ECOLOGICAL
MODELLING

E-LS El E Ecological Modelling 153 (2002) 7—26

www.elsevier.com/locate/ecolmodel

A spatially explicit hierarchical approach to modeling
complex ecological systems: theory and applications

Jianguo Wu *, John L. David

Department of Plant Biology, Arizona State University, PO Box 871601, Tempe, AZ 85287-1601, USA

Abstract

Ecological systems are generally considered among the most complex because they are characterized by a large
number of diverse components, nonlinear interactions, scale multiplicity, and spatial heterogeneity. Hierarchy theory,
as well as empirical evidence, suggests that complexity often takes the form of modularity in structure and
functionality. Therefore, a hierarchical perspective can be essential to understanding complex ecological systems. But,
how can such hierarchical approach help us with modeling spatially heterogeneous, nonlinear dynamic systems like
landscapes, be they natural or human-dominated? In this paper, we present a spatially explicit hierarchical modeling
approach to studying the patterns and processes of heterogeneous landscapes. We first discuss the theoretical basis for
the modeling approach—the hierarchical patch dynamics (HPD) paradigm and the scaling ladder strategy, and then
describe the general structure of a hierarchical urban landscape model (HPDM-PHX) which is developed using this
modeling approach. In addition, we introduce a hierarchical patch dynamics modeling platform (HPD-MP), a
software package that is designed to facilitate the development of spatial hierarchical models. We then illustrate the
utility of HPD-MP through two examples: a hierarchical cellular automata model of land use change and a spatial
multi-species population dynamics model. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction Levin, 1999). The study of complexity has a his-
tory of at least several decades, ranging from

Ecological systems are characterized by diver- physical, biological, and to social sciences, and a
sity, heterogeneity and complexity. Complexity recent resurgence of interest in complexity issues
often results from the nonlinear interactions is evident as new theories and methods have
among a large number of system components mushroomed in the past few decades (see Wu and
which frequently lead to emergent properties, un- Marceau, this issue and references cited therein).
expected dynamics, and characteristics of self-or- One of the most intriguing and widely-cited theo-
ganization (Jorgensen, 1995: Prigogine, 1997; ries in the science of complexity is self-organized

criticality (SOC; Bak et al., 1988; Bak, 1996).
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cascading catastrophe. When a system is at the
self-organized critical state, the frequency and
magnitude of events follow a power law distribu-
tion, and this may be viewed as a statistically
stable, internally controlled state with no charac-
teristic scale within the system. At this point,
events are correlated across all scales exhibiting a
statistical fractal pattern in spatial structure. Bak
and Chen (1991) claimed that SOC may explain
the dynamics of a wide range of natural and
human-related phenomena, including earth-
quakes, ecosystems, and social and economic pro-
cesses. Furthermore, the title, as well as the
content, of Bak’s (1996) book even suggested that
SOC was the mechanism of ‘How Nature Works’.

However, while it is extremely intriguing, SOC
does not seem adequate for explaining the great
diversity of ecological phenomena (Levin, 1999).
Of course, it is not surprising that simple statisti-
cal analyses may reveal that some ecological vari-
ables in certain ecosystems exhibit power—law
relationships (e.g. Jgrgensen et al., 1998; Solé et
al., 1999). However, the existence of a power—law
relationship alone is not adequate to prove that a
system is at the self-organized critical state be-
cause diverse mechanisms may result in such a
relationship in both physical and ecological sys-
tems (Raup, 1997; Jensen, 1998; Kirchner and
Weil, 1998; Levin, 1999). SOC de-emphasizes or
completely ignores the existence of multiple-scale
constraints and their significance in influencing
system dynamics. Bak (1996) asserted that all
complex self-organizing systems move themselves
to the self-organized critical state just like a sand-
pile. To the frantically enthusiastic SOC advo-
cates, top-down constraints in controlling system
dynamics do not seem to be important. In this
regard, SOC appears to represent an extreme
reductionist view. Interestingly, Bak and Chen
(1991) claimed that SOC was ‘the only model or
mathematical description that has led to a holistic
theory for dynamic systems’. It is evident from the
above discussion, however, that the implications
of the theory of self-organized criticality for eco-
logical systems are in sharp contrast with hier-
archy theory or any holistic systems theory.

In general, ecological systems are not, and do
not behave like, sandpiles. Levin (1999) argued

that heterogeneity, nonlinearity, hierarchical orga-
nization, and flows are four key elements of com-
plex adaptive systems, like ecosystems, that allow
for self-organization to occur. That is, CAS typi-
cally become organized hierarchically into struc-
tural arrangements through non-linear
between-component interactions, and these struc-
tural arrangements determine, and are reinforced
by, the flows of energy, materials and information
among the heterogeneous components. Levin
(1999) further suggested that SOC and modular
structure represent the two ends of a continuum
along which most ecosystems are found in the
middle. While we agree with Levin’s postulation
in general, we dare to speculate that the majority
of ecosystems, especially once well-developed, are
hierarchically structured, so that component di-
versity, spatial heterogeneity, process efficiency,
and system stability are simultaneously accommo-
dated. Simon (1962) convincingly argued that
‘complexity frequently takes the form of hier-
archy, and that hierarchic systems have some
common properties that are independent of their
specific content.” In other words, hierarchy is a
central structural scheme of the architecture of
complexity, and often manifests itself in the form
of modularity in nature.

Why are complex systems usually hierarchically
organized? For biological and ecological systems,
a hierarchical architecture tends to evolve faster,
allow for more stability, and thus is favored by
natural selection (Simon, 1962; Whyte et al., 1969;
Pattee, 1973; Salthe, 1985; O’Neill et al., 1986).
Although not all hierarchical systems are stable,
the construction of a complex system using a
hierarchical approach is likely to be more success-
ful than otherwise as suggested by the watch-
maker parable (Simon, 1962; Muller, 1992; Wu,
1999). In evolutionary biology it is well docu-
mented that complexity is built upon existing
complexity. This is also frequently the case in the
business world, the political arena, and the engi-
neering disciplines. For example, to build com-
plex, yet stable and efficient software, computer
software engineers have developed the object-ori-
ented paradigm, which is based on the decomposi-
tion principle of hierarchy theory (Booch, 1994).
In general, successful human problem-solving
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procedures are hierarchical, too. It has been ar-
gued that a non-hierarchical complex system can-
not be fully described, and even if it could, it
would be incomprehensible (Simon, 1962; Newell
and Simon, 1972). In ecology, the hierarchies we
construct inevitably result from the interactions
between the inherent characteristics of the system
under study and the observer who studies the
system. While there is no absolute objectivity,
how closely a constructed hierarchy corresponds
to the structure of the real system significantly
affects the usefulness and power of using a hierar-
chical approach.

In a sense, a hierarchical approach is a way of
breaking down complexity and a process of dis-
covering or rendering order. To do so, a number
of hierarchical modeling methods have been de-
veloped in different disciplines (see Wu 1999 for a
review). However, the problem of spatial hetero-
geneity and the need for spatial explicitness
present grand challenges to the application of
hierarchy theory in modeling ecological systems.
Based on the hierarchical patch dynamics (HPD)
paradigm (Wu and Loucks, 1995; Wu, 1999), we
present a spatially explicit hierarchical modeling
approach to studying complex ecological systems
and a modeling software platform that was de-
signed to facilitate the development of HPD mod-
els. Not to be confused with specific modeling
methods such as cellular automata, genetic al-
gorithms, and Markov chains, the spatial HPD
modeling approach is a multiple-scale methodol-
ogy for studying complex systems that can bring
different modeling techniques together in a coher-
ent manner.

2. Theoretical basis for the spatially explicit
hierarchical modeling approach

The theoretical basis for the spatially explicit
hierarchical modeling approach is the hierarchical
patch dynamics paradigm (HPDP), which
emerges out of the integration between hierarchy
theory and patch dynamics (Wu and Loucks,
1995; Wu, 1999). The following is a brief discus-
sion of the major elements of HPDP and their
ecological implications.

2.1. Hierarchy theory

Hierarchy theory emerged from a diversity of
studies in various disciplines, including manage-
ment science, economics, psychology, biology,
ecology, and systems science (Simon, 1962, 1973;
Koestler, 1967; Whyte et al., 1969; Pattee, 1973;
Overton, 1975; Mclintire and Colby, 1978). It has
been significantly refined and expanded in the
context of evolutionary biology and ecology by a
series of books published in the past two decades
(Allen and Starr, 1982; Salthe, 1985; O’Neill et al.,
1986; Ahl and Allen, 1996). Thus, major develop-
ments in hierarchy theory are relatively recent,
although the concepts of ‘levels’ of organization
and ‘hierarchy’ date back to ancient times
(Wilson, 1969). Much of the theory is only perti-
nent to nested hierarchies in which lower-level
components are completely contained by the next
higher level, although some general attributes are
found in both nested and non-nested hierarchical
systems (Valentine and May, 1996; Wu, 1999).

According to hierarchy theory, complex sys-
tems have both a vertical structure that is com-
posed of levels and a horizontal structure that
consists of holons (Fig. 1). Hierarchical levels are
separated, fundamentally, by different characteris-
tic rates of processes (e.g. behavioral frequencies,
relaxation time, cycle time, or response time).
Higher levels are characterized by slower and
larger entities (or low-frequency events) whereas
lower levels by faster and smaller entities (or
high-frequency events). Generally speaking, the
relationship between two adjacent levels is asym-
metric: the upper level exerts constraints (e.g. as
boundary conditions) to the lower level, whereas
the lower provides initiating conditions to the
upper. On the other hand, the relationship be-
tween subsystems (holons) at each level is rela-
tively symmetric in that they interact in both
directions. The interactions among components
within the same holon are more strongly and
more frequently than those between holons.

These characteristics of hierarchical structure
can be explained by virtue of ‘loose vertical cou-
pling’, permitting the distinction between levels,
and ‘loose horizontal coupling’, allowing the sepa-
ration between subsystems (holons) at each level
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(Simon, 1973). The existence of vertical and hori-
zontal loose couplings is the fundamental reason
for the decomposability of complex systems (i.e.
the feasibility of a system to be disassembled into
levels and holons without a significant loss of
information). System decomposition (i.e. the pro-
cess of separating and ordering system compo-
nents according to their temporal and spatial
scales) represent one of the most essential tenets
of hierarchy theory. While the word ‘loose’ sug-
gests ‘decomposable’, ‘coupling’ implies interac-
tions among components. Complete
decomposability only occurs when between-com-
ponent interactions do not exist, and thus com-
plex systems are usually nearly decomposable
(Simon, 1962, 1973). According to the principle of
decomposition, for a given study that is focused
on a particular level, constraints from higher lev-
els are expressed as constants, boundary condi-

tions, or driving functions whereas the rapid
dynamics at lower levels are filtered (smoothed
out) and only manifest as averages or equilibrium
values. One of the most important implications of
vertical decomposition is that the short-term dy-
namics of subsystems can be effectively and jus-
tifiably studied in isolation by ignoring the
between-subsystem interactions that operate on
significantly longer time scales. On the other
hand, the long-term dynamics of the entire system
is predominantly determined by slow processes.
However, it must be noted that occasional excep-
tions to this general rule do exist as certain non-
linear effects penetrate through several levels
above or below (so-called perturbing transitivities
by Salthe, 1991; also see O’Neill et al., 1991a).
Unfortunately, misinterpretations of the term
‘hierarchy’ and hierarchy theory may have been a
major reason for a lot of confusions about, and

Two schematic representations of a nested hierarchy
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resistance against, hierarchy theory within and
outside the scientific community. Thus, it seems
necessary to point out that hierarchy, as used in
the scientific context, does not always refer to a
system that is rigidly controlled by overwhelming
top-down constraints and in which bottom-up
effects generated by local interactions are in-
significant. Certainly, hierarchy theory does not
suggest this, either. As discussed earlier, hierarchy
theory emphasizes both top-down and bottom-up
perspectives. While dominance hierarchies do ex-
ist in natural, social, and engineered systems
(Whyte et al., 1969), the local dynamics of, and
interactions among, components are fundamental
to the very existence of any functioning hier-
archies. Indeed, the relative importance or rela-
tionship between top-down constraints and
bottom-up forces in determining system dynamics
is a key to understanding most if not all complex
systems. Neither does hierarchy theory imply infl-
exibility or a lack of diversity and creativity. On
the contrary, an appropriate hierarchical, dy-
namic structure not only provides opportunities
for diversity, flexibility, and creativity, but also
for higher efficiency and stability that are difficult
to obtain in non-hierarchical complex systems.

2.2. Hierarchical structure of landscapes

Landscapes are spatially nested hierarchies and
can be effectively studied as such (Woldenberg,
1979; Woodmansee, 1990; Reynolds and Wu,
1999; Blaschke, 2001; Hay et al., 2001). For exam-
ple, Woodcock and Harward (1992) described a
forested landscape as a spatial hierarchy: individ-
ual trees form distinctive forest stands that in turn
constitute different forest types. Wu and Levin
(1994) modeled a serpentine grassland as a dy-
namic spatial hierarchy of patches. Reynolds et al.
(1996) demonstrated that the arctic tundra land-
scapes in Alaska could be effectively studied as
spatially nested hierarchies. The lowest hierarchi-
cal level and the smallest landscape spatial unit
correspond to the individual plant, whose func-
tioning is determined by numerous interactions
between the plant and its immediate abiotic and
biotic environments. At a coarser spatial scale,
plants, soil, and associated local microbial and

faunal communities comprise relatively homoge-
neous ‘patch’ ecosystems, which in turn form
‘integrated flow systems’—distinctive hydrologi-
cal units. Then, the landscape is a mixture of
integrated flow systems that make up the scale of
interest.

Reynolds and Wu (1999) argued that complex
landscapes have structural and functional units at
different scales on both theoretical and empirical
bases (also see Wu and Levin, 1994, 1997; Wu
and Loucks, 1995). Landscapes can be perceived
as near-decomposable, nested spatial hierarchies,
in which hierarchical levels correspond to struc-
tural and functional units at distinct spatial and
temporal scales. The process of identifying struc-
tural and functional units involves finding the
characteristic scales of ecological processes of in-
terest and decomposing landscape systems accord-
ingly. The objectives of doing so are twofold: (1)
to break down the complexity of landscapes by
providing a hierarchical structure to them; and (2)
to identify multiple-scale patterns and processes
as well as top-down constraints and bottom-up
mechanisms. While simplification is an imperative
step toward understanding, the explicit consider-
ation of scale multiplicity, which is closely related
to hierarchical properties of landscapes, is a key
to successful simplifications of complex systems.

2.3. Hierarchical patch dynamic and the scaling
ladder approach

Spatial patchiness is ubiquitous in ecological
systems. The theory of patch dynamics, assuming
that ecological systems are dynamic patch mosa-
ics, studies the structure, function and dynamics
of patchy systems with an emphasis on their
emergent properties that arise from interactions at
the patch level (Levin and Paine, 1974; Pickett
and White, 1985; Wu and Levin, 1994, 1997;
Pickett et al., 1999). On the one hand, hierarchy
theory provides useful guidelines for ‘decompos-
ing’ complex systems and focuses on a ‘vertical’
perspective. On the other hand, patch dynamics
deals explicitly with the spatial heterogeneity and
its change, an apparent ‘horizontal’ or landscape
perspective (Wu, 1999, 2000). The hierarchical
patch dynamics (HPD) paradigm integrates hier-
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Table 1
Main tenets of hierarchical patch dynamics paradigm
(modified from Wu and Loucks, 1995 and Wu, 1999).

Ecological systems are spatially nested patch hierarchies, in

which larger patches are made of smaller patches.

Dynamics of an ecological system can be studied as the
composite dynamics of individual patches and their
interactions at adjacent hierarchical levels.

Pattern and process are scale dependent, and they are
interactive when operating in the same domain of scale
in space and time.

Non-equilibrium and stochastic processes are not only
common, but also essential for the structure and
functioning of ecological systems.

Ecological stability frequently takes the form of
meta-stability that is achieved through structural and
functional redundancy and incorporation in space and
time.

archy theory and patch dynamics, and emphasizes
the dynamic relationship among pattern, process,
and scale in a landscape context (Table 1). As a
result of the integration of the two perspectives,
HPD unites structural and functional components
of a spatially extended system, like a landscape,
into a coherent hierarchical framework.

The relationship between pattern and process is
scale dependent. In view of hierarchical patch
dynamics, pattern and process are only interactive
when both of them operate on the same or similar
spatiotemporal scales. When a spatial pattern is
more or less static relative to the process under
study, only the effect of pattern on process, not
process on pattern, needs to be considered. When
a spatial pattern changes much faster than the
process under study, only the spatially filtered
average property is relevant to the pattern and
process relationship. In neither of these two cases
does a reciprocal relationship exist between pat-
tern and process. However, when a spatial pattern
and an ecological process operate at similar rates
in the same spatial domain, their relationship may
(but not necessarily) become interactive—by defi-
nition, reciprocal. For example, few would imag-
ine that centimeter-scale grass clumping patterns
could directly affect the behavior of eagles, even
though these fine-grained patterns certainly influ-
ence the movement of beetles. On one hand,
landforms cover large geographic areas and

change on geological time scales; thus, landforms
substantially constrain, but are not significantly
affected by, ecological processes such as commu-
nity and ecosystem dynamics (Rowe, 1988; Swan-
son et al., 1988). On the other hand, landforms
interact with regional climatic regimes (Rowe,
1988), and the leaf-level photosynthetic processes
affect and are affected by the spatial pattern of
micrometeorological conditions surrounding indi-
vidual leaves (Baldocchi, 1993; Wu et al., 2000a).
Regional climate patterns surely affect the latent
heat fluxes over a landscape, but contribute little
to the understanding of the photosynthetic pro-
cess of individual leaves. Some biochemists may
wish that their precise understanding of rubisco’s
carbon-fixing mechanisms could somehow be di-
rectly extrapolated to the global scale, so that the
biospheric responses to elevated CO, could be
equally well predicted in the same way. Unfortu-
nately, this is absurdly unrealistic because of the
scale separation of several orders of magnitude in
space and time between the enzyme molecule and
the planet. In other words, non-linearity, emer-
gent properties, and spatiotemporal heterogeneity
in the real world suggest that such a scaling
strategy is theoretically flawed and practically
formidable.

In an attempt to develop a methodology for
studying the relationship among pattern, process
and scale and for extrapolating information
across heterogeneous landscapes, Wu (1999) pro-
posed an HPD multiple-scale modeling and scal-
ing strategy-the scaling ladder approach. The
HPD scaling ladder approach is composed of
three steps: (1) identifying appropriate patch hier-
archies. Ecological processes always interact with
spatial patterns, but not all spatial patterns matter
to ecological processes. In complex ecological sys-
tems, reliable spatial scaling must be based on an
adequate account for the spatial heterogeneity of
the landscape (e.g. spatially explicit or statistical
representations). Thus, it is immensely helpful to
be able to identify the spatial patterns—the patch
hierarchies—that are relevant to the ecological
processes of interest. The identified patch hier-
archies can serve as ‘scaling ladders’ that facilitate
multi-scale modeling and spatial scaling. To iden-
tify patch hierarchies is to decompose complex
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spatial systems. In general, decomposing a com-
plex system may invoke a top-down (partitioning)
or bottom-up (aggregation) scheme or both (Fig.
2). A top-down approach identifies levels and
holons by progressively partitioning the entire
system downscale, whereas a bottom-up scheme
involves successively aggregating or grouping sim-
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indicative of hierarchical levels (e.g. O’Neill et al.,
1991b; Cullinan et al., 1997; Wu et al., 2000b).

(2) Making observations and developing models
at focal levels. Once an appropriate patch hier-
archy is established, ecological processes can be
studied at focal levels (corresponding to charac-
teristic domains of scale), by properly choosing
grain size (sampling interval or spatial resolution)
and extent (study duration or area). There are
always many factors affecting a given ecological
process, but usually only a few are dominant for a
given spatiotemporal domain of scale (Holling,
1992). Thus, a process-relevant patch hierarchy
effectively groups these factors into relatively sep-
arate regions according to their characteristic
scales in space and time. It is crucial to under-
stand the role of scale in making observations.
The phenomena of interest are only observable at
the appropriate scale of observation. Simon
(1973) explained well how temporal scale should
be chosen by dividing system behaviors into high,
medium, and low ranges of characteristic frequen-
cies. The medium range corresponds to the focal
level. If the total time span for a study is 7, and
if the temporal resolution of the observation (or
time interval between measurements) is 7, the
behavior of the system that is much faster than
1/z (high frequency events) appears to be noise,
and its meaning (signal) to the focal level is
revealed by its statistical averages. On the other
hand, system dynamics that are much slower than
1/T (low frequency events) will not be observed
and can be treated as constants at the focal level.
This principle remains equally valid for the rela-
tionship between system dynamics and character-
istic spatial scales where T and 7 are the spatial
extent and grain size of the observation, respec-
tively. The above argument provides the essential
theoretical basis for adopting the so-called triadic
structure of hierarchy in research. That is, when
one studies a phenomenon at a particular hierar-
chical level (level x), the mechanistic understand-
ing comes from the next lower level (level x — 1),
whereas the significance of that phenomenon is
revealed at the next higher level (level x + 1).

(3) Extrapolating information across the do-
mains of scale hierarchically. Scaling or extrapo-
lating information across scales (or levels) over

spatially heterogeneous landscapes has proven to
be a formidable task because of complex pattern—
process interactions. The most salient aspect of
this complexity is the non-linearity in time and
space that is the fundamental source of emergent
properties. Thus, a major role of a patch hier-
archy identified in step one is to serve as a scaling
ladder that is composed of the domains of scale
relevant to a particular study. Scaling can be
accomplished by changing the grain size and ex-
tent of models along the patch hierarchy (Fig. 3).
While a variety of specific scaling techniques can
be applied here (e.g. Ilwasa et al., 1987, 1989;
Ehleringer and Field, 1993; van Gardingen et al.,
1997; Jarvis, 1995; see Wu, 1999 for a review), a
general approach is to link models along the
scaling ladder that are built individually around
distinctive focal levels. One of the most sensible
ways of doing so is to use the output of lower-
level models as the input to upper-level models.
Sometimes, the input may take the form of re-
sponse curves or surfaces that are generated using
statistical methods based on the output from a
lower-level model (e.g. Reynolds et al., 1993).
Similarly, such hierarchical scaling can be imple-
mented from top down—using the output of
higher-level models to constrain or drive lower-
level models. This top-down approach has be-
come increasingly appealing and feasible as
remote sensing data, with high temporal and spa-
tial resolutions, are readily available over large
geographic areas.

3. A hierarchical patch dynamics model of the
Phoenix urban landscape (HPDM-PHX)

In this section, we demonstrate how to imple-
ment the hierarchical patch dynamics paradigm
and the scaling ladder approach in modeling com-
plex ecological systems through an example, the
hierarchical patch dynamics model for the
Phoenix urban landscape (HPDM-PHX). This ex-
ample is a part of our on-going modeling efforts
associated with the Central Arizona-Phoenix
Long-Term Ecological Research (CAP-LTER)
and related research projects. Although the sys-
tem under study is an urban landscape, the spa-
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Fig. 3. llustration of hierarchical scaling or extrapolating information along a hierarchical scaling ladder. Scaling up or down can
be implemented by changing model grain size and extent successively across domains of scale.

tially explicit hierarchical modeling approach is
general, and can be used for other complex eco-
logical systems.

3.1. Background

Urbanization has drastically transformed natu-
ral landscapes everywhere throughout the world,
inevitably exerting profound effects on the struc-
ture and function of ecosystems. In particular, the
conversion of natural and agricultural areas to
highly artificially modified urban land uses has
been taking place at an astonishing rate. Accord-
ing to the United Nations, the world urban popu-
lation was only a few percent of the global
population in the 1800s, but increased to nearly
30% in 1950 and reached 50% in 2000. It has been
projected that 60% of the world population will
live in urban areas by 2025.

Land use and land cover changes associated
with urbanization significantly affect the composi-
tion of plant communities by fragmenting the
landscape, removing and introducing species, and
altering water, carbon, and nutrient pathways.
Although urban areas represent arguably the
most important habitats for humans, they are

among the least understood ecosystems of all, and
urban ecology has not been considered part of the
mainstream ecology worldwide (Collins et al.,
2000). It is true that ecological studies in urban
areas have a long history that dates back to the
early 1900s or even earlier (Breuste et al., 1998).
Also, much research has been done to understand
spatial pattern and urban dynamics by geogra-
phers and social scientists with little or only su-
perficial consideration of ecology in and around
cities. However, a full understanding of how ur-
ban ecosystems work does not come from iso-
lated, disciplinary studies, be they ecological,
sociological, or geographic. The urban whole is
larger than the sum of its biotic and abiotic parts.
The ecology of urban systems as integrated
wholes needs new and integrative perspectives
(Pickett et al., 1997, Zipperer et al., 2000).

In the southwest US, the Phoenix metropolitan
area in particular, urbanization has profoundly
changed the desert landscape. In fact, Phoenix has
become the sixth largest city with the highest
population growth rate in the United States. To
understand the interactions between urbanization
and ecological conditions, we have been develop-
ing models based on the hierarchical patch dy-



16 J. Wu, J.L. David / Ecological Modelling 153 (2002) 7-26

namics paradigm to simulate the pattern and pro-
cess of urban growth and its ecological conse-
guences. This section describes the general
structure of the hierarchical patch dynamics
model for the Phoenix metropolitan landscape
(HPDM-PHX). The main goal of the current
version of HPDM-PHX is to develop an under-
standing of how urbanization affects ecosystem
productivity and biogeochemical cycles at local
and regional scales.

3.2. General model structure of the HPDM-PHX

A spatially nested patch hierarchy is used for
HPDM-PHX, which consists of local ecosystems,
local landscapes, and the regional landscape (Figs.
4 and 5). In the case of modeling ecosystem
processes, this patch hierarchy is essentially a
hierarchical implementation of the ecosystem
functional type (EFT) concept (Reynolds et al.,
1997; Reynolds and Wu, 1999). Local ecosystems
correspond to land cover types that have a rela-
tively homogeneous vegetation—soil complex
within (e.g. cotton fields, urban centers, residen-

tial areas, parks, creosote bush-dominated desert
communities). The land cover EFTs are readily
detectable from air photos and remote sensing
data (e.g. Landsat TM images), and largely corre-
spond to the categories of the Anderson et al.’s
(1976) level 11 classes. A local landscape is a patch
mosaic of local ecosystems, in which spatial pat-
terns emerge. Local landscapes are characterized
by dominant land cover types, and several differ-
ent types can thus be recognized (e.g. urban,
rural, agricultural, and natural landscapes). Thus,
the structure and function of a landscape EFT is
a function of its (non-spatial) composition and
(spatial) configuration. Finally, the regional EFT
is a mixture of local landscapes, and characterized
by climate, geomorphology, hydrology, soils, and
vegetation at the regional scale. Because the EFT
concept emphasizes ecosystem attributes and pro-
cesses such as primary productivity, biogeochem-
istry, and hydrology, it gives concrete meanings to
patches and thus reinforces the less tangible func-
tional aspect of the hierarchical patch dynamics
paradigm.

Scale Major Characteristics

function

grassland region)

Regional e Composed of different types of local landscapes
Landscape e Heterogeneous in ecosystem structure and

e Characterized by the dominant biome and land
use pattern at the regional scale (e.g., an
urbanized desert region vs. an agricultural

Landscape types

function

Local e Composed of different land use and land cover
e Heterogeneous in ecosystem structure and
e Characterized by dominant land use types, such

as urban landscapes, rural landscapes, agricultural
landscapes, and natural desert landscapes

Ecosystem complexes

Level II classes

Local o Relatively homogeneous vegetation-soil

e Readily detectable from air photos and remote
sensing data (e.g., Landsat TM images)
e Largely corresponding to Anderson et al.'s (1976)

Fig. 4. Hierarchical ecosystem functional types (EFTs) for the Phoenix metropolitan area. The EFT hierarchy consists of local
ecosystems, local landscapes, and the region. Each of these hierarchical levels is characterized by a set of distinct structural and

functional features.
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Fig. 5. Diagrammatic representation of the basic structure of the hierarchical patch dynamics model of the Phoenix urban landscape

(HPD-PHX).

At the local ecosystem level, we use modified
versions of two ecosystem process models: CEN-
TURY, a general model of terrestrial biogeo-
chemistry originally developed for the Great
Plains grassland ecosystem by Parton et al. (1987,
1988) and PALS, a patch-level arid ecosystem
simulator developed by Reynolds and his associ-
ates for the Jornada basin, New Mexico
(Reynolds et al., 1993, 1997). CENTURY simu-
lates the long-term dynamics of carbon, nitrogen,
phosphorus, sulfur, and plant production and has
been tested for a number of grassland ecosystems
worldwide (Parton et al., 1993). PALS simulates
carbon, water, nitrogen, and phosphorus cycles,
and takes into account variations in patch type,

plant characteristics, soil resources, and climatic
factors. The abiotic components of PALS include
micrometeorological conditions (e.g. temperature
and moisture within and above the canopy) and
soil properties (e.g. water flux, nutrients, and tem-
perature). PALS is well-suited to explore ques-
tions related to nutrient cycling and has been
parameterized for the Jornada LTER site, the
California chaparral, and a grassland in Kansas
(Reynolds et al., 1997; Reynolds and Wu, 1999).
We use these two ecosystem models in parallel for
the following reasons. CENTURY and PALS
represent different levels of mechanistic details in
simulating ecosystem processes, and thus compar-
ing them can help us understand what details can
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be ignored in the process of scaling up from the
local ecosystem to the region. Model comparisons
also provide a means for increasing our confi-
dence in estimating ecological variables especially
when data are rarely available (Schimel et al.
1997). Moreover, ecosystem models that are tai-
lored for different land cover types found in the
Phoenix metropolitan area can be more effectively
developed based on CENTURY and PALS.

While our land cover change (sub)model in
HPDM-PHX shares some of the similarities of
the Markov-cellular automata approach (e.g. Li
and Reynolds, 1997), it is integrated directly with
the ecosystem model. The regional model is the
integration of various component landscapes with
explicit consideration of their horizontal interac-
tions (Fig. 5). The land cover change model is
driven by local rules and top-down constraints
which are in turn influenced by socioeconomic
processes in the region. Changes in landscape
pattern then result in changes in ecosystem pro-
cesses at both local and regional scales. Although
the effects of land use and land cover change on
ecological processes are often more obvious and
dominant than the feedback of changed ecological
conditions to land use decisions, the latter does
exist and will become more important as urban-
ization continues to progress. While still on-going,
our model evaluation process involves several
steps: (1) to assess the reasonableness of the
model structure and the interpretability of func-
tional relationships within HPDM-PHX; (2) to
simulate ecosystem processes across a gradient of
land cover types; (3) to evaluate the correspon-
dence between model behavior and empirically
observed patterns at local ecosystem, landscape,
and regional scales; and (4) to conduct a series of
sensitivity and uncertainty analysis to HPDM-
PHX.

4. Developing a hierarchical patch dynamics
modeling platform (HPD-MP)

Constructing and evaluating hierarchical patch
dynamics models like HPDM-PHX can be techni-
cally complex in terms of programming, data
handling, and model linkage and interface. To

facilitate the development of such models, there-
fore, we have been building an HPD-based mod-
eling platform (HPD-MP). In this section we
describe the general structure of HPD-MP, and
illustrate how it is being used in our effort to
develop HPDM-PHX.

4.1. Description of HPD-MP

The hierarchical patch dynamics modeling plat-
form is designed to facilitate spatially explicit
hierarchical modeling by taking a ‘fine-grained’
approach to program interoperability. Practically
speaking, this means that we begin by approach-
ing modeling problems from a programmer’s view
point: first developing necessary objects (or mod-
ules) and application programming interfaces
(APIs), and then using them to further develop
tools and utilities that allow users to develop
models with a minimal amount of programming.
The fine-grained approach differs from ‘coarse-
grained’ methods that adopt existing modeling
and data management tools (e.g. simulation and
GIS packages) via common interchange linkages
and languages (e.g. COM, DCOM, CORBA,
XML). While these two approaches represent dif-
ferent modeling perspectives, they are not mutu-
ally exclusive. By taking a fine-grained approach,
HPD-MP provides a high degree of flexibility that
allows for modeling a variety of complex systems
and a high level of user-friendliness that eases its
applications.

The hierarchical patch dynamics modeling plat-
form consists of software libraries, algorithms,
data converters, and a series of tools and utilities
for model development and integration. All these
components are organized into two levels within
HPD-MP (Fig. 6). The API/Data Format level
gives users the flexibility to develop new objects,
tools and utilities in C** and to build models
from ground up. The Tools/Utilities level allows
users to develop models using tools and utilities
provided by HPD-MP, and to link them with
other models and data management tools external
to HPD-MP. An application programming inter-
face (API) is simply a set of routines, protocols,
and tools for building software applications. It
serves as a software interface for other programs
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HPD-MP

Models

- A generic model library (e.g.,
CA model, state transition
probability model)

Utilities

- To help with data conversion, manipulation,
extraction, and resampling

- Statistical and spatial analysis programs

- Data queries
- Linkages to existing applications including GIS

Modeling Tools

- To build and run models
- Tools: Mint, Model2xx, etc.

Data Formats Application Programming Interface
(API)

- For modelers to develop new

objects, tools and utilities in C/C*+

- For file format specification
(e.g., GIF, JPG, Shape, HDF)

Hierarchical Patch Dynamics Modeling Platform
(HPD-MP)

Fig. 6. lllustration of the structure of the hierarchical patch dynamics modeling platform (HPD-MP), showing the major
components and their relationship.
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such as image manipulation routines, and makes
it easier to develop applications by providing
necessary building blocks.

Spatially explicit models often have to deal with
guestions similar to those in computational ge-
ometry (CG). For example, is a given point inside,
on, or outside a polygon? What is the surface area
of a polygon or higher dimensional object? Do
two geometric objects intersect? If so, what are
the intersection and union of these objects? What
are the nearest neighbors of a given object? To
deal with these computational problems, HPD-
MP incorporates a number of CG algorithms and
methods (O’Rourke, 1998; de Berg et al., 2000).

When contemplating a modeling project we are
often confronted with the choice between raster
and vector data. While tradeoffs of choosing one
over the other are well documented and under-
stood, specific data formats (e.g. DEM, GIS cov-
erages, digitized aerial photos) have no common
application programming interfaces (APIs) that
deal with both raster and vector data interchange-
ably, much less with some mechanisms through
which spatial queries can be readily made. To
overcome this problem, HPD-MP contains utili-
ties to read and translate between a variety of
data formats. The Hierarchical Data Format
(HDF; Brown et al., 1993; Schmidt, 2000) is used
as a base for information interchange because it
can handle large (greater than 2 gigabytes) and
multidimensional data sets, permits the use of
both vector and rater data layers within the same
file, and allows user-definable data types. In addi-
tion, we also use the ImageMagick Studio image
processing libraries (http://
magick.imagemagick.org) to provide a transpar-
ent interface to read and write over 60 different
common image formats. This capability of HPD-
MP greatly facilitates 1/O and visualization pro-
cesses. For example, the data and image
processing facilities are not only convenient for
developing utilities like converting ARC GRID
and SHAPE files (yet to be implemented), but
also allow for the automatic generation of output
into common image formats like GIF and JPEG.

There are three basic ways to use HPD-MP: (1)
to use the existing tools and utilities, as well as
prebuilt models provided by the platform to run

simulations by simply specifying model parame-
ters and input data; (2) to use high-level modeling
tools and utilities provided by the platform to
develop models for user-defined problems; and (3)
to develop new objects or modules using a pro-
gramming language (e.g. C**) and, at the same
time, take advantage of the capabilities of the
existing tools and utilities. Currently, HPD-MP
includes several high-level utilities, including
MINT—a model interpreter that reads in and
runs an existing model (e.g. STELLA equations;
HPS, 1996), MODEL2XX—a utility to translate
various modeling languages (e.g. STELLA) into
stand-alone programs in C** (and JAVA in fu-
ture), HPD_STATS—a collection of statistical
routines and tools for spatial analysis, and
DATA_CONV—a data converter that supports
a number of data formats, including ImageMag-
ick Studio, HDF, and Arcinfo/ArcView.

4.2. Examples of using HPD-MP

As a demonstration of HPD-MP, we present
two examples here: (1) a land use change model
for the Phoenix area; and (2) a spatial multi-spe-
cies population dynamics model. These examples
here are used only for the purpose of illustrating
the use of HPD-MP. A thorough evaluation of
the structure and behavior of these models is not
intended, therefore.

4.2.1. A hierarchical stochastic cellular automata
model of land use change

The land use change model is a hierarchical
stochastic cellular automata model. Stochastic cel-
lular automata (CA) typically model the state
transition probability as a function of only local
or neighborhood rules. These local-interactions
are assumed to be the only driving forces to
generate the global pattern of system dynamics.
However, in real-world phenomena, local-interac-
tions are frequently modified by patterns and
factors at broader scales that act as top-down
constraints or driving functions. These may either
be spatially fixed (as in the case of property
ownership boundaries and zoning ordinance re-
strictions) or variable (such as domains of influ-
ence or the land use change due to the proximity
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to roads). They are important in simulating ob-
served land use change patterns. HPD-MP was
used to facilitate such multiple-scale modeling
whereby local processes may be modified by top-
down constraints or driving functions and, at the
same time, bottom-up propagation of information
is allowed to hierarchically link interactions be-
tween scales.

Specifically, we modeled the land use change in
the Phoenix area by explicitly considering local
urban growth factors, domains of urbanization
influence, and effects of ownership (Fig. 7). The
transition probability between different land use
types (urban, agriculture, and desert) was treated

(A)

Ownership boundaries "

~—_
-

— -

Local neighborhood effects

Pchange = f (local rules, domain of inflence, ownership)

Desert

-

[ Agriculture

as a function of the three groups of factors at
different spatial scales, i.e. Pcy,ng = f (local rules,
domain of influence, ownership). The domains of
influence were intended to reflect heterogeneous
urbanization situations between the scale corre-
sponding to the pixel size and the entire region. In
reality, they may modify land use transition prob-
abilities through legal and zoning restrictions. As
a first approximation we assumed that these do-
mains of influence operated independently of the
local-scale processes. The data used to parameter-
ize the model were historic land-use maps from
CAP-LTER (Knowles-Yanez et al., 1999). In an
earlier study, Jenerette and Wu (2001) had used

(B)

oy
. g -
I“‘—h‘

k| ‘I 1‘
1995 Land Use Map (Observed)

B Urban

Fig. 7. lllustration of the hierarchical structure of the stochastic CA model of land use change in Phoenix (A), and a comparison

between observed and simulated land use patterns (B).
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this data set (for years 1975 and 1995) to develop
a cellular automata urban growth model using a
genetic algorithm (GA) optimization approach. In
this study, we adopted the optimized parameter
set from Jenerette and Wu (2001) for the initial
values of land use change transition probabilities
at the pixel size of 250 by 250 m (same as in
Jenerette and Wu, 2001). Ownership information
was obtained from a 1988 data set provided by
the Arizona Land Resource Information System
(ALRIS).

The model was initialized with the1975 land-use
map and run for 55 years with a time step of 1
year to year 2030. This period of simulation was
chosen to conform to the 50-year plan initiated by
the local government in 1980. The simulated land
use map for 1995 was compared with the empiri-
cal map for the same year, and the two maps
matched each other well (Fig. 7). The observed
urbanized area was approximately 1975 km? while
the predicted value was 1973 km?2. This high accu-
racy in the simulated urbanized area, however,
should be of no surprise given that the original
parameterization of the model, as in all other
Markov chain or transition probability models of
landscape change, was based on the 1975 and
1995 land use maps (Jenerette and Wu, 2001).
Nevertheless, the high accuracy in spatial pattern
of urban growth, attributable to the incorporation
of hierarchical constraints, was noteworthy. We
continued the simulation up to 2030 when a total
of 3659 km? or roughly 69% of the total privately
owned land in the study area was urbanized (Fig.
7). This example not only demonstrates the utility
of HPD-MP, but also the increased accuracy and
interpretability of the CA approach due to the
addition of a hierarchical structure.

4.2.2. A spatial multi-species population dynamics
model

While the Phoenix land use change model in-
volves only the simulation of landscape pattern,
our second example focuses on the linkage be-
tween spatial pattern and process-based models.
This is a pilot model we developed to test the
tools and utilities of the HPD modeling platform.
Through this example we intend to illustrate some
of the basic procedures for implementing process-

based models, such as the ecosystem process mod-
els encapsulated in the HPDM-PHX which is
currently under construction.

In the arid environment of the southwestern
United States, water resources are often over-allo-
cated, and this has resulted in devastating modifi-
cation to the natural flood regimes. These natural
processes are necessary to provide suitable germi-
nation sites and conditions for native plants such
as willow (Salix gooddingii) and cottonwood
(Populus fremontii ). The modification to the flood
regimes in turn has profoundly impacted native
vertebrates such as birds. The modification to the
natural wetland habitats has allowed a number of
invasive exotics, such as salt cedar (Tamarix
ramosissima), to become established by out-com-
peting the native plant species. We hypothesized
that one possible method to restore the natural
riparian communities is to mimic the natural
flood regimes with managed dam releases.

As an example of how HPD-MP can be used to
develop spatial process-based models and in order
to test the above hypothesis on riparian habitat
restoration, we developed a plant competition
model for the drought-tolerant salt cedar and the
inundation-tolerant willow and cottonwood, and
a suitable habitat-based bird population dynamic
model. Both of these models were developed using
STELLA (as are several components of HPDM-
PHX under development). The plant competition
model was of the Lotka—Volterra type, but ex-
plicitly incorporated the spatial variations in to-
pography and the water table. For the purposes
of demonstration, the topography was generated
using Rosenbrock’s (1960) multimodal mathemat-
ical function:  f(x,y) = (1 — x)?+ 100(y — x?)?,
where —15<x<15 —-05<y<15. This
function is a well-established mathematical sur-
face and can be used to portray a generalized
riverbed. The maximum difference in elevation
between high and low points for the generated
topographic surface was 5 m. The water table was
in turn varied according to three hypothetical
scenarios of water management: (1) static water
level—the water level remains at a fixed height of
0.5 m (as measured from the bottom of the river
channel); (2) random water level—the water level
is uniformly random between 0 and 1.0 m; and (3)
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pulsed water level—the water level remains low in
between periodic dam releases. The results of the
plant competition model then produced the habi-
tat suitability map for the bird population model.
To run the STELLA models spatially, we first
exported the STELLA models as finite difference
equations (FDEs), and then these FDEs together
with spatially-gridded information on topography
and hydrology were input into HPD-MP’s model
interpreter (MINT) and run within each cell on
the landscape. Although this was a model based
on contrived data, it was interesting to notice that
the periodic flood scenario produced the greatest
native plant recruitment, which was in agreement
with observed riparian vegetation dynamics (Mid-
dleton, 1999).

5. Discussion and conclusions

A distinctive feature of the prevailing theme in
the science of complexity is that local interactions
among components are essential for the organiza-
tion and global dynamics of complex systems. As
Mitchell et al. (1994) pointed out, ‘a central goal
of the sciences of complex systems is to under-
stand the laws and mechanisms by which compli-
cated, coherent global behavior can emerge from
the collective activities of relatively simple, locally
interacting components.’” This view has been rein-
forced by the wide-spread use of such approaches
as cellular automata, genetic algorithms, and
agent-based modeling, all of which rely heavily on
a bottom-up, rather than a top-down, perspective.
While admitting that local interactions and bot-
tom-up forces are essential, we argue that top-
down constraints and hierarchical linkages are
also crucial for understanding and predicting the
dynamics of many, if not most, complex systems.
In general, ecological systems are not sandpiles,
but hierarchical patch dynamic systems with
evolving structures and changing components.

Therefore, to deal with the complexity of eco-
logical systems we advocate the hierarchical patch
dynamics paradigm (Wu and Loucks, 1995; Pick-
ett et al., 1999; Reynolds and Wu, 1999; Wu,
1999). The HPD paradigm integrates hierarchy
theory and patch dynamics, and represents a spa-

tially explicit theory of pattern, process, scale and
hierarchy. Because complexity always involves
multiple scales, HPD provides a sensible and
powerful approach to modeling complex ecologi-
cal systems and spatial scaling over heterogeneous
landscapes. Scaling in ecology is inevitable for at
least two important reasons (Wu, 1999; Wu and
Qi, 2000). First, most environmental and resource
management issues can only be dealt with effec-
tively at broad scales whereas much of the empir-
ical information has been collected at local scales.
Second and more profoundly, to understand how
ecological systems work we must be able to relate
broad-scale patterns to fine-scale processes and
vice versa. In both cases, transferring information
between scales is indispensable. The HPD scaling-
ladder strategy (Wu, 1999) provides a hierarchical
way of dealing with spatial heterogeneity and
modularizing nonlinearity so as to facilitate the
extrapolation and translation of information
across scales.

Based on the hierarchical patch dynamics
paradigm and the scaling ladder concept, in this
paper we have articulated a spatially hierarchical
modeling approach to studying complex systems.
Then, we described how this approach has been
used in developing the hierarchical patch dynam-
ics model of the Phoenix urban landscape
(HPDM-PHX) that simulates the land use change
and related ecosystem processes. In addition, we
presented the hierarchical patch dynamics model-
ing platform (HPD-MP)—a software package-
from which multi-scale ecological models can be
developed and integrated in an efficient and co-
herent manner. To illustrate the utility of HPD-
MP, we discussed two examples: a hierarchical
stochastic CA model of land use change and a
spatial population dynamics model. This model-
ing platform is still being developed and will be
continuously refined through the development of
the hierarchical patch dynamics model of the
Phoenix urban landscape and related modeling
projects at the Landscape Ecology and Modeling
Laboratory (LEML) at Arizona State University.

The spatially explicit hierarchical modeling ap-
proach we have presented here is but one ap-
proach to modeling and understanding complex
ecological systems. At a time when complexity
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and diversity are recognized and emphasized, plu-
ralism in ecology is not only appropriate but also
necessary. However, neither extremely reduction-
ist nor metaphysically holistic approaches seem to
be productive when dealing with such phenomena
as self-organization and emergent properties. To
effectively deal with complexity, we need more
than simply using both approaches in parallel; we
need to integrate them and produce new, more
effective approaches. We believe that most such
approaches are hierarchical in one way or another
(Wu, 1999). In this regard, it is always refreshing
and enlightening to cite Morrison (1966): ‘The
world is both richly strange and deeply simple.
That is the truth spelled out in the graininess of
reality; that is the consequence of modularity.
Neither gods nor men mold clay freely; rather
they form bricks.’
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