Ecosystem measurement, manipulation and modeling

Jianwu Tang (唐剑武)

The Ecosystems Center, Marine Biological Laboratory at Woods Hole, and Dept. of Ecology and Evolutionary Biology, Brown University jtang@mbl.edu

MBL Biological Discovery in Woods Hole

Outline

- Introduction: ecosystem processes
- Ecosystem measurement
- Ecosystem manipulation
- Ecosystem modeling

New Biology for the 21st Century

1. Generate food plants to adapt and grow sustainably in changing environments

2. Understand and sustain ecosystem function and biodiversity in the face of rapid change

3. Expand sustainable alternatives to fossil fuels

4. Understand individual health

U.S. National Research Council 2009, http://www.nap.edu/catalog/12764.html

CO₂-climate-ecosystems interactions

N₂O production and emissions

C-N coupling

nature geoscience FOCUS | REVIEW ARTICLE

PUBLISHED ONLINE: 25 APRIL 2010 | DOI: 10.1038/NGE0844

Reduction of forest soil respiration in response to nitrogen deposition

I. A. Janssens^{1*}, W. Dieleman¹, S. Luyssaert², J-A. Subke³, M. Reichstein⁴, R. Ceulemans¹, P. Ciais², A. J. Dolman⁵, J. Grace⁶, G. Matteucci⁷, D. Papale⁸, S. L. Piao⁹, E-D. Schulze⁴, J. Tang¹⁰ and B. E. Law¹¹

The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. As a consequence, forests in industrialized regions have experienced greater rates of nitrogen deposition in recent decades. This unintended fertilization has stimulated forest growth, but has also affected soil microbial activity, and thus the recycling of soil carbon and nutrients. A meta-analysis suggests that nitrogen deposition impedes organic matter decomposition, and thus stimulates carbon sequestration, in temperate forest soils where nitrogen is not limiting microbial growth. The concomitant reduction in soil carbon emissions is substantial, and equivalent in magnitude to the amount of carbon taken up by trees owing to nitrogen fertilization. As atmospheric nitrogen levels continue to rise, increased nitrogen deposition could spread to older, more weathered soils, as found in the tropics; however, soil carbon cycling in tropical forests cannot yet be assessed.

Outline

- Introduction Secosystem processes
- Ecosystem measurement
- Ecosystem manipulation_
- Ecosystem modeling

Important ecosystem parameters

- State/stock
 - Vegetation structure (DBH, height, crown size, LAI) and spatial pattern
 - Species composition and diversity
 - Biomass and volume
 - Climate variables (air temperature, soil temperature, moisture, humidity, cloud coverage)
- Flux (flow)
 - Mass: Carbon, nutrient, water (evaporation, transpiration, precipitation)
 - Energy: heat (sensible and latent), solar radiation

Measurement interval

- Periodical (campaign based)
 - Biometric
 - Nutrient status
- Continuous
 - Sensors and dataloggers (convert voltage/current to digital files)
 - Data storage and download
 - Power supply
 - Calibration and quality control

Biometric measurement

Measurement of photosynthesis

Measurement of respiration

Soil respiration measurement Chambers

 Multiplex up to 16 long-term chambers (30 m diameter coverage)

CO₂ gradient Eddy covariance

Chamber-based in situ measurement of greenhouse gases

Tang et al. in preparation

Ecosystem-scale measurement of NEP:

Eddy covariance $F = \overline{w'c'}$

Agricultural impacts on greenhouse gas emissions (CO₂, N₂O, CH₄)

Tang et al.

Global flux network

http:

http://www.daac.ornl.gov/FLUXNET

U.S. National Ecological Observatory Network (NEON)

NEON baseline design

U.S. National Ecological Observatory Network (NEON)

- Headquarters –Boulder, CO
- 20 Domains
 - -- 20 Core sites (wildland)
 - -- 40 Relocatable sites (land-use sites)
- 10 Mobile laboratories (AK, HI, CONUS+PR)
- Human-based observations
- 3 Airborne Observation Platforms
- Land Use Analysis Package
- STREON Experiment

Remote sensing

LIDAR generated 3D tree map, data of Qi et al.

Outline

- Introduction Secosystem processes
- Ecosystem measurement
- Ecosystem manipulation
- Ecosystem modeling

Closed-top-chamber

Saxe et al. 1998

Large-scale manipulative experiments

FACE (Free air CO₂ enrichment)

Soil warming experiment

Warming Arctic

Warming effects on soil respiration at Harvard Forest

Warming and C-N coupling

Soil warming, carbon-nitrogen interactions, and forest carbon budgets

Jerry M. Melillo^{a,1}, Sarah Butler^a, Jennifer Johnson^{a,b}, Jacqueline Mohan^{a,c}, Paul Steudler^a, Heidi Lux^{a,d}, Elizabeth Burrows^{a,e}, Francis Bowles^f, Rose Smith^a, Lindsay Scott^a, Chelsea Vario^{a,g}, Troy Hill^{a,h}, Andrew Burtonⁱ, Yu-Mei Zhou^j, and Jim Tang^a

^aThe Ecosystem Center, Marine Biological Laboratory, Woods Hole, MA 02543; ^bBiology Department, Stanford University, Palo Alto, CA 94305; ^cSchool of Ecology, University of Georgia, Athens, GA 30602; ^dHarvard Forest, Petersham, MA 02543; ^eRutgers University, Piscataway, NJ 08901; ¹Research Designs, Lyme, NH 03768; ^gDepartment of Biological Sciences, Dartmouth College, Hanover, NH 03755; ^hSchool of Forestry and Environmental Studies, Yale University, New Haven, CT 06511; ⁱSchool of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931; and ^jInstitute of Applied

Greenhouse gas fluxes in an agricultural farm in Maseno, Kenya

5 fertilizer treatments

- 0, 50, 75, 100, and 200 kg N
 ha⁻¹ applied by hand
- Replicated in 4 blocks of 5 plots each
- Sampled weekly (+ daily for 7 days after fertilization)

Hickman et al.

Outline

- Introduction Secosystem processes
- Ecosystem measurement
- Ecosystem manipulation
- Ecosystem modeling

Modeling global carbon cycle

- Model input: climate, ecosystem parameters, management scenarios, etc., which are easy to measure
- Model output: carbon fluxes (GPP, R, NEP) and pools (biomass, soil carbon)
- Models should simulate previous carbon cycles (validated by measurement data), and predict future (under certain scenarios)
- Coupled climate-ecosystem models

Farquhar photosynthesis model

$$A = V_{cMax} \frac{C - \Gamma_*}{C + K_c (1 + OK_c)} - R_d$$
, if light is saturate

 $A = J \frac{C - \Gamma_*}{4.5C + 10.5\Gamma_*} - R_d, J = f(J_{Max}), \text{ if light is limited}$

 V_{cMax} : maximum rate of carboxylation J_{Max} : maximum rate of eclectron transport Γ_* : CO₂ compensation point (when net carbon fixation is 0) C and O: intracellular [CO₂] and [O₂], controlled by stomatal conductance

Stomate

- A tiny opening or pore on the leaf surface, used for gas exchange -fixing CO₂ and releasing water.
- Plants can regulate stomatal conductance to maximize photosynthesis while minimize water loss.

Control of stomatal conductance

Tang et al. 2006, JGR

Respiration models

Q_{10} model

 $R = \beta_0 Q_{10}^{T/10}$, where $Q_{10} = e^{10\beta_1}$

Cox et al. (2000, *Nature*): Acceleration of global warming due to positive feedbacks of respiration ---- $Q_{10} = 2$

Michaelis-Menten function (Davidson et al. 2006)

 $V_{\rm max}$: maximum enzyme activity

C: concentration of the soluble substrate (carbon availability)

 $K_{\rm m}$: half-saturation constant

All are temperature dependent

Soil respiration controlled by soil temperature and moisture

Age effects on photosynthesis and respiration

Root respiration regulated by photosynthesis with time lags (7-12 hours)

The soil CO₂ gradient method and eddy covariance method are consistent

Decay of the rain pulse:

$$R_R = R_b + ae^{-t/\tau}$$

Tang et al. 2005,Agric.For. Meteorol.

Calculating flux from gradient measurement

Tang et al. 2005

 ϕ is the porosity, sum of the volumetric air content ε and the volumetric water content θ . S = silt + sand content

 P_b is the bulk density and P_m is the particle density for the mineral soil.

$$F_{i} = -\left(\frac{D_{a0}P_{0}\phi^{2}}{RT_{0}^{1.75}}\right)\left(\frac{\phi-\theta}{\phi}\right)^{2.9S}\left(\frac{T_{i}+T_{i+1}}{2}\right)^{1.75}\frac{(C_{i+1}/T_{i+1}-C_{i}/T_{i})}{Z_{i+1}-Z_{i}}$$

Simulating production and transport of CO₂ in soil (Jassal et al. 2004)

Terrestrial Ecosystem Model (TEM)

Summary

- Both in-situ monitoring and manipulation methods are important in understanding ecosystem functions and processes.
- Ecosystem modeling requires thorough understanding of processes and mechanisms.