective and more efficient than the commonly used meth-
ods of OLS and RMA. If we assume –4/3 is an authentic scaling
relationship across all the tree-communities investigated at the
status called “equilibrium” (Enquist et al. 1998; Niklas et al. 2003),
we have to admit our empirical results are very inconsistent and
hard to explain according to the –4/3 scaling expectation and the
relevant theory.

This inconsistency mimics the long history of controversies
over the validation of M versus N–3/2 for the phrase termed “inter-
specific size-density relationship” (White 1985; Weller 1989;
Franco and Kelly 1998). This relationship between mass and den-
sity has long been a subject of intensive investigation over recent
decades since Yoda et al. (1963) first formulated what they called
“the 3/2 power law of self-thinning” for a mono-specific population.
Several early studies summarized that M versus N–3/2 holds valid
over seven orders of magnitude of N and almost 10 orders of
magnitude of M (Gorham 1979; White 1981, 1985; Westoby 1984).
A mathematical equivalent of M versus N–3/2 is B versus N–1/2

because M = B/N (where B is total stand biomass per area). For
logarithmic B versus logarithmic N, Gorham (1979) estimated a
–0.49 slope from a diverse dataset for 65 plant stands including
moss, ferns, and trees from angiosperms and gymnosperms, and
gave a nearly ideal agreement with the hypothetical –1/2 value
(Gorham 1979), whereas from the subset of 19 stands a less
ideal slope of –0.43 was obtained. Both were not significantly
different from the –1/2 value (Weller 1989). White (1980) reported
the exponents for M versus N with the range between –1.8 and
–1.3 (White 1980, 1985; Weller 1987a) considered examples of
the same quantitative rule, although there was no objective basis
to claim that –1.8 and –1.3 are close to –1.5 (White 1980, 1985;
Weller 1987a). The –3/2 power rule was then regarded as the
only law in plant ecology (Harper, cited in Hutchings 1983).
However, it was later frequently relegated to a position where the
fundamental validity of the rule itself was in suspension (Weller
1985, 1987a, 1987b, 1989, 1990, 1991; Zeide 1987, 1991; Lonsdale
1990). Several re-evaluations of this rule concluded that the ex-
ponent was much more variable than previous authors had claimed
(Weller 1985, 1987a, 1987b, 1989, 1990, 1991; Zeide 1987, 1991;
Lonsdale 1990). For example, Weller (1987a) once calculated 75
B versus N scaling exponents for mono- and multi-specific stands
and found that in logarithmic plots the slope estimates ranged
from –0.204 to –3.76 with a mean of –0.804 and that the slope

estimates differed significantly among plant groups, including her-
baceous monocots, herbaceous dicots, temperate angiosperm
trees, temperate gymnosperm trees, Eucalyptus trees, and tropi-
cal angiosperm trees (Weller 1985, 1987a, 1987b, 1989, 1990,
1991; Zeide 1987, 1991; Lonsdale 1990). Compiling the first data-
base that was larger and more diverse than that of Gorham (1979),
from 370 stands Weller (1989) presented an estimate of –0.326
for all data, which was significantly different from –1/2 but not
from –1/3, whereas the subset of 154 stands gave –0.227, sig-
nificantly different from both –1/2 and –1/3, which was mostly
cited as evidence to support objection to the idea of a single, ideal
exponent for B versus N (Weller 1985, 1987a, 1987b, 1989, 1990,
1991; Zeide 1987, 1991; Lonsdale 1990). Using a more selective
selection procedure for Weller’s data to accommodate admissible
219 thinning stands, Lonsdale (1990) estimated a B versus N
slope of –0.379 with a CI between –0.409 and –0.350, which was
afterwards regarded as supportive evidence for the –4/3 M ver-
sus N scaling exponent, although the CI did not include the ex-
pected –1/3 (Enquist et al. 1998; Enquist 2002; Niklas et al. 2003).
Applying the criterion of a single data point for each species and
selecting data of maximum B with maximum N as possible, Franco
and Kelly (1998) claimed slope values for B versus N were con-
sistent with –1/3 among four datasets used for independent con-
trasts (i.e. complete data, angiosperms only, dicots only, dicots
without Asteridae) and a complete dataset by forcing and not
forcing the intercept through the origins of axis. However, among
the only four CI for the slope of log B versus logN (Franco and
Kelly 1998, table 1), there are somehow two unbelievably large
values, namely –0.35 ± 0.733 and –0.349 ± 0.166, and, due to tiny
sample sizes of less than 17, their claims were generally very
weak. Compiling 251 data points from Yoda et al.(1963), Gorham
(1979), Weller (1987,1989), Londsale (1990) and some unknown
studies, Enquist et al. (1998) developed an empirical finding of
–1.341 that fit well with –4/3 for M versus N. Combined with the
partial results from Weller (1987, 1989), and Londscale (1990),
Enquist et al. (1998) was considered strong empirical evidence of
a –4/3 scaling exponent for M versus N, the WBE model’s
derivation. In the wake of this, Belgrano et al. (2002), Enquist and
Niklas (2002), and Niklas et al.(2003) consecutively showed their
empirical validity favouring M versus N–4/3.

Reviewing the published empirical evidence for M versus N
exponents from the aforecited individual studies, we found that
the empirical patterns were highly subject to the vagaries of data
choice, data quality, approaches of statistical analysis used, and
theoretical basis. To give a complete and detailed description for
this miscellaneous picture is beyond the scope of the present
paper. In short, the variability of empirical evidence from different
authors actually leaves considerable room for doubt that there is
a universal exponent for M versus N or B versus N.

We would rather draw attention to a long-neglected method-
ological pitfall in which the aforementioned efforts for exponent
validation have been trapped. There are two free parameters in
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the regression equation of logarithmic mass-logarithmic density,
namely slope and intercept. Two types of validating efforts, –3/2
from Euclidian geometric considerations and –4/3 from fractal
space-filling theory, both focused on the slope to derive their
explanations and generalizations. They both only expected data
could fit with an exact value of slope and did not treat intercept in
a like manner. However, in scatter plots and for the same data,
just by swinging the intercept one could obtain a range of slopes
that could fit data well. Based on our dataset for boreal forests,
we demonstrate this problem through a contrived example using
the popular regression method OLS. We obtained several slope
values by changing intercepts. The results are presented in Table
5. Overall, we can see all the regression lines can fit the dataset
well (r2>0.66, usually r2>0.83, and P<0.000 1). When the con-
strained intercept changed from 3 to 4, the corresponding slope
estimates varied from –1.253 to –1.597 (r2 > 0.83 and P < 0.000 1).
Among them, the  –1.500 slope attained by forcing the intercept to
be 3.717 presented an ideal agreement with –3/2, the –1.34 slope
estimated by a constrained 3.253 intercept was consistent with
–4/3, and the –1.253 slope corresponding to an intercept of 3.00
was indistinguishable from –5/4 (which is not unexpected if the
fifth dimension, such as time or thought (He and Zhang 2004) is
added into the four-dimensional models, such as in Blum (1977) or
the WBE model). All three regression lines share a high correlation
coefficient (r2) at about the same level. We then launched Fisher’s
z transformation to compare the three concerned r2 values. Be-
tween all the r2 pairs, the absolute values of µ are less than
µ(0.05, two-tailed) and exhibit no statistical differences (Table 6). Among
the three lines with seemingly different slopes, there is no reason
to infer that one fit the transformed data better than the rest. As
expected, the t-test also showed that there is no statistical differ-
ence between the three slope values. Therefore, there is no rea-
son to overinterpret the small difference of regression lines and
slope estimates in this context. It may be worth noting that in the
extreme case in Table 5, the regression equation with a much
shallower slope (–0.221) attained by suppressing the intercept to
zero could still satisfy the requirements for statistical significance
(r2 = 0.663 with P < 0.001). In a broader sense, if we take different
measurements for goodness-of-fit there is no regression line of

best fit for the data (McGill 2003). Our results herein imply that
most data cited previously in support of the overexpected expo-
nent for M versus N (–3/2 or –4/3) could probably fit either of
them “well”.

We further analyzed Weller’s independent datasets for inter-
cepts and slopes from 27 tree species of 264 plots under thinning
conditions (Weller 1987a, table 5) and found a very strong corre-
lation between them (i.e. intercept = 0.920 4 slope+5.148 3, with
r2 = 0.829, n = 264, and P<0.001). This indicates that the intercept
would be determined by a certain value of the slope in the cases
concerned. If we take either –4/3 or –3/2 as a general rule applied
to a variety of communities, we automatically obtain a certain
intercept that varies little across these cohorts. Interestingly,
Enquist and Niklas (2002) presented a regression line of MT ver-
sus N–1.33 with a discernable intercept of 3.7 or so (Enquist and
Niklas 2002, fig. 5a), which roughly coincides with the prediction
of the above equation of 3.9. The highly correlated relationship
between intercept and slope implies that if we accept a unifying
slope, at the same time we have to accept a fairly unifying intercept.
Is it imaginable for so many diverse clades of tree-dominated
communities to have a unifying equation in a real world?

The earliest, somewhat alternative, and strictly defined version
for the relationship of M ∝ N–4/3 is Nmax, the maximum number of
individuals that can be supported per unit area, scaled as the
exponent of –3/4 to average mass of individuals within a given
area (Enquist et al. 1998). Although Nmax was mainly derived from
monospecific stands, it was, indeed, somehow cited as support-
ive evidence in other situations, such as considering size classes
and communities, by Enquist and Niklas (2001)(see page 655 and
page 656 in Enquist and Niklas 2001, pp. 655–656; Enquist 2002,
p. 1056; Enquist and Niklas 2002, p. 1518). Following the WBE
model’s prediction, the whole-plant resource use for an ith
individual, Qi, scales as 3/4 power for Mi, the mass for an ith
individual and Enquist et al. (1998) showed empirical evidence in
support of Qi ∝ Mi

3/4. The authors then related Nmax to Q, the aver-
age rate of resource use per individual, and R, the total rate of
resource use of all individuals, using the equation R   NmaxQ
∝ NmaxM3/4, where M referred to average mass of individuals within
a given area. At “equilibrium”, when R is “constant”, giving R      NmaxQ

Table 5. Slope estimates by constraining intercepts for the boreal forest subset
Intercept statistics Slope statistics

r2 N
Value (forced) SE P Value SE P
0 NA NA –0.221 0.010 <0.000 1 0.663 5 248
3 0.098 9 <0.000 1 –1.253 0.034 3 <0.000 1 0.861 248
3.253 0.097 6 <0.000 1 –1.340 0.033 8 <0.000 1 0.864 248
3.717 0.102 <0.000 1 –1.500 0.035 4  <0.000 1 0.852 248
3.783 0.103 3 <0.000 1 –1.523 0.035 8 <0.000 1 0.848 248
4 0.108 6 <0.000 1 –1.597 0.037 7 <0.000 1 0.832 248
5 0.148 1 <0.000 1 –1.941 0.051 4 <0.000 1 0.688 248

NA, not applicable. SE, standand error; N, number of individuals per unit area.
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∝ NmaxM3/4, their expected result then yields Nmax ∝ M–3/4, as the
authors stated (Enquist et al. 1998; Enquist 2002, 2003). They
actually assumed Qi ∝ Mi

3/4 was equal to Q ∝ M3/4. However, Enquist
et al. (1998), the most-cited original paper giving Qi ∝ Mi

3/4 among
all, only showed an empirical result to validate Qi ∝ Mi

3/4 , not that
of Q ∝ M3/4. Confusing the two expressions and the relevant impli-
cations is not mathematically correct (Torres et al. 2001).
Interestingly, Niklas and Enquist (2001) demonstrated an empirical
example that the average value of biomass production rate for all
individuals within a plot (G) scaled as 3/4 power of M and G was
assumed as “… a reasonable surrogate measure of the rate of
resource use per individual Q”. If Enquist et al. (1998) did verify Qi

∝ Mi
3/4 and Niklas and Enquist (2001) verified Q ∝ M3/4, the two

relationships are, in fact, not mathematically equivalent and can-
not hold true together so the question then arises, which one is
correct? The elusiveness of the question is not appropriate for
the present paper focusing on the very subtle differences of an
exponent burdened with heavy controversies with a unifying value
of 2/3 or 3/4. Therefore, the semitheoretical derivation for M ∝ N–4/3

from Qi ∝ Mi
3/4 in Enquist et al. (1998) is highly questionable.

One of the most intriguing concepts in the context used to marry
the two functions Q ∝ M3/4 and R = NmaxQ = constant to reach the
–4/3 scaling of M versus N is “equilibrium” (Enquist et al. 1998;
Enquist 2003; Brown et al. 2004), which was assumed to be
related to a constant R and Nmax and that can be supported per
unit area and therewith rates of limiting resource supply R (Niklas
et al. 2003). This imaginary concept is valuable for reasoning out
a theoretical framework such as the so called “resource-based
thinning theory”(Brown et al. 2004). Similar imaginary separations
have proven to be fruitful in other branches of science. However,
here it is not an operational and practicable standard for compiling
a legitimate dataset to verify their theoretical prediction. Especially
for survey data, there are no objective criteria to judge whether a
real stand indeed arrives at Nmax by limiting resource supply. It is
impossible to prove that the site quality of a given population is
identical with that of a “equilibrium population density”, a further
concept introduced by Brown et al. (2004). As yet, the evidence
of Enquist et al. (1998), Belgrano et al. (2002), Enquist and Niklas
(2002), and Niklas et al. (2003) supporting M ∝ N–4/3 for terrestrial
plants does not present explanations as to how the stands se-
lected could be meet the requirement of “equilibrium”. There is
also no discernable information for the stands reaching Nmax in
Cannell (1982), the datasource frequently cited by Enquist and

Niklas (Enquist et al. 1998; Enquist and Niklas 2001; Enquist 2002;
Niklas et al. 2003).

Perhaps the fatal flaw of the logical framework leading to the
–4/3 “law” or what is called “resource-based thinning theory”
(Brown et al. 2004) is that, in different situations, they ambivalently
input inconsistent meanings to free parameters in order to flex
their model. In order to have Nmax=constant M–3/4 and, hence, Nmax

∝ M–3/4, as the authors stated (Enquist et al. 1998; Enquist 2002,
2003), they first had R   NmaxQ   NmaxCBM3/4, where CB was an
allometric constant reflecting tissue-specific metabolic demand.
However, they subsequently assumed R = NmaxQ = NmaxCBM3/4 =
constant at “equilibrium” and reached Nmax= (R/CB)M–3/4, and,
hence, Nmax ∝ M–3/4 because CB was also constant for a certain
monospecific stand. These analyses were typically conducted at
the level of a single plot. Then, in Enquist (2002), the author found
there was little variation in CB that had been proved by previous
studies (Niklas 1994; Enquist et al. 1999; Niklas and Enquist 2001)
“… between forest trees and even across major plant taxa”(Enquist
2002). If R varies little between different cohorts too, then that
means R/CB , the intercept in the logarithmic plot of Nmax versus M,
will be more close to constant, and Nmax ∝  M–3/4 will be tenable.
However, Gillooly et al. further introduced the variable T, “biologi-
cal relevant temperature”, into the model (Gillooly et al. 2001; Sav-
age 2004; Savage et al. 2004a) to flex CB in the metabolic scaling
relationship of Q = CBM3/4 (for a good understanding, note that the
relevant authors used different symbols to express Q and CB in
the previous equation in their papers), giving CB=f(T)=i0e–E/kT,
where i0, E, and k, but not T, were all constants and T was
allowed to change between 0 and 40°C. In this case, only if
R=constant i0e–E/kT would R/CB be constant and Nmax ∝ M–3/4 could
be still tenable. As yet, there has been no theoretical or empirical
evidence supporting R=constant i0e–E/kT=constant CB; thus, the
equation Nmax=(R/CB)M–3/4 becomes Nmax= f'(T)M–3/4 and then Nmax

∝ M–3/4 could not hold true. Furthermore, Nmax=f'(T)M–3/4 means T
was an unmeasured variable in their earlier curve-fitting efforts
for data between Nmax and M, either by OLS or by RMA in previous
studies (Enquist et al. 1998; Belgrano et al. 2002; Enquist 2002,
2003; Niklas et al. 2003), and the relationship between Nmax and M
would have been confounded with the effects of T on M and the
slope estimate would have been biased, because least squares
estimation based on mean function actually averages the effects
of all the measured and unmeasured independent variables on the
dependent variable(Rosenbaum 1995; Cade et al. 1999; Cade and
Noon 2003). So, the supportive claim of a –3/4 exponent of Nmax

versus M without considering the variable of T in previous stud-
ies (Enquist et al. 1998; Belgrano et al. 2002; Enquist 2002, 2003;
Niklas et al. 2003) indicated just the opposite, that the true scaling
pattern of Nmax versus M was not in accord with –3/4. Therefore,
if the finding of Gillooly et al. (2001) of CB=f(T)=i0e–E/kT and the
attached strong evidence was true, then not only the underlying
theoretical framework for derived from the WBE model, on which
Nmax ∝ M–3/4 was based, but also the empirical evidence of Enquist

Table 6. Significance test for the difference between r2 values

Statistics
Contrasts of r2 values

0.861 vs 0.864 0.861 vs 0.852 0.864 vs 0.852
Z 1.643 vs 1.655 1.643 vs 1.609 1.655 vs 1.609
µ(0.05, two-tailed) 1.96 1.96 1.96
µ −0.133 0.376 0.509
z=0.5 ln (1+r/1-r) , |µ| < µ(0.05,two-tailed) indicates there is no significant
difference between r2 values.
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and Niklas (Enquist et al. 1998; Enquist 2002, 2003; Niklas et al.
2003) previously supporting N ∝ M–3/4 would probably not be valid.

Our a priori expectation of a 4/3 scaling between M versus N
as invariant in tree-dominated communities now rests on shaky
ground. Setting aside the implications burdened with ecological
theory, this relationship is of great practical significance because
it links the final product of forest management, namely biomass,
with the most manageable stand variable, tree density, and facili-
tates the determination of attainable biomass. However, it cannot
be hinged simply on a certain exponent. The analysis presented
implies that it is impossible to describe such a variant relationship
with the help of only two coefficients, one of which has been
hard-pressed to be a universal constant. The persistence of the
efforts to ascertain the existence of a universal constant prob-
ably reveals a typical mode of our thinking and its missettings: it
seems that we are much more inclined to see constancy and
unity, which provide immediate, if simplistic, solutions rather than
the variability and diversity that need further exploration for achiev-
ing a more comprehensive understanding.

Conclusions

We have demonstrated the variant scaling relationships of MT

versus N for six biome types and for the complete dataset. Most
of the estimated exponents and CIs, by median regression or QR,
are inconsistent not only with –4/3, but also with –3/2. All the
above analyses point to one conclusion: that the scaling exponent
between N and M is not a unifying value across different tree-
dominated communities and habitats. The present study shows
that the scaling relationships of plant mass and density are quite
different from –3/2 or –4/3. Inappropriate regression methods will
lead to wrong conclusions on exponent estimation. Inconsistency
of theoretical framework and empirical pattern undermine the re-
liability of extant results of the 4/3 power rule of mass and density.
Therefore, it is almost impossible that a scale invariant property is
universally valid for all plots, regardless of their phyletic affiliation
or habitat.

Materials and Methods

Data source

The Chinese Forest Biomass Dataset for standing community bio-
mass and productivity was originally extracted from the PhD dis-
sertation of Luo (1996). Most of these data were obtained directly
from inventories of the Forestry Ministry of China between 1989
and 1993. The rest of the data were collected from published
forest reports, as well as from over 60 Chinese journals (including
Journal of Integrative Plant Biology (formerly Acta Botanica Sinica),
Acta Phytoecologica Sinica, Acta Ecologica Sinica, Chinese

Journal of Ecology, Forestry Science of China etc.) covering the
past 20 years. The dataset includes monospecific tree stands
and communities composed of mixed tree species ranging be-
tween 18 and 53°N latitude, elevations of 10 and 4 240 m above
sea level, and tree densities of 89 and 20 800 individuals per
hectare. All these data are distributed among six biomes and 17
major forest types of China (Tables 1–4). For each community, the
site name, latitude, longitude, elevation, tree density, total annual
production, total biomass, and total aboveground biomass for trees
(Luo 1996) are reported. We computed MT for a representative
(average) tree in each community by dividing the total standing
biomass for trees by N. A detailed description on the methodology
of biomass measurement and density estimate for the dataset can
be found in Luo (1996), as well as in the English literature(Ni et al.
2001).

Protocol

We used STATA version 8.0 (4905 Lakeway Drive, College
Station, Texas 77845, USA) for OLS and QR, whereas the RMA
was performed using RMA version 1.14b (http://www.bio.sdsu.
edu/pub/andy/rma.html). All data were log10 transformed to en-
sure linearity and homoscedasticity. Because the measurement
error for N was negligible compared with that for MT, OLS was
preferred for the exponent estimation of MT versus N, whereas
RMA was less efficient than OLS in this case (Sokal and Rohlf
1981; McArdle 2003). The unbiased estimates of OLS and RMA
both depended on the assumption of normally distributed random
variables, which was not tested when the two methods were
applied in all relevant studies (Enquist and Niklas 2001, 2002;
Niklas et al. 2003). For a wide range of non-normal data, QR is
more appropriate than OLS and RMA because the conditional
median is more efficient than the least squares estimator (Koenker
and Bassett 1978). With these caveats in mind, and for the pur-
poses of a well-put comparison, we used OLS, RMA, and median
regression (QR with the 0.5 quantile) in the analysis of MT versus
N. We also conducted a Shapino-Wilk normality test for the trans-
formed data in order to evaluate the efficiency of estimation results.
Statistical problems of artificially inflated correlations from using
mean mass values against density would not bias our analysis
because, the real measurement of the MT of trees is more original
than that of the total standing mass (Luo 1996; Ni et al. 2001). An
alpha level of 0.05 was used to test the significance of all results.
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