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Introduction

Modeling complex ecological systems: an introduction

www.elsevier.com/locate/ecolmodel

1. What is complexity?

The world is replete with all kinds of complex
systems, be they ecological, social, economic, or
political. Nevertheless, complex systems share sev-
eral common characteristics. First, they are ther-
modynamically open, meaning that they exchange
energy and/or mass with their environment. Sec-
ond, they are often composed of a large number
of diverse components. Third, system components
interact with each other nonlinearly, and fre-
quently have response delays and feedback loops
among them. Fourth, complex systems exhibit a
high degree of heterogeneity in both time and
space. Consequently, complex systems are often
characterized by emergent properties, multiscale
interactions, unexpected behaviors, and self-orga-
nization (Jørgensen, 1995; Prigogine, 1997; Levin,
1999; Wu, 1999). Furthermore, a comprehensive
concept of complexity not only needs to include
the inherent system properties, but also the role of
the observer (Allen and Starr, 1982; Flood, 1987;
Wu, 1999).

While the term ‘complexity’ has become a buz-
zword across many fields in science, it has various
meanings. For example, structural complexity
may refer to the compositional diversity and
configurational intricacy of a system; functional
complexity emphasizes the heterogeneity and non-
linearity in system dynamics; and self-organizing
complexity hinges on the emergent properties of
systems co-evolving with their environment pri-
marily through local interactions and feedbacks at
different spatiotemporal scales. Such self-organiz-
ing systems have often been referred to as ‘com-

plex adaptive systems’ (Cowan et al., 1994).
According to Levin (1999), a complex adaptive
system is ‘ a system composed of a heterogeneous
assemblage of types, in which structure and func-
tioning emerge from the balance between the con-
stant production of diversity, due to various
forces, and the winnowing of that diversity
through a selection process mediated by local
interactions’. Most ecological and socioeconomic
systems exhibit different degrees of self-organizing
complexity, and thus may be considered as com-
plex adaptive systems (Cowan et al., 1994; Levin,
1999).

Scientists have long been interested in unravel-
ing the problem of complexity. The late Noble
Laureate Herbert A. Simon (Simon, 1996) iden-
tified three bursts of interest in the study of
complexity in the 20th century. The post-World
War I period was characterized by such terms as
‘holism’, ‘Gestalts’, and ‘creative evolution’. The
post-World War II period was signified primarily
by general systems theory, information theory,
and cybernetics, focusing primarily on the roles of
feedback and homeostasis in maintaining system
stability. The current period of complexity re-
search has focused mainly on causes, mechanisms
and methods, and a diversity of views can be
identified with terms such as ‘chaos’, ‘catastro-
phe’, ‘fractal’, ‘cellular automata (CA)’, ‘genetic
algorithms (GA)’, ‘neural networks’, ‘hierarchy’,
‘self-organization’, and ‘complex adaptive systems
(CAS)’ (Wu, 1999). Different concepts and theo-
ries entail different approaches to modeling com-
plex systems. In many cases, however, they are
more complementary than contradictory. It is in-

0304-3800/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0 304 -3800 (01 )00498 -7



Editorial2

teresting that the development of ecological mod-
eling in theory and practice seems to follow this
‘historical trajectory’ of complexity research
rather closely.

2. Some history of modeling complex ecological
systems

As a science that deals with complexity of
physical, biological, and socioeconomic origins in
concert, ecology has experienced successes and
failures in applying a variety of theories and
methods developed from multidisciplinary re-
search in complexity. Although the first period of
complexity research did not seem to have stimu-
lated much activity in ecological modeling, a
much closer relationship between ecological mod-
eling and complexity research in terms of both
theory and methods is found when Simon’s sec-
ond and third developmental stages are
considered.

As in several other earth sciences, the Newto-
nian mechanics approach characterized by deter-
minism and mathematical tractability represents
the classical way of modeling ecological systems.
It was first adopted by population ecologists, and
remains very much alive as a legacy of the
‘Golden Age’ of theoretical ecology from 1920s
and 1940s (see Scudo and Ziegler, 1978; McIn-
tosh, 1985 for reviews). Being able to handle
systems with only a small number of components,
this approach is opt for dealing with the ‘orga-
nized simplicity’. The statistical mechanics ap-
proach, on the other hand, is effective for tackling
the ‘disorganized complexity’, characterizing sys-
tems with a large number of components that
each behave more or less randomly. This ap-
proach has been rather successful in modern
physics, but infrequently applied in ecology partly
because, for many ecological problems, the system
of study does not have a large enough number of
components (O’Neill et al., 1986).

Ecologists are often confronted with the so-
called ‘medium-number’ systems that exhibit the
‘organized complexity’, which is the subject of
systems science (O’Neill et al., 1986; Wu, 1999).
No wonder that, as systems science emerged in

the 1950s and 1960s, ecologists were among the
most active, applying and contributing to the
three major theories in systems science: general
systems theory, cybernetics, and information the-
ory (Patten, 1959; Van Dyne, 1966; Watt, 1966;
Margalef, 1968; Dale, 1970; Patten, 1971, 1972,
1974, 1976; Reichle et al., 1973; Hall and Day,
1977; Shugart and O’Neill, 1979; Odum, 1983).
By the 1970s, this ‘systems modeling movement’
apparently had a significant influence in ecology,
particularly through the IBP (International Bio-
logical Program), and some began to see the ‘new
ecology’ as a ‘big science’ (McIntosh, 1985; Wu,
1991). This may be called the ‘Golden Age’ of
systems ecology, broadly defined as the applica-
tion of systems analysis to ecology (Walters,
1971), which coincided with the rapid develop-
ments in systems science. In fact, even prior to
this time the holistic perspective was essential for
the supraorganismic ecological theory pioneered
by Clements in the context of community ecology
(e.g. Clements, 1916) and later championed by R.
Margalef and E.P. Odum in the context of ecosys-
tem ecology (e.g. Margalef, 1968; Odum, 1969;
McIntosh, 1985; Wu and Loucks, 1995 for
reviews).

However, the enthusiasm for systems ecology
faded away quietly (notably in North America)
during the 1980s in the wake of the failure of
several large, monolithic computer models pro-
duced by the IBP and with the increasing recogni-
tion of the importance of ubiquitous spatial
heterogeneity and scale. While the systems model-
ing approach continued to be dominant in model-
ing energy flow and matter cycling of various
ecosystems, spatial modeling approaches, includ-
ing diffusion-reaction, patch (or gap) dynamics,
cellular automata, and fractal models, seemed to
take over the central place in ecological modeling
during much of the 1980s and the 1990s (e.g.
Shugart, 1984; Hogeweg, 1988; Sugihara and
May, 1990; Levin et al., 1993; Wu and Levin,
1994; Wu and Loucks, 1995). Models based on
catastrophe theory and chaos theory have also
had profound influence on the way ecologists
think of ecological stability and predictability
(Hastings et al., 1993). This shift of emphasis in
modeling approaches seems reminiscent of the
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new developments in the science of complexity
(the third developmental stage of complexity re-
search as per Simon, 1996).

One of the most intriguing recent developments
in both complexity research and ecological model-
ing is the resurgence of interest in self-organiza-
tion, emergent properties, and order (be it spatial
or temporal). These concepts have been familiar
to systems ecologists since the Clements’ supraor-
ganismic theory of succession (e.g. Clements,
1916; Margalef, 1968; Odum, 1969; Ulanowicz,
1979; De Angelis et al., 1981). However, new
theories and methods such as self-organized criti-
cality, complex adaptive systems, fractals, and
cellular automata provide new insights and op-
portunities for understanding ecological complex-
ity (Cowan et al., 1994; Patten et al., 1995;
Jørgensen, 1997; Jørgensen et al., 1998; Levin,
1999; Wu, 1999). All these new theories and meth-
ods seem to have an explicit emphasis on the
individual (or agent) behavior and local interac-
tions, and this common theme is evident in many
recent ecological models that are often character-
ized as individual-based models (IBMs), patch
models, and a variety of cellular models
(Hogeweg, 1988; Levin et al., 1993; Judson 1994;
Grimm, 1999). However, it would be mistake to
perceive this bottom-up oriented approach simply
as another reductionist route. Complex systems
are complex primarily because they are not com-
pletely ‘reducible’ to their components, and thus
top-down constraints and hierarchical linkages
must be adequately considered. An obvious chal-
lenge in modeling complex ecological systems is,
then, to integrate the rigor of reductionism with
the comprehensiveness of holism.

It is perceivable that with the renewed and
broad interest in the issues of complexity and
needs for more holistic perspectives for under-
standing large-scale ecological and environmental
problems (Naveh, 2000; Wu and Hobbs, 2001, in
review), systems ecology is regaining its important
role in ecological science and applications. While
new modeling approaches provide needed insights
into different aspects of ecological complexity, the
systems methodology remains a powerful frame-
work to integrate ‘parts’ to understand the
‘whole’.

3. The special issue of modeling complex
ecological systems

This special issue has evolved out of the Model-
ing Complex Systems Conference held in Mon-
tréal, Canada between 31 July and 4 August 2000.
Most of the papers originated from the presenta-
tions at the conference. These papers by no means
cover the whole spectrum of the diverse ecological
models, but are reflective of several major ap-
proaches and challenges for modeling complex
systems. In the following, we present a synoptic
overview of these papers.

Wu and David argue that the large number of
diverse components, nonlinear interactions, scale
multiplicity, and spatial heterogeneity are the ma-
jor sources of ecological complexity. They advo-
cate that the hierarchical patch dynamics
paradigm provides a powerful framework for
breaking down complexity and integrating pattern
with process and parts with the whole. They
present a spatially explicit hierarchical modeling
approach to study heterogeneous landscapes fol-
lowing a scaling ladder strategy. The hierarchical
urban landscape model (HPDM-PHX) is pre-
sented as an implementation of this approach.
They further discuss the development of a model-
ing environment, the hierarchical patch dynamics
modeling platform (HPD-MP) that is designed to
facilitate hierarchical patch dynamic modeling.
Detecting and quantifying scale-multiplicity and
hierarchical structure in space are important and
represent a new dimension in modeling complex
ecological systems. Hay et al. consider landscapes
as complex systems which necessitate a multiscale
or hierarchical approach in their analysis, moni-
toring, modeling and management. They propose
that Scale–Space theory, combined with remote
sensing imagery and blob-feature detection tech-
niques, satisfy many of the requirements of an
idealized multiscale framework for landscape
analysis. Scale–Space theory is a framework de-
veloped by the computer vision community for
early visual operations, and can be used to auto-
matically analyze real-world structures at multiple
scales without requiring a priori information
about such structures or appropriate scale(s) of
analysis. The authors hypothesize that the spa-
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tially explicit features derived from the scale–
space methodology correspond to ecologically
meaningful entities in landscapes, which can be
used as inputs in geographic information systems
or spatially explicit models to better represent the
spatial complexity of ecological systems. From a
different perspective, Borcard and Legendre
present a statistical method for detecting and
quantifying spatial patterns over a wide range of
scales, using eigenvalue decomposition of a trun-
cated matrix of geographic distances among sam-
pling sites. Through numerical simulations and a
contrived data set they demonstrate that the
method is effective in characterizing the multiscale
patterns of ecological systems.

Thermodynamic approaches are powerful in
studying macroscopic patterns and processes in
ecological systems, but their potential is yet to be
fully explored. Zhang and Wu develop a statistical
thermodynamic model of the organizational order
of vegetation (OOV) that can be used to derive
broad-scale vegetation patterns. OOV is a thermo-
dynamic measure of the degree of structural and
functional self-organization of vegetation, and a
macroscopic representation of the steady state
reached between vegetation and its environment
over large spatial and temporal scales. The model
unites OOV, ecosystem entropy, actual annual
evapotranspiration, and mean annual temperature
in the same thermodynamic framework. They ar-
gue that statistical and non-equilibrium thermo-
dynamics may serve as both a theoretical
framework and a practical modeling approach for
dealing with the complexity, diversity, and hetero-
geneity of ecological systems. Ménard et al. inves-
tigate the effects of local-scale disturbances on the
dynamics of forest ecosystems using one of the
better-known forest simulators, SORTIE, a
stochastic and mechanistic spatially-explicit and
individual-based forest succession model. Their
results indicate that the species spatial structure
and dynamics are not sensitive to initial condi-
tions after 300 years of simulation. This may be
interpreted as a result of self-organizing processes
in the complex model forest system. These au-
thors suggest that SORTIE can be a valuable
complementary tool to field studies for under-
standing the impact of local disturbances on
forest dynamics.

While SORTIE is primarily a plant succession
model based on the life cycle of individual trees,
Childress et al. present a systems model that
mechanically simulates essential ecosystem pro-
cesses and management activities. Like in most
cross-scale modeling efforts today, the plot-level
ecosystem is scaled up to the landscape using a
grid-based, direct extrapolation approach. They
also discuss several practical challenges in apply-
ing complex models in a management context. To
meet the multifold needs of quantifying carbon
budgets, assessing climate change effects, and pro-
jecting forest yield for management decisions,
Peng et al. have developed a hybrid model of
forest growth and carbon dynamics by integrating
parts of existing empirical and mechanistic mod-
els. They argue that many process-based ecosys-
tem models, some of which are well-established
and tested, are not appropriate for management
applications because their output is not directly
useful in management planning, and that this
hybrid modeling approach strikes a balance be-
tween science and application. In general, it seems
wise to build the complexity upon well-established
models or modules in modeling complex ecologi-
cal systems.

Qi et al. examines one of the salient characteris-
tics of all complex systems—the nonlinearity and
its manifestation in several well-known ecosystem
models of biogeochemical cycles. In particular,
they demonstrate that, due to the nonlinear re-
sponse of soil respiration to changes in tempera-
ture sensitivity, the accuracy of these models in
predicting carbon fluxes at large scales is seriously
questionable. Based on their earlier finding that
the temperature sensitivity is often a function of
temperature itself, soil moisture and possibly
other factors (Xu and Qi 2001), they develop a
general model of temperature sensitivity of soil
respiration as affected by multiple factors. This
model deals more realistically with this nonlinear-
ity and variability in model prediction, which is
particularly useful for addressing the complex
feedback mechanisms between climate and terres-
trial ecosystems. Wang et al. also address the
problems of model accuracy and uncertainty in
the context of soil loss, which has been a rather
complex and long-standing issue. Apparently, a
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full understanding of soil loss requires a landscape
ecological perspective. The Revised Universal Soil
Loss Equation explicitly considers several factors,
including runoff erosivity, soil erodibility, slope
measures, and land cover. Wang et al. demon-
strate that the sequential Gaussian simulation al-
gorithm can be effectively used to estimate spatial
and temporal variabilities of the factors directly
affecting soil loss over a region. Clearly, accuracy
assessment and uncertainty analysis of complex
models are essential, but much more research is
needed.

Optimization methods provide another suite of
tools for dealing with complex ecological systems.
Turner et al. examine two optimization packages,
one based on linear programming and the other
based on a heuristic search algorithm, in the
context of forest resource management and plan-
ning. Their results show that, while both packages
can handle the problems at hand, the second
package is preferable for solving multi-objective
problems with spatial components as in modeling
sustainable forest management. Complex ecologi-
cal systems become even more complex when
human actions (e.g. disturbances, and manage-
ment or conservation interventions) are explicitly
considered. Roberts et al. present such an exam-
ple in modeling the recreational rafting behavior
on the Colorado River within the Grand Canyon
National Park of the United States. The Grand
Canyon River Trip Simulator is a model of com-
plex, dynamic human-environment interactions
which integrates agent-based modeling, artificial
intelligence, and statistical analysis. Such ap-
proaches are promising for modeling complex
adaptive systems such as many ecological systems,
especially, when individual behavior and decision
making processes at various scales must be explic-
itly considered.

Again, this special issue is only a sample of the
many topics and approaches for modeling com-
plex ecological systems. Yet, they represent some
of the major directions of the current research in
this area. Some other important topics, not di-
rectly dealt with in this special issue, are men-
tioned in the first two sections of this introductory
paper and referred to the literature cited. As a
number of new theories and methods continue to

emerge in the science of complexity, ecological
modeling is entering another exciting period. Al-
though we may never be able to adequately pre-
dict the exact dynamics of complex systems,
improving our understanding of the complex
world through modeling is surely expected.
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