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Abstract

The behavioral dependence of vegetation simulation models for spatially heterogeneous grasslands on simulation
resolution was investigated. The dependence can be largely attributed to the non-linearity of the models. We showed
that increasing scale or decreasing spatial resolution tended to overestimate the changing rate of an ecosystem using
our landscape simulation model for alkaline grasslands in northeast China. A technique for scaling up simulation
models with diffusive transportation was developed in this study by means of expanding the nonlinear driving
functions in the model. The analysis showed that a simulation model for spatially heterogeneous landscapes might
necessitate modification of both its mathematical structure and parameterization when applied to different scales.
The scaling coefficients derived in this study were shown to be proportional to the variances or covariance of the
spatially referenced variables, and can be estimated by running the model at a fine resolution for selected samples
of the coarser grid cells. The technique was applied to a grassland landscape in northeast China and the results
were compared with five-year observations on community succession. The comparison indicated that the proposed
technique could effectively reduce overall scaling error of the model by as much as 80%, depending on the scaling
difference between the fine and the coarse resolutions as well as the sampling scheme used.

Introduction

Scaling is one of the key issues in simulation stud-
ies on spatially heterogeneous landscape ecosystems
(Allen and Hoekstra 1991; Allen et al. 1994; Fuh-
lendorf and Smeins 1996; Lawton 1987; Levin 1992;
Maurer 1987; Wiens and Milne 1989). Dynamic mod-
eling of ecosystems at landscape scales very often, if
not always, involves integration of nonlinear functions
of spatially referenced variables. Since numerical in-
tegration is a summation of the products of the mean
value of an anlytical function over each grid cell and
the corresponding cell area for a finite time step, the
model is valid only for the resolution at which the pa-
rameterization is done. General approaches for cross-

scale ecosystem modeling are in great need and have
stimulated interests of landscape and system ecolo-
gists (Auger 1986; Costanza and Maxwell 1993; Fitz
et al. 1996; King 1991; Maurer 1987). While the
spatial heterogeneity of landscape ecosystems and the
dependence of the spatial simulation models on its cal-
ibration scales have been long recognized (Allen and
Wileyto 1983; Collins 1995; Luce and Narens 1987;
Wu et al. 1997), a hierarchical theory of landscape
ecology has been developed to incoorperate the scal-
ing effects into consideration (Bonner 1973; Collins
and Glenn 1990, 1991; O’Neill et al. 1989, 1992; Wu
and Loucks 1995).

Scaling up of nonlinear functions from local scale
measurements to large scales remains a challenge for
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landscape modelers. In some studies, the scaling ef-
fects are totally ignored by directly using locally mea-
sured instantaneous quantities, such as carbon assim-
ilation characteristics of individual plants, in regional
or global models. In these applications, functions that
describe the dependence of the measured variables
on environmental conditions for individual plants are
also directly employed with hourly, daily or monthly
time steps of integration, allowing only a calibration
constant to take care of the errors. Such treatments
may cause not only cumulated calculation errors in
simulation, but also misinterpretation of the results.

The objective of this research was to develop a ra-
tional technique to incorporate the scaling effects into
a grassland simulation model at landscape scales. The
capability of the method is demonstrated by compar-
ing grassland observations against model outputs with
and without the proposed scaling treatment.

Theoretical considerations

We started with the assumption that dynamics of a
landscape can be described by the following model:
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where ui or ur (i, r = 1, 2, 3, .... n) is the vector of
the state variables of the landscape ecosystem; αi is
the diffusive coefficient describing spatial transporta-
tion of energy and mass between adjacent subsystems
within the landscape; Si(pj , ur , νk) is a source/sink
term used to describe local processes, such as plant
growth and change in soil water content, at a point
within the landscape; pj (j = 1, 2, ..., np) is a pa-
rameter vector with np components; and νk(k =
1, 2, ...,m) is a vector of a set of spatially refer-
enced auxiliary variables including the environmental
driving functions.

The model, with Si(pj , ur, νk) deterministic, is
regarded as ‘exact’ at infinitesimal spatial-temporal
resolution. The discretized form of the model, how-
ever, is an approximation at the resolutions at which
the model parameters are determined in light of ob-
servations and experimental results. The numerical
soluation of Equation (1) inevitably involves integra-
tion of Si(pj , ur , νk), or a summation of the products
of the function evaluated at finite grid cells and the
area of the respective cells. If Si(pj , ur , νk) is non-
linear, as it is in most cases, changing resolution

clearly produces different integration results. In other
words, if the model is reasonably accurate at a certain
resolution, simulations at other resolutions using the
same governing equations and the same set of para-
meters are anticipated to introduce certain magnitude
of computation errors in the results.

To gain more insight into the scaling characteris-
tics in the model above, let us further assume that the
model and parameters are valid at a fine resolution,
which we will refer to as micro resolution, with grid
size $x$y, and temporal increment $t . Equation (1),
with constant αi , can be expressed in the following
finite form
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where ui(x, y, t) and νk(x, y, t) represent the values
of ui and νk , respectively, at a point (x, y) within a
grid cell at a specific time t. However, in an area-based
model, a variable is in fact often evaluated as the mean
value of the variable in the grid cell. That is, ui(x, y, t)

and νk(x, y, t) represent the mean values of ui and vk

respectively in the grid cell with a geometric center
(x, y) and an area $x$y, within the time interval $t

that include time t . Equation (2) has an implicit as-
sumption that values of the parameter pj were also
obtained in the same spatio-temporal scale, so that the
integration of Si is done at the best accuracy.

Now let us consider the same problem at a larger
scale with grid cells of size $X$Y and time step
$T . We will refer to this as the macro resolution,
in contrast to the micro resolution. Discretization of
Equation (1) into this resolution requires us to evalu-
ation the average value of Si(pj , ur , νk), or Si , based
on our knowledge of its behavior at the micro scale. A
simple mathematical analysis can provide us with

Si=
1

$X$Y$T

Nt
∑

c=1

N
∑

e=1

Si

[

pj , ur(xe, ye, tc),

νk(xe, ye, tc)
]

$x$y$t #= Si(pj , ur, νk),

where ur and νk are average values of ur and νk within
the grid cells at the macro-resolution, N is the number
of micro grid cells in a macro grid cell, Nt is the num-
ber of micro time intervals within $T , xe and ye are



291

the spatial coordinates of the center of the e’th macro
grid cell, and tc is the time at c’th micro time interval.
A truncated Taylor expansion of Si with respect to ur

and νk gives

∂ui

∂T
= αi
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where Vξ is a vector resulting from concatenation of
ur and νk , with vector length M = m + n (the first n

members are of ur and the rest m members are of νk),
and θξζ is a coefficient defined as:
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Thus θξζ is one half of the variance (ξ = ζ ) or covari-
ance (ξ #= ζ ) of the state and auxiliary variables within
macro grid cells. Note that the first order term of the
Taylor expansion does not appear in Equation (3) be-
cause the Si was expanded at mean values of ur and
νk within ($X,$Y,$T ), and the integration of the
deviations from the mean value is zero.

Note that in Equation (3), the parameter vector
pj is hinged to the previous micro resolution as in
Equation (2). However, Equation (3) now has addi-
tional terms on the right hand side resulting from a
scaling up from a relatively fine to a coarse resolu-
tion, referred as scaling terms. This result implies
that cross-scale modeling may necessitate modifica-
tions of both the mathematical structure and the model
parameters. Equation (3) also implies that additional
parameters θξζ , which we will refer as scaling co-
efficients hereafter, have to be determined to scale a
model from a relatively fine scale up to a large scale
with a coarser resolution.

The scaling coefficients θξζ are in general a
function of spatial coordinates and time in macro-
resolution, i.e., θξζ = θξζ (X, Y, T ). When the
macro-resolution ($X,$Y,$T ) is quite much dif-
ferent from the micro-resolution ($x,$y,$t), we
propose to sample the macro grids to select a subset of
cells in macro-resolution. By regarding each selected
macro grid cell as a sub-domain of simulation that
contains a number of micro grid cells, we can run the
model in micro-resolution for each of the sub-domains
to obtain a sampled subset of θξζ = θξζ (X, Y, T ) us-
ing Equation (4). Interpolation of the sample into all
macro grid cells can then be used to scale the model
up from the micro- to the macro-resolution.

Application of the scaling algorithm to a grassland
landscape in northeast China

The simulation model

With 5-year observations from 1989 to 1993 on spa-
tial patterns of plant communities in a one-hectare
alkaline grassland landscape in northeast China, Gao
et al. (1996) constructed a model for the landscape
to simulate the process of community succession in
response to soil alkalization and de-alkalization. The
original model was slightly modified in this study to
improve the continuity of the functions with respect
to state variables. While the detailed mathematical
equations are given in Appendix, a brief description is
provided here. The model included coverages of five
types of plant communities within the 1-ha grassland
landscape, dominated respectively by Calamagrostis
epigeios (CE), Aneurolepidium chinense (AC), Puc-
cinellia tenuiflora (PT), Aluropus litorolis (AL) and
Suaeda corniculata (SC), and soil alkali, as state
variables. We will refer to each type of these com-
munities by its dominant species name hereafter, as
the behavior of a community type was assumed to
be describable by its dominant species in this study.
Competition among plant communities, migration of
plant species, and interactions between soil alkali and
communities were considered in the model. The math-
ematical formulation of the model gave 6 coupled
partial differential equations for Ci , the coverage of
5 types of plant communities, for i = 1, 2, . . . , 5, and
Na for soil alkali. These state variables corresponds to
the variables of ui in Equation (1), with ui = Ci for
i = 1, 2, . . . , 5, and u6 = Na .

The parameters of the model were tuned for 2 m
× 2 m resolution using a nonlinear least square algo-
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rithm (Gao et al. 1996) to produce a minimum sum
of squared differences between the simulated and ob-
served total coverage of the 5 types of communities,
i.e.,

ME =
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where ME stands for grand mean error; Ûi (t) =!
A Ci(x, y, t) dx dy, with A denoting the domain of

the landscape, is the simulated total coverage of the
ith type of plant community; and Ui(t) is the same
quantity obtained from the observed data. The mean
error for an individual community type is
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The patterns at the first year (year 1989) were used
as the initial conditions. The model was solved with
periodic boundary conditions, i.e., all fluxes were as-
sumed to be zero at all the boundaries. This of course
was a simplification of real boundary conditions.

Scaling runs of the model

We used the 2 m × 2 m grids as the micro-resolution
(R0). Three macro-resolutions, 4 m × 4 m, 10 m × 10
m, and 20 m × 20 m, named R1, R2 and R3, respec-
tively were used to test the algarithm. The one hectare
(100 m × 100 m) landscape was divided into 2500
micro grid cells in R0, 625 grid cells in R1, 100 grid
cells in R2 and 25 grid cells in R3, respectively. Each
grid cell in R1, R2 and R3 contains 4, 25, and 100 grid
cells in R0, respectively. The scaling terms were de-
rived according to Equations (3) and (4) and are given
in the Appendix. We first ran the model for all resolu-
tions with the same set of parameter values to obtain
the outputs of the model at the 4 resolutions without
incorporating the scaling terms into simulation. The
outputs of these runs were termed as unscaled model
outputs.

To compute the scaling terms, we further assumed
that the scaling coefficients θξζ were functions of
spatial locations in the macro-resolutions but largely
independent of time in this 5-year period, i.e., θξζ =
θξζ (X, Y ). We then select grid cells in R1, R2 and
R3, to run the model at R0. The selection was done
with the following four systematic sampling schemes
as defined by sampling interval (SI):
(1) SI = 1, or every row and every column, all cells

in macro resolutions were samples;

(2) SI = 2, or every the other row and every the other
column;

(3) SI = 3, or every one in three rows and every one
in three columns;

(4) SI = 5, or every one in five rows and every one in
five columns; and finally

(5) SI = 1′, or every row and every column of the
initial patterns of the first year observations.
Macro grid cells at 4 corners of the landscape

were forced to be sampled for all sampling schemes.
Scaling coefficients were computed for these selected
macro grid cells, and averaged over years for SI = 1,
2, 3, and 5, and interpolated linearly over all the grid
cells in respective macro-resolutions for SI = 2, 3, and
5.

The model was run with scaling terms (Equation 3)
for macro-resolutions R1, R2, and R3 to obtain scaled
outputs for different sampling schemes. The scaled
outputs were then compared with the unscaled outputs
and the observations.

Results and discussion

Unscaled output: effects of resolution variation on
model behavior

Figure 1 compares the simulated coverage patterns of
the two most important community types dominated
by Aneurolepidium chinense and Suaeda corniculata
respectively, against the observed patterns for the
years of 1990 through 1993 (indicated as year = 1, 2,
3, and 4, respectively), at the micro-resolution. A. chi-
nense is the major grazed plant species at normal local
soil conditions and the communities dominated by
A. chinense are known as major communities. S. cor-
niculata, on the other hand, is an indicator of serious
soil alkalization, and thus the communities dominated
by S. corniculata are results of serious degradation of
grassland landscapes in Songnen Plain. The two types
of communities together occupied more than 80% of
the total area in this study, leaving only less than
20% coverage for other three types of communities
(C. epigeous, A. litoralis, and P. tennuflora). The fig-
ure indicated that the model is in good agreement with
the observations.

Unscaled model outputs for all resolutions were
illustrated in Figures 2 and 3. While Figure 2 plots
simulated total coverage of the two important types of
communities (a, b) and soil alkali (c) cross all resolu-
tion in comparison with observations, Figure 3 depicts
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Figure 1. Comparison between observed and simulated community coverage in a one-hectare alkaline grassland landscape at 2 m × 2 m
resolution. AC, A. chinense communities; SC, S. corniculata communities. Suffix ‘O’ denotes observations, and ‘M’ denotes simulation.
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Figure 2. Unscaled simulation outputs of the model, averaged over the domain of the alkaline grassland landscape, in comparison with
observation. (a) A. chinense communities, (b) S. corniculata communities, and (c) soil alkali.

Figure 3. Error associated with the unscaled simulation outputs for
all the state variables of the grassland model. CE, AC, PT, AL and
SC stand for C. epigeios, A. chinense, P. tenuiflora, A. litorolis and
S. corniculata communities, NA is soil alkali, and GRAND is the
total grand average error.

the corresponding errors of the model without scaling
treatment.

The simulated coverage of the two community
types were close to observations at 2 m resolution
(R0), but deviated from observations systematically as
the resolution goes from fine to coarse. The largest
difference between model and observation was seen
for R3 (20 m resolution). Soil alkali was shown to be
less sensitive to variation of resolution. The different
behavior between soil alkali and community cover-
age can be explained in terms of the model equations.
The source/sink terms of the model for community
coverages are nonlinear with respect to both soil al-
kali and community coverage. On the other hand, the
source/sink term for soil alkali is linear (see Appen-
dix) with respect to the state variables. Even though
the nonlinearity of community coverage equations is
coupled with soil alkali dynamics, the coupled effect
on soil alkali seemed indirect, and affected little the
simulated soil alkali across all the resolutions.
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Figure 4. Scaled model outputs at 4 m × 4 m resolution. (a) A. chinense coverage; (b) S. corniculata coverage; (c) Mean error between model
outputs and observations. Codes in (c): UNS = unscaled, SI = sampling interval. Other codes are the same as in the previous figures.

Another important result shown in Figures 2 and 3
is that scaling up from a finer to a coarser resolution
tended to overestimate the rates of major ecosystem
processes in this model. While the observed coverage
of A. chinense communities increased from 35% to
44% during the period, the corresponding coverage
of S. corniculata communities decreased from 50%
to 37%. The dynamic coverage of these two types of
communities was closely simulated at 2 m resolution.
But the simulated increases in the coverage of A. chi-
nense communities were from 35% to 46%, 55% and
62%, and the estimated decreases in the coverage of
S. corniculata communities were from 50% to 31%,
21%, and 12%, for R1, R2 and R3, respectively. Figure
3 indicates that the mean errors for those two types of
communities and the grand mean error were more than
tripled as resolution went from 2 m to 20 m, whereas
the mean errors for other types of communities and
soil alkali remained relatively constant.

The reason for the resolution-dependent deviation
was the overestimation of the absolute rates of ecosys-
tem processes in the macro-resolutions. The overesti-
mation became much more serious in this model as the
resolution became coarser.

Simulated plant community coverages with scaling
algorithm

Figures 4, 5, and 6 show the simulated coverage of the
two community types by employing the scaling algo-
rithm developed in this study, using the same sampling
schemes at R1, R2 and R3 resolutions respectively.
Adding the scaling terms to the model resulted in sig-
nificant reductions in the mean simulation errors for
each community type as well as the grand mean simu-
lation error of the model. The reduction in the mean
errors of the simulations varied from 11% to 81%,
depending on the resolution and the sampling interval
(SI). In general, the relative error reduction is more
evident for a coarser resolution than for a finer resolu-
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Figure 5. Scaled model outputs at 10 m × 10 m resolution. Codes and legends are the same as in the previous figures.

tion, and the reduction in mean error was less as the
sampling interval became larger, for a larger sampling
interval usually means less samples taken. Fewer sam-
ples are in general less effective to represent the true
distribution of the scaling coefficients. One exception
was the results for the 20 m resolution, where mean
errors of the A. chinense community type for SI = 3
and 5 were smaller than for SI = 1 and 2. The reason
for this exception might be due to the effects of sam-
pling. As we had only a total of 25 grid cells in the
sampling pool at this resolution, SI = 3 and 5 gener-
ated only 9 and 4 grid cells in the sample, respectively.
The sampling schemes might incidentally give more
accurate estimation of the scaling coefficients than the
full sampling scheme (SI = 1).

There are still some systematic errors that were not
corrected by the proposed scaling algorithm. The re-
maining errors may be attributed to the truncation in
the Taylor expansion, and may also have something to
do with the employed numerical method. Even if the
differential equations of a model are linear with re-

spect to state variables, solutions of the equations can
be nonlinear (King 1991). The errors associated with
this kind of nonlinearity cannot be reduced by means
of our method. Hence the results of this research only
represented an incremental advancement for a better
scaling. Further studies are needed to improve the
methodology.

Summary and conclusions

We demonstrated the dependence of ecosystem simu-
lation on the resolution of numerical computation. We
also developed a numerical algorithm to reduce the
errors associated with the scaling up to improve the
results of cross scale simulation. The technique was
based on Taylor expansion of nonlinear functions in
the model. The scaling coefficients were derived and
shown to be proportional to the variance or covari-
ance of the spatially referenced variables and can be
estimated by running a model at micro resolution for
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Figure 6. Scaled model outputs at 20 m × 20 m resolution. Codes and legends are the same as in the previous figures.

selected macro grid cells. The following conclusions
can be drawn from the results:
(1) The mathematical formulation and parameters

of an area-based model for spatially heteroge-
neous ecosystems are always hinged to a particular
spatio-temporal scale. The dependence of model
behavior on scale is attributed to the nonlinear-
ity of the model. Changing the scale of a model
may necessitate modification of both mathemati-
cal equations and parameterization. The common
practice of calibration used in many global and re-
gional models may not be adequate for cross-scale
modeling.

(2) Decreasing resolution of computation or increas-
ing size of grid cells tended overestimate the rates
of major ecosystem process in our alkaline grass-
land landscape model.

(3) The scaling algorithm developed in this study can
effectively reduce the modeling error by as much
as 80%, depending on the scaling distance (the dif-
ference between two resolutions) and the sampling

frequency at which the sites in a coarse resolution
are selected to run the fine scale model.

Application of the proposed scaling technique to our
grassland model used explicit analytical differentia-
tion, because the model was mathematically simple
enough. For applications to complicated simulation
models for which analytical derivatives with respect
to state/auxiliary variables are not feasible, numerical
differentiation may be used.
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Appendix 1. Governing equations of the grassland model

The governing equations in our alkaline grassland landscape model are given in the following:

∂Ci

∂ t
= αi

(

∂2Ci

∂x2 + ∂2Ci

∂y2

)

+ giGiWi, i = 1, 2, . . . , 5,

∂Na

∂ t
= αi

(

∂2Na

∂x2 + ∂2Na

∂y2

)

+ gnWn,

(7)

where Ci is the coverage of the ith community type (m2 m−2); Na is the soil alkali, defined as the fraction of
the exchangeable in the total cations in 100 grams of dry soil; αi , gi and αn, gn are model parameters. The term
giGiWi describes the change in the coverage of community type i due to local ecological processes. Similarly,
gnWn is the local net source term for Na , representing the processes that bring up alkaline solutes from deep to
surface soil (source) or flush solutes downward into the deep soil (sink). The variable Gi is the coverage response
function of community type i to soil alkali, and was assumed to have the following form

Gi(Na) = 4 exp

[

−
(

Na − Na0i

1.865Ri

)2
]

− 3, i = 1, 2, . . . , 5, (8)

where Na0i represents the optimal soil alkali for species i. This response function obtains it maximum value of 1 at
Na = Na0i . The quantity Ri in Equation (8) stands for the tolerance rang of species i to soil alkali. When soil alkali
is greater than Na0i + Ri or smaller than Na0i − Ri , the local coverage increasing rate will be zero or negative,
bounded by −3. We assumed that the ecological characteristics of a plant community could be represented by the
behavior of its dominant species.

Function Wi depends on community coverage Ci and was assumed to be in the following form:

Wi =











Ci

(

1 − ∑

j

Cj

)

, if Gi > 0,

Ci, otherwise.

(9)

Thus, the local rate of coverage variation took the form of the classical Logistic model. The competition among
plant community types was reflected in the term within the parentheses in Equation (9). The decreasing rate of
Ci , however, was assumed to be proportional to Ci . Equation (9) also indicates that the sum of coverage of all
communities at any point in the simulation domain cannot be greater than 1.

The function Wn describes the dependence of the local rate of change in Na on surface vegetation conditions,
as:

Wn =
{

Na max − Na, if
∑

i

Ci < Cmin,

−Na, otherwise,
(10)

where Cmin is the pivot value of the total vegetation coverage and Na max is the upper bound of Na .

Appendix 2. Scaling terms

To apply the proposed scaling method to this particular model, we first match up variables and parameters in
Equation (1) to the variables in Equations (7)–(10). Our grassland model had no auxiliary variables. Hence n = 6
and m = 0. The state variable ui in Equation (1) is Ci in Equation (7) for i = 1–5, and u6 in Equation (1) is Na in
Equation (7). The source/sink term in Equation (1) are matched to functions in (7) as follows: Si = giGiWi for i

= 1–5, and S6 = gnWn. The following differentiation was carried out for the scaling terms in Equation (3):

∂2Si

∂Ci∂Cj
=















{ −2giGi, Gi > 0
0, otherwise

, i = j

{ −giGi, Gi > 0
0, otherwise

, i #= j

i = 1, 2, . . . , 5 (11)
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∂2Si

∂Na∂Cj
=

































































−2.3gi exp
[

−
(

Na−Na0i
1.865Ri

)2
]

×
(

1 −
5
∑

j=1
Cj − Ci

)

(

Na−Na0i

R2
i

)

, Gi > 0

−2.3gi exp
[

−
(

Na−Na0i
1.865Ri

)2
]

×
(

Na−Na0i

R2
i

)

, otherwise



















, i = j











−2.3gi exp
[

−
(

Na−Na0i
1.865Ri

)2
]

×
(

Na−Na0i

R2
i

)

, Gi > 0

0, otherwise











, i #= j

(12)

i = 1, 2, . . . , 5,
where all the second order derivatives of S6 with respect to the state variables were zero.

Appendix 3. Field observations and model parameterization

From 1989 to 1993, one hectare of seriously alkalized grassland was fenced up in southern Songnen Plain, northeast
China to study the recovery dynamics of the plant communities. A map of spatial distribution of plant communities
within the fenced area was drawn in August in each year with 10-cm sampling resolution (Gao et al. 1996). The
maps were digitized, aggregated into 2 m resolution for this study, and were used to obtained ai , gi , an, and gn by
means of a nonlinear least square algorithm (Gao 1996). The parameterization was done by the following steps:

(1) A set of ai , gi , an, and gn was arbitrarily selected to run the model at 2 m resolution for 5 years at 1 year
time increment. The field observed community distribution pattern in 1989 was used as initial conditions;

(2) The simulated coverage patterns in the successive 4 years were then compared with observations to compute
the sum of error squares;

(3) The well-known Gauss–Newton algorithm was used to modify and update parameter ai , gi , an, and gn for
the successive runs of the model to produce a smaller sum of error squares;

(4) The simulation rerun repeatedly with modified ai , gi , an, and gn. The model was parameterized with the
acceptable value of the sum of the error squares.


