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Abstract

We present a new index, called Relative Errors of Area
(REA), for assessing the accuracy of cover-class areal per-
centage (%LAND) that is extracted from thematic maps
after classifying remotely sensed data. We demonstrate
how to derive REA from an error matrix and its relation-
ship with user’s and producer’s accuracy. We compare the
REA index with other accuracy indices in a hypothetical
and two real case studies. The accuracy of cover-class
areal estimates is highly correlated with the REA index, but
not with other classification accuracy indices such as the
overall classification accuracy. In general, users should be-
ware of using thematic maps with low REA values. More-
over, the estimates of cover-class area can be revised by
using REA if cell values of the major diagonal in an error
matrix are available.

Introduction
Cover-class areal percentage, or %LAND, commonly derived
from thematic maps that are produced by classifying re-
motely sensed data, is broadly used to measure natural re-
sources, evaluate ecological conditions, and quantify land-
use and land-cover changes in space and time (O’Neill
et al., 1988; McGarigal and Marks, 1994; Frohn, 1998). Un-
fortunately, all thematic maps contain classification errors.
Thus, statistical analyses with %LAND inevitably contain
errors. Furthermore, the uncertainties of %LAND are not
readily estimable with the existing classification accuracy
measures (Hess, 1994; Shao et al., 2001; Wu and Shao,
2002). Without knowing the uncertainties of landscape
metrics, it is difficult to compare different landscapes, to
detect landscape change over time, or to relate detected
landscape pattern to ecological processes (Hess, 1994).
Readers could be even wrongly impressed by the values of
landscape metrics if an explicit accuracy estimate is un-
known. Unless landscape indices can be explicitly assessed,
quantitative analysis with landscape indices is still a con-
troversial issue.

Studies have addressed the issues relevant to the prob-
lem of the accuracy or uncertainty in using landscape in-
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dices. The studied issues include correlations among land-
scape indices (Riitters et al., 1995; Cain et al., 1997), scale
factors of landscape mapping with remote sensing data
(Woodcock and Strahler, 1987; Moody and Woodcock,
1995), scale effects on landscape analysis (Wickham and
Riitters, 1995; Jelinski and Wu, 1996; Qi and Wu, 1996; Wu
et al., 1997; Fortin, 1999), sensitivity of landscape indices
to land-cover misclassification and composition (Moody
and Woodcock, 1995; Wickham et al., 1997; Shao et al.,
2001), uncertainties of diversity indices derived from error
matrices (Hess and Bay, 1997), and error propagation with
environmental modeling (Jelinski and Wu, 1996; Heuvelink,
1998). However, little success has been achieved regarding
the effect of classification errors on the accuracy of land-
scape indices.

With the advent of more advanced digital satellite re-
mote sensing techniques, the necessity of performing accu-
racy assessments of image classification has received re-
newed interest (Congalton, 1991). Classification accuracy
can be assessed with various measures or statistics derived
from an error matrix (Congalton and Green, 1999). These
statistics include overall accuracy, producer’s accuracy,
user’s accuracy, Kappa statistic (including weighted Kappa
statistic), and classification success indices (Koukoulas and
Blackburn, 2001). On the one hand, each accuracy measure
is appropriate for certain, but not for all, applications. On
the other hand, the overall accuracy or Kappa statistic is
more commonly used in practice than user’s and pro-
ducer’s accuracy. In this paper, we compare these accuracy
statistics with a new index, called Relative Errors of Area
(REA), in estimating the uncertainty of %LAND, which is de-
fined as the total area of a cover class divided by the total
landscape area multiplied by 100 (McGarigal and Marks,
1994; http://flash.lakeheadu.ca/~rrempel/patch/; last ac-
cessed 13 January 2003).

An lllustration of Classification Errors with a Contrived Data Set
In a hypothetical situation (Figure 1), two classifications
have the same overall accuracy of 90 percent. For the first
classification, the producer’s accuracy is 79 percent for
class 1 and 100 percent for class 2, and user’s accuracy is
100 percent for class 1 and 83 percent for class 2; for the
second classification, the producer’s accuracies of class 1
and 2 are 100 percent and 80 percent, respectively, and
user’s accuracy is 83 percent for class 1 and 100 percent
for class 2. Although the overall accuracy is relatively high
or satisfactory in practice, which is higher than the mini-
mum level of 85 percent defined by the U.S. Geological
Survey (Anderson et al., 1976), the area estimations based
on the two classifications are obviously different. While the
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Figure 1. A hypothetical illustration to demonstrate that
land-use changes can be wrongly detected even if overall
classification accuracy is relatively high.

value of %LAND is about 50 percent for class 1 or 2 in the
reference map, %LAND ranges from about 40 percent to 60
percent for each class in both classifications. The errors of
%LAND are =10 for each class in both classifications. The
relative difference in area estimations between the two
classifications is (29—19)/24 = 41 percent for class 1 and
is (30—20)/25 = 40 percent for class 2.

This example has practical implications for areal esti-
mations or determining changes in %LAND over time or
across space. Unless the overall classification accuracy is
100 percent, which is impossible in reality, %LAND esti-
mates based on remote sensing data may have sizable errors
and, in turn, result in misinterpretations in further statisti-
cal or quantitative analysis.

The Derivation of Relative Errors of Area (REA)
To deal with the problem of classification errors associated
with thematic maps based primarily on remote sensing
data, we propose a new index that can be used to assess
the accuracy of landscape area. This index provides infor-
mation on the uncertainty in derived cover-class area or
%LAND estimates.

If a thematic map contains n classes, its accuracy can
be assessed with the following error matrix (Congalton,
1991; Congalton and Green, 1999):

Ref
o) ererence Row Total
S
= fiu fiz o fin | i
£ fa feoo o fan | for
§ : : : : : (1)
6 fnl fnz fnn fn+
Column Total fi, fi» fin | N
where N is the total number of sampling points, f;; (i and j
=1, 2, ..., n) is the joint frequency of observations as-

signed to class i by classification and to class j by reference
data, f;; is the total frequency of class i as derived from the
classification, and f;is the total frequency of class j as de-
rived from the reference data.

908 August 2003

For a given cover-class k (1 = k = n), the reference
value of %LAND (LR;) is computed as

i fu {;ﬁk + fuk
— i#k ) (2]

f+k i=1
LR, = =
kTN N N

The classification value of %LAND (LC,) is derived as

i £ > fig t fuk

Lo =t _ ST e (3)
TN N N
Thus, the difference between LC; and LR, is
LC, — LRy == =1= = = : (4
x k N N N (4)

If LC, — LR, = 0, there are two possibilities: classifica-
tion errors are zero, or commission errors (CE) and omission
errors (OE) are the same for cover-class k. The first possibil-
ity is normally untrue in reality. In many situations, the
second possibility is also untrue. If CEy > OE} and LCy —
LR, > 0, the value of %LAND of class k is overestimated; if
CE, < OEy and LC, — LRy < 0, the value of %LAND of class
k is underestimated. Therefore, the components of CE; and
OE} in Equation 4 determine the accuracy of %LAND for
cover-class k.

Mathematically, CEj is given as

CEx = Z fi (5)
2k

and OE} is expressed as

OE} = E fix- (6)
ik
The balance between CE; and OE) indicates the ab-

solute errors of area estimate for cover-class k. The relative
errors of area (REA) are then defined as

S = 3 fa

_ J#k

REA, — ik

Juae

where fi, is an element of the kth row and kth column in
an error matrix. It represents the frequency of sample points
that are correctly classified.

According to Congalton and Green (1999), User’s Accu-
racy of class k (UA;) can be expressed as

X 100 (7)

UA, = ]]:kk _ fkk _ fkﬁ (8)
O3y fut 3 fy
j=1 j=1
jk

and Produccer’s Accuracy of class k (PA;) can be expressed
as

PA, = Jik _ nfkk _ fk1n< _
_:21 fic  fuat ; fix

i#k

f+k

(9)
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By substituting Equations 8 and 9 into Equation 7, it is
easily derived that

1 —L) X 100. (10)

REAk (UAk PA,

Thus, REA can be obtained using information on the
error matrix with Equation 7 or the user and producer’s ac-
curacy with Equation 10. If REA; = 0, %LAND; has no errors;
REA; > 0, %LANDy is overestimated; if REA; < 0, %LAND is
underestimated. In the hypothetical example above, the first
classification underestimates class 1 (REA; = —26.6%) and
overestimates class 2 (REA, = 20.5%), and the second clas-
sification overestimates class 1 (REA; = 20.5%) and underes-
timates class 2 (REA, = —25.0%).

To calibrate areal estimates with REA;, we introduce a
constant K for class k as follows:

%LANDy . = %LANDy + K X REA, (11)

where %LAND, , = calibrated %LAND;.

Assuming that LR, (see Equation 2) is the unbiased es-
timate of %LAND, . and LCy (see Equation 3) is the unbiased
estimate of %LAND,, K; can be derived as

j#Ek itk
N
Ki=—7 = ];’;,k (12)
2 fg — 2 fu
j=1 i=1
j#k i*k

fi

K can be computed as long as cell values of the major
diagonal in an error matrix are available. In the hypothetical
example above, K; = —19/49 = —0.39 and K, = —25/49 =
—0.51 for classification 1 and K; = —24/49 = —0.49 and
K, = —25/49 = —0.41 for classification 2. Both classifica-
tions result in the same values of calibrated %LAND: cali-
brated %LAND, = 49 percent (38.8% + 0.39 X 26.6% or
59.2% — 0.49 X 20.5) and calibrated %LAND, = 51 percent
(61.2% — 0.51 X 20.5% or 40.8% + 0.41 X 25.0%).

Case Studies

Case 1: Mapping a Two-Class Landscape

Two sub-scenes of Landsat Thematic Mapper (TM) data,
path 116 and row 31 (128° and 42° N), were acquired on
12 September 1987 and 04 September 1993. The study site
is covered with typical old-growth, broadleaved-coniferous
mixed forest (Barnes et al., 1993). It is one of the four vege-
tation zones on the north slope of Changbai Mountain lying
between China and North Korea. The goal of the classifica-
tion was to map the landscape into two classes: forested
and clear-cut areas.

The 1987 data were rectified into a 30-m resolution
image in the UTM coordinate system by referencing to
1:50,000-scale topographic maps. The 1993 data were rec-
tified against the 1987 data, and the co-registration model
RMS (root-mean-square) error was less than 0.5 pixels based
on ten control points. A composite data set was made by
stacking the 1993 and 1987 images. We refer to the 1993
imagery as Uni-Temporal Data (UTD) and the stacked im-
agery as Bi-Temporal Data (BTD) in this paper. Three ap-
proaches were used to determine the number of spectral
classes in each class, and are called Image Sample (IS),
Field Sample (Fs), and Hybrid Sample (HS) (Wu and Shao
2002). For each spectral class, a training sample contained
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two fields and each field was sized around 50 pixels. Three
classifiers — Minimum Distance (MD) that takes only the
first-order statistics, the class mean, Quadratic Likelihood
(QL) that includes both the first- and second-order statis-
tics, and Extraction and Classification of Homogeneous
Objects (ECHO) — were used for supervised classifications.
MD and QL are referred to as spectral classifiers because
they consider only spectral information, whereas ECHO is a
spectral-spatial classifier or sample-based classifier (Kettig
and Landgrebe, 1976). After initial classifications, spectral
classes were grouped into two information classes: forest
and clear-cut. The classification experiment resulted in

18 thematic maps (2 data X 3 training samples X 3 classi-
fiers). A manually digitized thematic map from 1:20,000-
scale infrared color aerial photographs covering an area of
7 by 12 km was used as reference data for accuracy assess-
ment. The reference map was re-rectified and re-sampled to
match the resolution of the Landsat T™ data used for this
study. A set of 1,000 simple-random samples (pixels) was
located on the reference map, and the values for all the
sample locations were used to build error matrix tables.

The overall accuracy for the 18 thematic maps ranged
from 82.6 to 93.2 percent whereas their KHAT (Congalton
and Green, 1999) values ranged from 0.63 to 0.86 (Figure 2).
The range of producer’s accuracy is between 82 and 98 per-
cent for forest and 64 and 95 percent for clear-cut; the range
of user’s accuracy is between 79 and 96 percent for forest
and 80 and 96 percent for clear-cut. The %LAND is estimated
to be between 49.7 and 70.4 percent for forest and 29.6 and
50.3 percent for clear-cut.

REA ranges from —17 to +23 percent for forest and
from —46 to +20 percent for clear-cut. No simple relation-
ships are found between %LAND and overall accuracy. The
estimations of %LAND are related to producer’s accuracy or
user’s accuracy but almost perfect relationships are found
between REA and %LAND of forest (Figure 3). At the 95 per-
cent confidence level, the slope of the regression is 0.52
between REA (x) and %LAND (y), which is about the same as
the mean of K values (K = 0.53) of class forest among the
18 maps. When Equation 11 is used to perform calibra-
tions, the range of %LAND of forest is reduced from 49.7 to
70.4 percent to 55.5 to 59.1 percent (Figure 3).

Case 2: Mapping a Multiple-Class Landscape
A Landsat Thematic Mapper (TM) image of path 22 and row
32, acquired on 05 October 1992, was used to map land-use
and land-cover classes of an area of Tippecanoe County,
Indiana. Based on the classification system of the U.S. Geo-
logical Survey (Anderson et al., 1976), four Level-I land-use
and land-cover classes of urban, agricultural land, forest,
and water were defined from the image (Shao et al., 2001).
Color infrared aerial photographs acquired in 1993 at a
scale of 1:10,000 for the same area were scanned and recti-
fied to the UTM projection coordinates with a 1-m resolu-
tion. The aerial images were used as background images
while displaying the T™ image. The comparison between
the aerial and T™M images on the computer helped assign
class names to training areas and reference samples. The
classification was carried out by 23 students (18 graduates
and five undergraduates) from a remote sensing class. The
students could choose any of the following techniques: su-
pervised classification, unsupervised classification, original
TM bands, PCA (Principal Components Analysis) transfor-
mation, or Tasseled Cap transformation. Following a 3- by
3-pixel majority filtering to classified images, the accuracy
of the 23 four-class thematic maps was evaluated. To assure
that all the maps share the same standard of classification
accuracy, the instructor provided all the students with a
single set of 250 reference samples, which was determined
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Figure 2. The overall accuracy (a), Kappa statistic (b), user’s accuracy (c&d),
producer’s accuracy (c&d), and %LAND (e&f) of an image data classification
with two classes (N = 18).
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Figure 3. A comparison of forest %LAND values before
and after calibrations.

with the stratified random sampling technique provided by
Erdas Imagine software (http://gis.leica-geosystems.com/
Products; last accessed 13 January 2003). The sample unit
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was a pixel. The student could repeat classifications with
various classification techniques until they reached a satis-
factory overall accuracy. This resembled closely the com-
mon practice in image classification.

Each map was different in terms of classification accu-
racy and area estimation (Table 1). The overall accuracy of
the 23 thematic maps ranged from 78 to 89 percent. The
range of producer’s accuracy is 32 to 92 percent for urban,
73 to 97 percent for agriculture, 47 to 92 percent for forest,
and 78 to 100 percent for water; the range of user’s accu-
racy is 62 to 96 percent for urban, 72 to 93 percent for
agriculture, 62 to 100 percent for forest, and 84 to 100 per-
cent for water. The %LAND is estimated to be 5.3 to 24.0
percent for urban, 49.7 to 78.3 percent for agriculture, 13.1
to 31.5 percent for forest, and 0.8 to 1.4 percent for water.

The REA ranges from —200 to +52 percent for urban,
from —30 to +37 percent for agriculture, from —100 per-
cent to +43 percent for forest, and from —23 to +18 per-
cent for water. The closest relationship is found between
REA and %LAND of each land-use and land-cover class
among six classification accuracy indices (Table 2). When
Equation 11 is used to perform calibrations, the range of
%LAND is reduced to 11.2 to 17.4 percent for urban, 61.5 to
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TABLE 1. THE MINIMUM, MAXIMUM, AND MEAN VALUES OF CLASSIFICATION ACCURACY AND %LAND OF INDIVIDUAL CLASSES
PA UA % LAND
PA Agri- PA PA UA Agri- UA UA % LAND Agri-  %LAND  %LAND
OA Urban culture Forest Water Urban culture  Forest Water Urban culture  Forest Water
Min. 77.6 32.0 72.8 48 78.0 62.2 71.8 61.5 84.4 5.3 49.8 13.1 0.8
Max. 89.2 92.0 97.6 92 100 95.7 93.3 100 100 24.0 78.3 31.5 1.4
Mean 83.3 70.1 89.3 74.2 96.0 79.0 85.1 85.4 89.8 12.8 64.8 21.2 1.1

Notes: OA = Overall Accuracy, PA = Producer’s Accuracy, UA = User’s Accuracy

TABLE 2. A SUMMARY OF R? VALUES FOLLOWING A LINEAR REGRESSION
ANALYSIS BETWEEN ACCURACY INDICES AND %LAND OF INDIVIDUAL CLASSES

(N = 23)
Accuracy Index Urban Agriculture Forest Water
Overall Accuracy 0.07 0.00 0.00 0.00
Producer’s Accuracy 0.74 0.80 0.68 0.62
User’s Accuracy 0.74 0.74 0.72 0.39
Relative Errors 0.86 0.94 0.87 0.75
of Area (REA)
Classification Success 0.03 0.00 0.00 0.00
Index*
Individual Classification*  0.04 0.02 0.02 0.00

Success Index

*From Koukoulas and Blackburn (2001).

65.4 percent for agriculture, 21.2 to 25.6 percent for forest,
and 0.9 to 1.3 percent for water.

Discussion and Concluding Remarks

Among dozens of landscape indices, %LAND is relatively
simple but essential in almost all applications. Unlike
some spatially explicit indices, such as edge density, con-
nectivity, and shape index, the errors of %LAND are sup-
posed to be directly related to classification accuracy. A
number of studies have been focused on statistical rela-
tionships between class areal estimates and classification
accuracy (e.g., Bauer et al., 1978; Card, 1982, Hay, 1988;
Czaplewski, 1992, Dymond, 1992; Woodcock, 1996). Com-
pared with the other works, REA is relatively simple and
explicit because it can be directly computed based on
user’s and producer’s accuracy of individual cover
classes.

The implications of REA are obviously different from
those of the overall classification accuracy because the for-
mer is related to the difference between user’s and pro-
ducer’s accuracy values and the latter is approximately the
average of user’s and producer’s accuracy for individual
cover classes. This explains why REA has close relation-
ships with %LAND but not the overall classification accu-
racy. However, the overall accuracy is still useful for re-
vealing the potential uncertainty of %LAND. Figure 4a
indicates that the variation in estimated %LAND decreases
if overall accuracy increases. Only if overall accuracy is
100 percent, will %LAND have no variations at all and,
therefore, is perfectly accurate. If thematic maps have rela-
tively low overall classification accuracy, the differences
between user’s and producer’s accuracy could be high. In
this case, REA is particularly meaningful. If user’s and pro-
ducer’s accuracy is unavailable, maps with higher values of
the overall classification accuracy are still potentially
preferable to those with lower values of the overall classifi-
cation accuracy. This is because a small difference in over-
all accuracy may result in a big difference in user’s and
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producer’s accuracy, which, in turn, results in a big differ-
ence in cover-class areal estimates.

The relationship between REA and %LAND theoretically
follows a linear function. In reality, R? is less than 1. This
is because the source, an error matrix, from which REA is
derived, contains sampling errors (Congalton, 1988). In this
paper, Case 1 has 1,000 simple-random samples for a two-
class map, whereas Case 2 has 250 points for a four-class
map. The larger sample size results in stronger relation-
ships between REA and %LAND than does the smaller sam-
ple size. To assure unbiased representatives of an error ma-
trix, sample points should be located with the simple
random sampling scheme. If stratified sampling methods
are used, the producer’s accuracy should be computed by
weighting the cell proportions by the proportion of each
land cover on the map (Stehman and Czaplewski, 1998). In
this case, the constant K in Equation 11 should be com-
puted by using the weighted value of cell fi.

Anderson et al. (1976) proposed the minimum level
of classification accuracy was at least 85 percent. Based
on what we have learned from the hypothetical and real
examples, 85 percent of overall accuracy is not high
enough for assuring accurate estimations of cover-class
area. At the continental or global scale, the practical level
of classification accuracy is even lower than 85 percent
(Scepan, 1999; Vogelmann et al., 2001). The effects of the
low classification accuracy on downstream applications
are still unknown. In many situations, users have no
choice but to simply believe that classification accuracy
measures, particularly overall accuracy, provide suffi-
cient needed information. Such interpretation is danger-
ous because it may help produce misleading results or
conclusions when a thematic map’s low classification ac-
curacy is used. One of advantages of REA is that it com-
bines the user’s and producer’s accuracy into one index
and, therefore, is readily interpretable. In this case, clas-
sification accuracy can be translated into an explicit mea-
sure of map quality for map users. If an error matrix is
available, REA can be used to revise areal estimates of in-
dividual cover classes. This promotes a change from
“merely referring to” to “actually using” the information
of classification accuracy.
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