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Studies of urban ecological systems can be greatly enhanced by combining

ecosystem modelling and remote sensing which often requires establishing

statistical relationships between field and remote sensing data. At the Central

Arizona–Phoenix Long-Term Ecological Research (CAPLTER) site in the south-

western USA, we estimated vegetation abundance from Landsat ETM +
acquired at three dates by computing vegetation indices (NDVI and SAVI)

and conducting linear spectral mixture analysis (SMA). Our analyses were

stratified by three major land use/land covers—urban, agricultural, and desert.

SMA, which provides direct measures of vegetation end member fraction for

each pixel, was directly compared with field data and with the independent

accuracy assessment dataset constructed from air photos. Vegetation index

images with highest correlation with field data were used to construct regression

models whose predictions were validated with the accuracy assessment dataset.

We also investigated alternative regression methods, recognizing the inadequacy

of traditional Ordinary Least Squares (OLS) in biophysical remote sensing.

Symmetrical regressions—reduced major axis (RMA) and bisector ordinary least

squares (OLSbisector)—were evaluated and compared with OLS. Our results

indicated that SMA was a more accurate approach to vegetation quantification

in urban and agricultural land uses, but had a poor accuracy when applied to

desert vegetation. Potential sources of errors and some improvement recom-

mendations are discussed.

Keywords: Landsat ETM + ; Urban; Vegetation index; Linear spectral mixture

analysis; Regression analysis

1. Introduction

Urban development has profound effects on biodiversity and ecosystem functioning

at local, regional, and global scales (Zipperer et al. 2000, Pickett et al. 2001).

Phoenix, as one of the fastest growing metropolitan regions in the USA, provides

striking examples of such land transformation (Jenerette and Wu 2001). The

ongoing conversion of natural desert to an array of urban land cover types entails

major ecological consequences that are yet to be fully understood (Baker et al. 2001,

Wu and David 2002, Grimm and Redman 2004). Remote sensing data of various

spatial, spectral, and temporal resolutions have been used to characterize land use
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and land cover change associated with urban growth (Lunetta and Elvidge 1998,

Lyon et al. 1998, Ridd and Liu 1998) and to derive biophysical variables driving

ecosystem simulation models (Running et al. 1989, Ruimy et al. 1994, Running et al.

2000, Turner et al. 2004, Ustin et al. 2004). The latter application of remote sensing

can greatly enhance our knowledge of urban ecological processes.

Spectral vegetation indices (SVI), such as the normalized difference vegetation

index (NDVI), are traditional quantitative proxy measures of vegetation abundance

or vigour, which are easy to compute and understand. However, such indices, when

obtained using medium to coarse resolution multispectral satellite data, may

introduce large errors into models that simulate landscapes with high spatial

heterogeneity. Thus, more sophisticated methods for estimating vegetation

abundance at the sub-pixel level have recently been developed (Adams et al. 1993,

Adams et al. 1995, Hill and Hostert 1996, Phinn et al. 1999, Small 2001, Wu and

Murray 2003, Lu and Weng 2004, Xiao et al. 2004). Several types of models for

spectral mixture analysis (SMA) have been proposed, including linear, probabilistic,

geometric and geometric-optical, stochastic geometric, and fuzzy models (Ichoku

and Karnieli 1996). The commonly used linear spectral mixture analysis (SMA)

decomposes a single pixel linearly into constituent land covers (end members) and

obtains estimates of their areal fractions. It has been applied in different areas that

are in demand of resolving the mixed pixel problem including arid lands (Smith et al.

1990, Roberts et al. 1993, Sohn and McCoy 1997, Elmore et al. 2000, McGwire et al.

2000, Asner 2004, Okin and Roberts 2004) and urbanized areas (Hill and Hostert

1996, Small 2001, Phinn et al. 2002, Rashed et al. 2003, Wu and Murray 2003, Liu

and Weng 2004, Xiao et al. 2004). For urban applications in particular SMA has

been shown to improve the accuracy of vegetation quantification considerably as

compared to SVI. Besides being more accurate SMA is a meaningful approach

because it provides a physically based measure of vegetation abundance.

A convenient ternary VIS (vegetation–impervious surface–soil) model developed

by Ridd (1995) for urban areas has been applied in different urban settings using

SMA on broadband imagery (Landsat). However, the VIS model has major

drawbacks including its inability to adequately describe the complexity of urban

surfaces present on the modelled scene. This can be mitigated by stratifying a study

area into smaller regions or by using more end members. Mathematically the SMA

in the latter situation is usually constrained by the number of spectral bands in the

source data (Adams et al. 1986, Adams et al. 1993). Other solutions to the problem

of multitude of urban land covers also exist (Roberts et al. 1998, Bateson et al. 2000,

Rashed et al. 2003, Okin and Roberts 2004). Small (2001) concluded that in spite of

the limited flexibility of broadband imagery to accommodate the heterogeneity of

urban surfaces vegetation fraction accuracy in the three-end member model is still

consistently high.

Establishing statistical relationship between vegetation characteristics acquired in

the field and remotely sensed data is typically done by regression analysis with field

data serving as dependent variables and various spectral vegetation indices (SVI) as

independent variables (Price and Bausch 1995, Turner et al. 1999, Cohen et al.

2003). Ordinary least squares (OLS) has been the most frequently used method for

relating the variables. Yet it has been well documented that OLS may be

problematic when used in ecological (Sokal and Rohlf 1981, Seim and Saether

1983, LaBarbera 1989, Niklas 1994) and remote sensing (Curran and Hay 1986,

Fernandes and Leblanc 2005) applications. One problem is the ambiguity in the
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specification of the dependent Y (ground measured vegetation characteristics) versus

independent X (remotely sensed signal) variable (Seim and Saether 1983, Curran

and Hay 1986, Cohen et al. 2003). Although for practical purposes remotely sensed

data is used to extrapolate the more expensive field data (dependent variable),

reversing the variables is also possible. Secondly, OLS assumes that the independent

variable is known without error but this assumption is rarely met in ecological or

remote sensing studies because of measurement errors (Seim and Saether 1983,

Curran and Hay 1986, LaBarbera 1989, Cohen et al. 2003). Therefore, Curran and

Hay (1986) recommended two alternatives for cases where measurement error

estimates for either X or Y are not available—reduced major axis (RMA) regression

and Wald’s method of groups. In contrast with OLS, RMA treats the two variables

in the same way and it does not require that both variables were measured without

an error term (LaBarbera 1989, Niklas 1994). It is just one of many possible lines

between the OLS (Y on X) and inverse OLS (X on Y) (Cohen et al. 2003). RMA and

OLSbisector (regression line that bisects the angle formed by the OLS and inverse

OLS lines) regressions have been routinely used in biological allometry (McArdle

1988, Niklas 1994) and astronomy (Isobe and Feigelson 1990, Feigelson and Babu

1992). In remote sensing of ecosystem properties there is a real need for regression

methods that treat variables symmetrically and make no assumption about relative

amounts of measurement error (Cohen et al. 2003). There seems an emerging

consensus among the remote sensing community that RMA is in general a more

preferable method than OLS (Curran and Hay 1986, Babu and Feigelson 1992,

Larsson 1993, Cohen et al. 2003). As an alternative to linear regression methods in

remote sensing Fernandes and Leblanc (2005) recently suggested the use of a non-

parametric (Theil-Sen) estimator.

The purpose of our study was to investigate the suitability of Landsat ETM + for

estimating vegetative cover of the Greater Phoenix metropolitan area. We compare

two distinct approaches to this problem: spectral vegetation indices (SVI) and linear

spectral mixture analysis (SMA). To build statistical models that relate SVI to field

measured vegetation cover we explore four types of regressions with theoretically

different slope terms: the traditional ordinary least squares (OLS (Y on X)), the

inverse OLS (X on Y), the OLSbisector, and RMA.

2. Study area

The study area is the Central Arizona–Phoenix Long-Term Ecological Research

(CAPLTER) site, which is centred at the city of Phoenix, Arizona, USA, within the

northern part of the Sonoran Desert (figure 1). The landscape is dominated by a

relatively flat terrain composed of alluvial plain and interrupted by eroded volcanic

outcrops. Major drainage of the region is formed by the Gila and Salt Rivers.

Agricultural activities have historically triggered a variety of water supply projects

resulting in redistribution of water resources in space and time (Knowles-Yanez et

al. 1999). Irrigation is the primary factor for sustaining managed vegetation in both

agricultural and urban land uses. Local compositional variability of desert

vegetation is remarkably high, due largely to variation in soil characteristics.

Native vegetation is comprised of two subdivisions of the Sonoran desert scrub:

Arizona Upland subdivision with Paloverde–Mixed Cacti series and Lower

Colorado River subdivision with Creosotebush–Bursage series and formerly

widespread Desert Saltbush (Turner 1974, Brown 1994). Managed vegetation types
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are also diverse, ranging from forest patches of coniferous or palm trees to backyard

turf, golf courses, and agricultural fields. While a number of ecological and socio-

economic studies have been carried out at CAPLTER (Grimm and Redman 2004), a

grand challenge is to scale up information obtained at the local site level to

landscape and regional levels (Wu and David 2002). This study is part of the effort

to scale up ecosystem properties in the heterogeneous urban landscape using remote

sensing data.

Figure 1. Location of the study area and major land use types (200-point survey plots are
not drawn to scale)
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3. Data and methods

3.1 Field data acquisition and post-processing

From late February to early May of 2000, field data were collected in CAPLTER

study area in 204 survey plots of 30630 metres in size (figure 1). Plots were selected

by means of a dual-density, randomized, and tessellation-stratified design with

details described in (Hope et al. 2003, 2005, Grimm and Redman 2004). In each

sampling plot all perennial plants were identified to genus, their locations recorded

with GPS, and individual plant canopies measured along the two major axes (north–

south and east–west).

Three major land use types were considered in grouping all plots: desert,

agriculture, and urban (combined with transportation) (figure 1). In our analysis, we

selected only those sites whose sampling was done within 1 month before or after

each image’s acquisition date which accounted for about half of the original plots.

These three subsets were individually related to vegetation cover estimated with

SMA and used in conducting regression analysis for SVI (table 1).

Field data were used to create vegetation maps and quantify vegetation cover for

each plot. We used aerial photographs from 1997 (Digital Orthophoto Quarter

Quadrangles and colour air photos) for mapping permanent structures in urban

plots (e.g. buildings, parking lots and roads). GPS co-ordinates of individual

perennial plants and their canopy cover measurements were used to generate a GIS

layer of plant canopies in all urban plots. Elliptical crown shapes were assumed, and

the total vegetation cover was then computed as a percentage of total plot surface

area, which is assumed to be the prime determinant of remotely sensed signal of

vegetation in the visible (VIS) and near-infrared (NIR) spectral regions (Graetz

1990). In desert plots only five individuals of each species were measured. We

therefore estimated cover by multiplying species average (per plot) elliptical canopy

by plant counts of a corresponding species recorded in the plot. Such approximation

is prone to errors, but unfortunately no contemporaneous high-resolution remote

sensing imagery was available to create accurate vegetation maps of desert plots.

Instead we relied heavily on visual assessment and synoptic photographs taken at

each site to crosscheck the resulting cover estimates. Finally, for agricultural plots

we used visual field estimates of vegetation cover observed on dates the plots were

visited.

3.2 Image preprocessing

Three Landsat Enhanced Thematic Mapper (ETM + ) images (path 37/row 37)

acquired under clear sky conditions on three dates (18 March, 19 April, and 21 May)

from the year 2000 were used in the study. The nominal ground instantaneous field

of view (IFOV) of the instrument is 30 metres which corresponds to the size of

survey field plots. All images were georeferenced to the NAD 27 datum and UTM

Zone 12 co-ordinate system. Due to high variability of vegetative cover over short

distances and high risk of mismatch between field data and image data, we

systematically checked the positional accuracy of the imagery and applied necessary

geometric rectifications. We used a true colour aerial photo-mosaic (3 metre pixel,

acquired in April of 1997) of the Phoenix metropolitan area and the Maricopa

County street GIS map as reference sources. The image from March was first

registered to the air photo using invariable features such as corners of rectangular

agricultural fields and intersections of major roads with an estimated positional
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Table 1. Frequency of surveyed field plots used in the analyses and Landsat imagery
acquisition dates (the year is 2000).

Urban Desert Agriculture

3 Feb 1
7 Feb 3
8 Feb 2
9 Feb 1
10 Feb 1
15 Feb 3
16 Feb 1
17 Feb 2
21 Feb 2 1
23 Feb 3
24 Feb 1 2
29 Feb 1 1
1 Mar 3
3 Mar 1 3
7 Mar 5
8 Mar 3 1
10 Mar 1
13 Mar 1
14 Mar 4
15 Mar 2
16 Mar 4
17 Mar 1 3

March 18 Landsat image

20 Mar 4
21 Mar 1 3
22 Mar 2 1
23 Mar 4 1
24 Mar 2 1
27 Mar 2
28 Mar 4
29 Mar 2
30 Mar 2
31 Mar 3 1
3 Apr 3
7 Apr 1
10 Apr 3
13 Apr 2
14 Apr 2

April 19 Landsat image

20 Apr 2
24 Apr 2
25 Apr 2
26 Apr 1
27 Apr 2
28 Apr 1
1 May 1
3 May 1
4 May 2
5 May 1
9 May 1
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error of 0.5–1 pixel. The April and May images were then co-registered to the March

one and subset to the extent of CAPLTER. Raw digital numbers (DN) were

converted to radiance and then to exo-atmospheric reflectance units as specified in

the Landsat handbook (Irish 1998). ATCOR2 module for ERDAS Imagine 8.6

(Geosystems 1997) was used to apply atmospheric corrections. For each dataset a

mid-altitude summer, urban aerosol concentration model with 25 km estimated

visibility was used as input to the MODTRAN3 radiative transfer code

incorporated in the module.

3.3 Vegetation indices

Spectral vegetation indices (SVI) are based on the reflectance properties of green

leaves that strongly absorb in red wavelengths and strongly reflect in near-infrared

wavelengths. Many experimental studies have found varying sensitivities of different

indices to potentially perturbing factors such as variation in soil background

brightness, atmospheric turbidity, or sub-pixel vegetation structure variability

(Huete and Jackson 1987, Jasinski 1990, Price and Bausch 1995, North 2002, Asner

2004). Because our study area embraces a variety of vegetative patch types including

native desert plant communities and urban xeric to mesic vegetation, we found it

appropriate to compute different indices that would allow comparison between

them. Estimates of actively photosynthesizing vegetation abundance were obtained

by deriving the two most frequently used and empirically tested indices: normalized

difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI) as

shown below (Tucker 1979, Huete 1988, Jensen 1996):

NDVI~ NIR{REDð Þ= NIRzREDð Þ, ð1Þ

SAVI~ NIR{REDð Þ= NIRzREDzLð Þ= 1zLð Þ½ �, ð2Þ

where NIR is Landsat band 4 (0.76–0.9 mm), RED is band 3 (0.63–0.69 mm), and L is

the correction factor whose values range from 0 (high vegetation cover) to 1 (low

vegetation). We used L50.5 in this study which was previously recommended by

Huete (1988) and applied in land cover mapping of CAPLTER (Stefanov et al.

2001). Final values used in our study are the result of rescaling indices from 0 to 1 to

avoid negative numbers.

3.4 Spectral mixture analysis

We implemented linear SMA which makes an assumption of insignificant non-

linearity caused by multiple scattering. Mathematically the linear model is expressed

Urban Desert Agriculture

11 May 1
12 May 2

May 21 Landsat image

Total 60 42 18

Table 1. (Continued).
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as (Smith et al. 1990, Adams et al. 1993, Settle and Drake 1993, Wu and Murray

2003)

xb~
Xn

i~1

fixi,bð Þzeb and
Xn

i~1

fi~1 , ð3Þ

where xb is normalized reflectance of each pixel in spectral band b; fi is end member

fraction; xi,b denotes normalized reflectance of ith end member in band b; eb is the

error term; n is the number of end members. End member fractions can be solved by

a least squares method which seeks minimization of the residual eb provided the

condition of independency of end members is met.

We first normalized the Landsat spectral bands as suggested by Wu (2004) and

then transformed them to an orthogonal subset using minimum noise fraction

(MNF) transformation (Green et al. 1988). MNF determines the inherent

dimensionality and separates noise in data by whitening the noise covariance

matrix followed by the standard Principal Component Analysis (ENVI 2000). The

transformation yielded a plot of six final eigen values and coherent eigen images.

The majority of spatially correlated variance was found in the low-order MNF

components (typically first three), whereas the spatially uncorrelated variance was

contained in higher order components. The second step was to identify potential end

members. In the absence of spectral libraries for the area we utilized the pure pixel

index (PPI) method (Boardman et al. 1995) which finds the most ‘pure’ pixels whose

spectral properties signify end members. Two thousand iterations with the threshold

of 2.5 were used to run the procedure. Most of identified pure pixels corresponded

to croplands, golf courses, water bodies, and large buildings in the urban core. Not

surprisingly very few pure pixels were found in desert. End members for SMA were

selected by plotting pure pixel subsets of low order MNF components in n-D

Visualizer—an interactive tool for locating, identifying, and clustering the most

extreme spectral responses in a dataset (ENVI 2000). Distributions of transformed

reflectances within the 3-D feature space suggested a four-component mixing model

for all three dates (figure 2). The resulting end member spectra for all Landsat

images were quite similar (figure 3). Once identified as green vegetation, water/

asphalt/shade (low albedo), and two high albedo surfaces including soil and

rooftops, end member pixels were exported to the linear spectral unmixing

algorithm that we applied to inverse MNF-transforms of low order eigen images.

Four-end member models were inverted for end member fractions with the

constrained option to force the output to sum to unity.

3.5 Data sampling and regression analyses

All Landsat-derived raster grids were sampled by overlaying them with sampling

units (field plots) where each was divided into 100 subunits (lattice elements) as

shown in figure 4. Landsat pixels were overlaid with lattice elements of a

corresponding plot and then averaged. By taking this approach of weighted

averaging we pursued a goal of accounting for situations where plot boundaries did

not fall exactly onto a single Landsat pixel. The difference between these estimates

and a simple average of 4 pixels can be significant (figure 4).

Because fraction images provide a direct measure of canopy cover we related them

directly to field measured cover. SVI images, on the other hand, were used as

independent variables in regression models that predicted field data. We used SAS
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software to perform preliminary analyses of the data using standard OLS and

checked for regression assumptions. Where necessary field measured cover (Y

variable) was transformed based on suggestions of the Box-Cox procedure. We

applied a square root transformation for urban and desert sites. Retransformations

to the original scale were performed without bias correction and statistics were

computed for back-transformed predictions. OLS, inverse OLS, OLSbisector, and

RMA regression models were computed using a modified program SLOPES

available in the form of the Fortran computer code (http://ascl.net/slopes/slopes.f).

Model computations were accompanied by uncertainty analysis based on numerical

simulations and Bootstrap re-sampling (available as output of SLOPES) (Isobe and

Feigelson 1990). Bootstrap uncertainty analysis is based on the distribution of slopes

and intercepts of a large number of datasets constructed by random sampling of

observed data with replacement.

We also used cross-validation as an additional means of comparing the models.

The technique provides a virtually unbiased estimator of prediction error (Efron and

Gong 1983). Discrete models were developed for each dataset and regression variant

by deleting one observation at a time. Each model is then used to predict the

observation that was left out. Predicted values were contrasted with actual observed

cover. We compared models by computing variance ratios, root mean square errors

(RMSE), and systematic errors (SE) as shown below:

Figure 2. Transformed feature space representation of CAPLTER study area in March 18,
2000. The bottom right is the n-D visualization of the subset of spectrally pure pixels (from
PPI) with painted extreme clusters representing end members. Three other graphs are density-
slice scatter grams of the first three MNF components that contain the majority of the
spatially correlated variance.
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Variance ratio~bss=s , ð4Þ

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i~1

bPPi{Pi

� �2

N

vuuut
, ð5Þ

SE~

PN

i~1

bPPi{Pi

� �

N
, ð6Þ

where bss, standard deviation of predicted values; s, standard deviation of observed

values; bPPi, predicted cover for sample i; Pi, observed cover for sample i and N is the

number of observations. RMSE measures the overall accuracy for all samples.

Positive values of SE signify over-prediction, and negative values under-prediction.

Finally, the variance ratio was used to evaluate how the variance changes with

different models. A value close to one would indicate that the variance structure of

observed values is preserved in predicted values (Cohen et al. 2003).

3.6 Accuracy assessment

Accuracy assessment was conducted by comparing cover predicted from regression

models and vegetation fractions from SMA output with actual vegetation cover

Figure 3. End member reflectance spectra for 18 March 2000 used in spectral linear
unmixing. The April and May plots are similar to the March one and hence not shown here.
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calculated from the true colour aerial photography (0.6 metre pixel size) acquired in

April 2003. To get an independent sample we used an approach similar to that of

Wu and Murray (2003). A stratified random sample of 200 validation sites 90690

meters in size (nine Landsat pixels) was used. Sampling units bigger than one pixel

were chosen to minimize possible geometric errors. One hundred sites were placed

within urban land use, 50 within agricultural lands, and 50 in the desert. Each site

was examined to ensure that it did not overlap with the survey plots and did not

have a mixed land use. We also used the 1997 aerial photography to identify land

use and land cover changes between 1997 and 2003. Some of the eliminated sites

were found to be converted into urban land use; others revealed a significant

difference in crop development. Subsequently 23 sites, mostly agricultural, were

discarded. All sites were first classified into five classes by an iterative self-organizing

data analysis (ISODATA) unsupervised method and converted into vector objects.

We then employed a supervised approach by manually checking and reassigning

values of the first two classes that typically represented vegetation (class 1) and

asphalt/shade (class 2). Total area of patches of perennial vegetation (separated

from shadows) was used to compute the total canopy cover. Percent vegetation

cover was then compared with that estimated by SMA or regression models and

averaged for nine Landsat pixels. Errors were assessed by RMSE and SE similarly

to previously discussed measurements. Because these airborne data were collected in

a different year we inspected scatter plots and checked correlations between the 250-

metre MODIS NDVI images obtained to correspond in time to each of the Landsat

images and 2003 air photo. Although a coarse estimate this gave us a general idea of

how similar these rather large pixels were in terms of amount of vegetation.

Figure 4. Sampling Landsat for spatial regression analysis. Dotted boundary represents a
survey plot converted into a lattice of 100 elements spaced at every 3 metres (crosses) and
overlaid with 30 metre Landsat pixels (shaded squares). Displayed numbers are hypothetical
NDVI and calculations below demonstrate differences between the two sampling schemes.
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4. Results

Vegetation index and vegetation fraction images for three dates are shown in

figure 5. Root mean square (RMS) misfit images and corresponding statistics (not

shown) produced along with end member fraction images were examined for any

indication of large errors. Sufficiently low RMS (with a maximum of 1025 and a

mean of less than 1026) throughout the area suggested analytical validity of SMA

model inversions. The images indirectly demonstrated phenological and structural

changes in vegetation during the transition from early spring to early summer. We

analysed them by computing NDVI difference between the three months. Vegetative

cover underwent significant changes in croplands, developed urban area, and in

riparian areas outside cities (NDVI increase.10%). Live vegetation cover rapidly

increased from March to April in most of the Sonoran desert scrub and Arizona

Upland and then decreased in May, suggesting an areal peak in live biomass

sometime between late March and early May. Comparing March and May images

revealed steadily increasing vegetative cover along the Gila and Verde Rivers, and

decreasing overall cover throughout the CAPLTER site. To avoid potential errors

that might occur in the plots selected for regression analysis due to spatiotemporal

variation in cover, we sampled difference images to check for any significant change.

No plots were discarded based on this criterion.

Pearson’s correlation matrices (table 2) were used to select images with the highest

agreement with actual vegetative cover. We also examined corresponding scatter

plots for each pair of variables to confirm the relationships were linear. Our analysis

suggested that desert plots would show better agreement with vegetation cover

Figure 5. Vegetation indices and vegetation fraction images from SMA for all three dates.
(NDVI and SAVI are spectral vegetation indices; UNMIX is vegetation fraction from SMA;
Mar, March; Apr, April; May, May).
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computed from the April rather than March or May images. The highest correlation

(r50.67) was observed in April NDVI and SAVI. As expected NDVI (r50.70),

SAVI (r50.70), and vegetation fraction (r50.76) computed from March SMA were

most closely correlated with field data in the urban area. Agricultural plots were also

expected to correlate stronger with March image. Both March and April images

were highly correlated with field data for agricultural plots. However, direct

comparison of survey plots with accuracy assessment air photo showed that

croplands in 2003 Landiscor photography had significantly higher agreement with

April 2000 Landsat data. SAVI and NDVI were found essentially identical to each

other for all three dates. NDVI as computationally simpler and widely used index

was preferred. Consequently March NDVI image was used to build regression

models for urban plots, and April NDVI image for desert and agricultural plots.

Differences in computed regression parameters of alternative models are obvious

when fitted lines are shown on one graph (figure 6). The range of potential slopes is

bounded by the two lines formed by OLS and inverse OLS. Effects of different

modelling approaches are revealed when models are compared with respect to the

statistics summarized in tables 3 and 4. In general, bootstrap simulations increase

uncertainty of the slope term from OLS to OLSbisector and to RMA except the

OLSbisector for agricultural land use. Urban and desert OLS and urban OLSbisector

model were biased toward slight under-prediction (highest negative bias

SE520.027). All agricultural models and urban and desert RMA were biased to

over-prediction while OLSbisector for desert sites showed no bias (SE50). Both

symmetrical models (OLSbisector and RMA) produced a variance ratio close to one

indicating that variance of the observed values is preserved in predicted values

(Cohen et al. 2003). By design, OLS had the lowest RMSE (table 4). Despite its

intermediate standard deviation of the slope term (table 3) OLSbisector provided a

better fit for desert plots as reflected in higher correlation, low RMSE, variance

ratio closest to unity, and no bias (table 4). However for urban plots no one model

can be considered a clear winner. OLS had minimal uncertainty revealed in a small

difference of the standard deviation of slope from the bootstrap slope. On the other

hand it had the largest SE (tables 3 and 4). With its lowest uncertainty of regression

parameters and lower RMSE and variance ratio, OLS was the best among

regressions for agricultural land use.

Table 2. Correlation of field measured vegetation cover with Landsat derived vegetation
abundance.

Desert vegetation Urban vegetation Agricultural vegetation

NDVI_Mar 0.42 0.70 0.99
SAVI_Mar 0.42 0.70 0.99
UNMIX_Mar 0.49 0.76 0.98
NDVI_Apr 0.67 0.51 0.95
SAVI_Apr 0.67 0.51 0.95
UNMIX_Apr 0.50 0.50 0.88
NDVI_May 0.53 0.58 0.53
SAVI_May 0.53 0.58 0.53
UNMIX_May 0.50 0.65 0.59

Notes: NDVI and SAVI are spectral vegetation indices, UNMIX is linearly unmixed
vegetation.
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Figure 6. Scatter plots with fitted regression lines. Regression lines are explained in text and
regression statistics are shown in table 3.
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Accuracy assessment suggested (table 5) that March vegetation fraction from

SMA is the most accurate estimation of cover in urban and agricultural lands

(figure 7). However SMA results did not show a good agreement for desert

validation sites. Instead the April NDVI regressions provided a better estimation of

which we chose to use OLSbisector.

The composite map of vegetative cover (figure 8) was produced by combining

three spatial subsets: March vegetation fraction from SMA for urban land use,

OLSbisector predictions for April NDVI for desert, and April SMA derived fraction

image for agricultural lands. Three different masks were imposed to apply these

models to each of the corresponding land use types. The map depicts general

patterns of vegetation in the metropolitan area reasonably well with peaks in cover

associated with riparian areas, active croplands, and maintained urban vegetation

communities.

Table 3. Regression models with uncertainties. One standard deviation of regression
parameters are shown in parentheses.

Dataset
Regression

model

Analytical

Bootstrap slope R2Intercept Slope

Urban
(n560)

OLS (Y|X) 21.015 (¡0.165) 3.087 (¡0.348) 3.114 (¡0.358) 0.57
OLS(X|Y) 22.499 (¡0.339) 6.306 (¡0.775) 6.417 (¡0.852) 0.57
OLSbisector 21.515 (¡0.168) 4.171 (¡0.372) 4.198 (¡0.391) 0.57
RMA 21.626 (¡0.174) 4.412 (¡0.393) 4.456 (¡0.419) 0.57

Desert
(n542)

OLS (Y|X) 21.005 (¡0.243) 3.172 (¡0.559) 3.193 (¡0.592) 0.45
OLS(X|Y) 22.726 (¡0.459) 7.133 (¡1.075) 7.286 (¡1.233) 0.45
OLSbisector 21.549 (¡0.254) 4.423 (¡0.591) 4.428 (¡0.632) 0.45
RMA 21.694 (¡0.253) 4.757 (¡0.591) 4.791 (¡0.632) 0.45

Agricultural
(n518)

OLS (Y|X) 20.724 (¡0.085) 1.907 (¡0.220) 2.001 (¡0.455) 0.91
OLS(X|Y) 20.820 (¡0.133) 2.107 (¡0.334) 2.184 (¡0.480) 0.91
OLSbisector 20.770 (¡0.105) 2.003 (¡0.270) 2.087 (¡0.463) 0.91
RMA 2 0.771 (¡0.105) 2.004 (¡0.271) 2.088 (¡0.465) 0.91

Notes: OLS (Y|X), ordinary least squares regression; OLS (X|Y), inverse ordinary least
squares; OLSbisector, bisector ordinary least squares; RMA, reduced major axis regression.

Table 4. Results of cross-validation for three regression models.

Dataset Regression model Variance ratio R2 RMSE SE

Urban
OLS (Y|X) 0.698 0.68 0.159 20.027
OLSbisector 0.951 0.69 0.189 20.004
RMA 1.008 0.69 0.200 0.003

Desert
OLS (Y|X) 0.685 0.62 0.082 20.008
OLSbisector 0.964 0.64 0.094 0.000
RMA 1.042 0.64 0.099 0.003

Agricultural
OLS (Y|X) 1.064 0.92 0.156 0.010
OLSbisector 1.122 0.92 0.165 0.010
RMA 1.122 0.92 0.165 0.010

Abbreviations of regression models are explained in table 3.
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5. Discussion and conclusions

Vegetation cover is an important input variable for building ecologically relevant

land cover classifications that will enable us to develop a framework for linking

Table 5. Accuracy assessment results of cover from selected SMA images and predicted by
regressions using selected NDVI images.

Dataset Source image
Regression

model R2 RMSE SE N

Urban UNMIX_MAR 0.70 0.055 0.003

87
NDVI_MAR

OLS (Y|X) 0.32 0.142 0.072
OLSbisector 0.30 0.210 0.099
RMA 0.30 0.227 0.107

Desert UNMIX_APR 0.32 0.047 2 0.029

60NDVI_APR OLS (Y|X) 0.44 0.005 0.016
OLSbisector 0.41 0.007 0.016
RMA 0.40 0.007 0.016

Agricultural UNMIX_APR 0.74 0.095 0.015

30NDVI_APR OLS (Y|X) 0.72 0.201 0.101
OLSbisector 0.72 0.214 0.105
RMA 0.72 0.214 0.105

Abbreviations are explained in tables 2 and 3.

Figure 7. Predicted versus observed (air photo classified validation sites) percent vegetation
cover.
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remote sensing data to ecosystem process models of the urban landscape. The

current study was motivated by the need to estimate vegetation cover in the rapidly

urbanizing Phoenix using field data and Landsat ETM + imagery. The secondary

problem addressed in this study was the use of regression analysis in relating SVI to

ground data.

Landsat data have been the best compromise solution for monitoring urban

vegetation (Cohen and Goward 2004), but its coarse spatial resolution poses

problems. As a result, computation of per-pixel vegetation indices and thematic

classifications are likely to distort biomass/vegetative cover estimates. Spectral

mixture analysis-based quantification of vegetation structure has been shown as a

successful approach applied to urban environments (i.e. Small 2001, Phinn et al.

2002, Small 2002, Rashed et al. 2003, Wu and Murray 2003, Lu and Weng 2004).
Our results also suggest that SMA was a more accurate method than SVI for

mapping active green vegetation in the urban and agricultural landscapes of central

Arizona, but it did not outperform SVI in the desert.

We identify several potential sources of errors in our analysis that can be

categorized into the following:

1. Temporal inconsistencies in satellite and field data or of satellite and airborne

validation data.

2. Measurement errors.

3. Errors in the end member selection process for SMA.

4. Geometric errors.

The order reflects the relative importance of these sources in the overall uncertainty.

We consider the mutual temporal mismatch between field data, satellite imagery,
and air photos as a major source of uncertainty in our case study. Temporal

incompatibility is likely to affect the accuracies of agricultural and desert plots that

Figure 8. Composite map of vegetation cover in CAP LTER (Spring 2000). The map is
created by applying three different estimators individually for each land use type.
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exhibit considerable pattern dynamics (figure 5). Agricultural land use is ostensibly

the most sensitive to temporal mismatch of the data because crop presence/absence

on agricultural fields in the area is known to change frequently. Urban vegetation on

the other hand has shown to be pseudo-invariant throughout the season studied

herein. We eliminated the temporal inconsistency of our datasets by stratifying field

plots by land use type and time of data collection; however the frequency of change

in vegetation pattern in croplands still exceeds the chosen 1 month temporal

threshold.

Measurement errors in our study refer mainly to inaccuracies in estimating

vegetative cover in desert plots that are partially the result of temporal

inconsistencies of data and field methods used. They are in our view a major cause

of poor estimation of cover in desert plots. There are logistical limitations built in

the design of the 200-point field survey stemming from the design of survey

protocols aiming to collect as much data as possible for many different purposes

within a reasonable time frame. It is important, however, to measure all individual

trees and shrubs by either extending the protocol or conducting an additional sub-

survey on desert sites. It is helpful to have timely high spatial resolution imagery

used to map vegetation patches that can be verified in the field. Doing this should

reduce measurement errors.

End member selection is a crucial step that affects the validity of SMA. Several

methods have been proposed to narrow the set of suitable end members in highly

complex landscapes (Bateson et al. 2000, Rashed et al. 2003, Lu and Weng 2004).

Since SMA shows promise to improve vegetation mapping in urbanizing central

Arizona, further efforts will be needed to decide on what strategy will perform best

here. We believe that the low accuracy of desert vegetation classification can be

improved if a spectral library of major desert land covers is collected and used

instead of image derived end members. Spectral limitations of SMA developed from

broadband sensors such as Landsat should also be recognized.

Geometric errors are always an issue when merging different scales in an analysis.

Urban landscapes are very sensitive to spatial mis-registration because abrupt

changes in land cover are often below the spatial resolution of Landsat. Although

we rigorously checked the accuracy of all ETM + images uncertainty in positional

accuracy could still be a problem considering the large extent of the study area.

We used regression analysis to relate field data to NDVI images. While the choice

of regression method to use was not critical for urban and agricultural lands desert

land cover required analysis of uncertainties associated with regressions because

accuracy for SMA was low. The comparison of different regression methods

involved computation of several regression lines and uncertainty analysis. Our

results indicate that OLS developed for desert plots resulted in the highest accuracy.

However, the attenuation of original variance in OLS predictions may become a

source of additional errors (Cohen et al. 2003). Moreover unnecessary output errors

are produced if predicted biophysical variables are used to drive simulation models.

These problems are aggravated if correlation between these variables and sensor

data is sufficiently low. Symmetrical regressions such as RMA and OLSbisector are

alternatives that help to reduce these uncertainties although at the expense of other

errors such as those expressed in RMSE. More importantly, though uncertainties

can be minimized in OLS by rigorous statistical tests, regression analysis theory

suggests that applying OLS in many biophysical remote sensing applications is

flawed in principle. We used OLSbisector to predict desert vegetation because of its
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overall less uncertainty although it had lower than OLS accuracy when compared

with the validation dataset.

We conclude that overall SMA is a more accurate approach to quantitative

measures of vegetation that can be used in various research activities within

CAPLTER including land cover and land use classifications, evaluation of urban

heat island effects, and correlation of socio-economic variables with ecosystem

processes in the Phoenix metro area (Stefanov et al. 2001, Baker et al. 2002,

Hawkins et al. 2004, Shochat et al. 2004). All these projects would benefit from more

detailed and more accurate account of the spatio-temporal structure of vegetation.
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